
CHRONOBIOLOGIA

ORGAN OF THE INTERNATIONAL SOCIETY
for
CHRONOBIOLOGY

VOLUME XII

JANUARY-MARCH 1985

NUMBER 1

CONTENTS

ORIGINAL PAPERS

J. N. PIERRE, C. CELATI, O. QUEIROZ: 24-h organization of glycolysis and control by photoperiodism 1
K. OTSUKA, T. SATO, H. SAITO, H. KABA, K. OTSUKA, K. SETO, H. OGURA, T. OZAWA: Circadian rhythm of cardiac bradycardia episodes in rats 11

REVIEW

S. FOLKARD, D. S. MINORS, J. M. WATERHOUSE: Chronobiology and shift work: current issues and trends 31

CASE REPORT

H. MURATANI, M. UENO, T. KAWASAKI, I. ABE, N. KAWAZOE, T. OMAE: Aminoglutethimide effect on circadian rhythms in urinary variables in a patient with idiopathic hyperaldosteronism 57

NEWS

BOOK REVIEW

Chronobiology and the digestive system (F. Halberg) 67
(cont'd)

FROM MEETINGS

Announcements

International Symposium on 'Disorders of eating behavior: a psychoneuroendocrine approach', Pavia, Italy	70
Curt P. Richter Prize 1986 in Psychoneuroendocrinology, Bergen, Norway	70
VII International Congress on Hormonal Steroids, Madrid, Spain	70
<i>Abstracts</i>	
H. ARBOGAST, R. SOTHERN, F. HALBERG: Macroscopic differentiation by plasma LH of Stein-Leventhal syndrome (S) from clinical health (H) quantified by cosinor	71
B. BARANOWSKA, M. LAZICKA-FRELEK, B. MIKDALSKA, S. ZGLICZYNSKI, E. ECKERT, F. HALBERG: Unusual circadian timing (ecphasia) of circulating cortisol in <i>anorexia nervosa</i> (AN) characterized by severe body weight deficit	72
R. GARCIA-VILLAESCUSA, J. IGLESIAS-RODRIGUEZ, V. J. GOYANES, L. OTERO-MARTINEZ, C. LODEIRO-MARTINEZ, F. HALBERG: Chemotherapy-induced alteration of circadian acrophase of human circulating cortisol in patients with cancer	72
T. GOODWIN, M. THIBODO, F. HALBERG, N. GRIMES, R. RANDALL: Combined self- and automatic monitoring of blood pressure in 16- to 18-year-old Minnesotan students	73
F. HALBERG, R. C. HERMIDA, T. LANGEVIN, H. E. BROWN, W. HRUSHESKY: Circadian leucocyte count characteristics as (double) markers for the timing and the myelotoxicity of carcinostatic treatment	74
R. C. HERMIDA, F. HALBERG, T. LANGEVIN, W. HRUSHESKY: Circadian stage-dependent response to cisplatin of urinary potassium acrophase: a cost-effective chronotherapeutic marker	75
J. RAMLOW, F. HALBERG, R. PRINEAS, J. MANDEL: Automatic circadian 24-h profiles of systolic and diastolic pressure and radial pulse in black and white boys	76
R. B. SOTHERN, R. C. HERMIDA, F. HALBERG: Circannual modulation of circadian acrophase (ϕ) of urinary potassium in health: reference standard for marker chronotherapy	77
SOCIAL ACTIVITIES	
<i>International Society for Chronobiology</i>	
XVIII Biennial Meeting	78
LITERATURE INDEX	
	81

Abstracts

Abstracts prepared for the meeting of the Minnesota Academy of Sciences, held on April 27-28, 1984 at the College St. Thomas, St. Paul, Minnesota, USA (chronobiology session).

Arbogast H., Sothern R., Halberg F.: Institut für Soziale Pädiatrie und Jugendmedizin, München, West Germany; Chronobiology Laboratories, University of Minnesota, Minneapolis, Minnesota, USA.

Macroscopic differentiation by plasma LH of Stein-Leventhal syndrome (S) from clinical health (H) quantified by cosinor.

The use of chronobiologic methods such as the single cosinor (Halberg et al.: The cellular aspects of biorhythms. Symposium on biorhythms, pp. 20-48, 1967) complements (macroscopic) impressions from the inspection of time plots by objective and quantitative individualized point and interval estimates of rhythm characteristics and thereby facilitates clinical diagnosis. Zumoff et al. (New Engl. J. Med. 309, 1206-9, 1983) determined the plasma concentration of luteinizing hormone (LH) over a 24-h span in 5 teenage girls with the polycystic-ovary-syndrome (S) to explore indices of possible changes in central-nervous-system-endocrine coordination. In 4 of the 5 patients macroscopy showed strikingly abnormal plasma LH profiles: whereas clinically healthy pubertal girls had major episodes of LH secretion during their nocturnal sleep span, the patient's episodes were widely desynchronized from their sleep span. Reportedly LH, but not cortisol, patterns were altered. The data taken off published graphs are here quantified by single cosinor with the fit of a 24-h period ($\equiv 360^\circ$) as follows:

N	subject kind	age years	PR	P	mesor M	SE mIU/ml	amplitude A	SE	acrophase (ϕ)		
									ϕ°	SE	h/min
1	S	f	13	.53	0.001	38.0	1.4	17.3	2.0	-184°	7 12 ¹⁶
2	S	f	15	.44	0.001	62.9	1.4	14.5	2.0	-205°	8 13 ¹¹
3	S	f	16	.6	0.121	50.1	1.2	3.6	1.7	-229°	27 15 ¹⁷
4	S	f	16	.18	0.001	26.0	0.4	2.2	0.6	-266°	14 17 ⁴²
5	S	f	16	.26	0.001	59.5	1.3	9.2	1.9	-198°	12 13 ¹³
6	H	f	13	.53	0.001	5.4	0.4	4.4	0.5	-71°	7 04 ⁴³
7	H	m	15	.78	0.001	6.4	0.2	3.7	0.2	-63°	4 04 ¹³
8	H	m	15	.21	0.001	4.8	0.2	1.0	0.2	-102°	14 06 ⁴⁶

* ϕ in degrees · with $360^\circ \equiv 24$ h; $0^\circ = 00^\circ 00$

With the above analyzed 20-min data available, a statistically significant circadian rhythm is demonstrable in 7 of 8 subjects below the 0.001 level. Parameter tests reveal a statistically significant difference between H and S in M, ϕ and (A- ϕ) pair, which persists when series consisting of only 4- or even 6-hourly data are analyzed. Prior macroscopic observations of the original authors are thus validated microscopically by computer methods that may be particularly valuable in cases that are not as obvious as those here analyzed.