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Abstract

Ordinary linear and generalized linear regression models relate the mean of a
response variable to a linear combination of covariate effects and, as a consequence,
focus on average properties of the response. Analyzing childhood malnutrition in
developing or transition countries based on such a regression model implies that
the estimated effects describe the average nutritional status. However, it is of even
larger interest to analyze quantiles of the response distribution such as the 5% or
10% quantile that relate to the risk of children for extreme malnutrition. In this
paper, we analyze data on childhood malnutrition collected in the 2005/2006 India
Demographic and Health Survey based on a semiparametric extension of quantile
regression models where nonlinear effects are included in the model equation, leading
to additive quantile regression. The variable selection and model choice problems
associated with estimating an additive quantile regression model are addressed by a
novel boosting approach. Based on this rather general class of statistical learning
procedures for empirical risk minimization, we develop, evaluate and apply a boosting
algorithm for quantile regression. Our proposal allows for data-driven determination
of the amount of smoothness required for the nonlinear effects and combines model
selection with an automatic variable selection property. The results of our empirical
evaluation suggest that boosting is an appropriate tool for estimation in linear and
additive quantile regression models and helps to identify yet unknown risk factors for
childhood malnutrition.

Keywords: functional gradient boosting, penalized splines, additive models, variable
selection, model choice.

1. Introduction

The reduction of malnutrition and in particular childhood malnutrition is among the
United Nations Millennium Development Goals, aiming at halving the proportion of
people suffering from hunger until 2015. Therefore, a better understanding of risk factors
for malnutrition is of utmost importance. Malnutrition can be measured in terms of a
score that compares the nutritional status of children in the population of interest with



2 Risk Factors for Severe Childhood Malnutrition

the nutritional status in a reference population. While previous analyses of childhood
malnutrition, see for example Kandala, Lang, Klasen, and Fahrmeir (2001) or Kandala,
Fahrmeir, Klasen, and Priebe (2008), have focused on mean regression for this score,
statistical analyses of the lower quantiles are, to the best of our knowledge, still missing.
Such analyses can add important additional information since they allow to identify risk
factors for severe malnutrition, expressed by the 5% or 10% quantiles of the score, in
contrast to mean regression that describes the expected nutritional status.

In this paper, we focus on analyzing risk factors for childhood malnutrition, using data
collected in the 2005/2006 Demographic and Health Survey (DHS, www.measuredhs.com)
for India. We apply quantile modeling for estimating the influence of potential risk factors
on the lower quantiles of the conditional distribution of a malnutrition score. Previous
analyses of the mean nutritional status (Kandala et al. 2001, 2008) revealed nonlinear
effects of important risk factors, such as child’s or mother’s age or body mass index of
the mother. Consequently, appropriate modeling has to take such flexible smooth effects
into account. Additive quantile regression models allow for semiparametric predictors
including linear and nonlinear effects. Our analysis is based on 21 potentially important
risk factors but aims at deriving a possibly sparse and interpretable model. Therefore, we
are faced with a variable selection and model choice problem and our final model should
only consist of relevant risk factors modeled at appropriate complexity.

State-of-the-art procedures for additive quantile regression, as introduced later on, lack
adequate variable and model selection properties. We therefore develop an alternative
estimation procedure for additive quantile regression in the empirical risk minimization
framework based on a boosting approach. This technique has successfully been used to
address variable and model selection in other regression contexts, e.g., in Friedman, Hastie,
and Tibshirani (2000); Bühlmann and Yu (2003), or Bühlmann and Hothorn (2007).

A completely distribution free approach that directly addresses quantile modeling is given
by quantile regression, which is thoroughly treated in Koenker (2005). The simple linear
quantile regression model can be written as

yi = x>i βτ + ετi ετi ∼ Hτi subject to Hτi(0) = τ , (1)

see Buchinsky (1998). Here, the index i = 1, . . . , n, denotes the individual, yi and xi
stand for response variable and covariate vector (including an intercept) for individual i,
respectively. The quantile specific linear effects are given by βτ and τ ∈ (0, 1) indicates
a fixed and known quantile. The random variable ετi is assumed to be an unknown
error term with cumulative distribution function Hτi, on which no specific distributional
assumptions are made apart from the restriction in (1), which implies that the distribution
function at 0 is τ . Due to this restriction, it follows that the model aims at describing the
quantile function QYi(τ |xi) of the continuous response variable Yi conditional on covariate
vector xi at a given quantile τ , more specifically

QYi(τ |xi) = H−1
Yi

(τ |xi) = x>i βτ , (2)

where HYi is the cumulative distribution function of Yi. Note that, in principle, every
ordinary mean regression, like linear or additive models, imply quantile modeling of the
response variable because the distributional assumptions on the conditional response also
determine its conditional quantiles. Although regression models like generalized additive
models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos 2005), allow
to introduce additional flexibility, they typically do not result in easily interpretable
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expressions for the quantiles, since they are based on specifying distinct distributional
parameters.

An alternative, common representation of linear quantile regression can be achieved via
the following minimization problem:

argmin
βτ

n∑

i=1

ρτ (yi − x>i βτ ) where ρτ (u) =

{
uτ u ≥ 0
u(τ − 1) u < 0.

(3)

For τ = 0.5, the so called ‘check function’ ρτ (u) is proportional to the absolute value
function, i.e., ρ0.5(u) = 0.5|u|. The minimization problem in (3) can be formulated as
a set of linear constraints, therefore the estimation of βτ can be conducted by linear
programming and leads to the τ · 100% quantiles of the response variable, see Koenker
(2005). Thus, the check function is the appropriate loss function for quantile regression
problems regarded from a decision theoretical point of view.

However, in cases where nonlinear relationships between covariates and quantiles of the
response variable occur, more flexibility is needed. Such nonlinear effects have been found
in mean regressions for malnutrition, for example for the effect of the child’s age or the
body mass index of the mother. Of course, it seems plausible to expect similar nonlinear
patterns when turning the attention to quantile modeling for malnutrition. To account for
possible nonlinearities, the above model can be extended to additive quantile regression
models which allow for the inclusion of nonlinear covariate effects. The corresponding
quantile function is

QYi(τ |xi, zi) = ητi = x>i βτ +
q∑

j=1

fτj(zij) , (4)

where the predictor ητi is composed of a linear term x>i βτ including an intercept and a
sum of nonlinear terms, where fτj , for j = 1, . . . , q, denote smooth functions of continuous
covariates zij which are assumed to relate in a nonlinear way to the response’s quantile
function and zi = (zi1, . . . , ziq)>. Thereby, the underlying assumption on the error term
remains the same as in (1).

The estimation of (4) is possible in an easy manner by using spline functions for the
nonlinear terms, e.g., B-spline basis functions, with a fixed and relatively small number of
knots at fixed positions. Since the evaluations of the selected basis functions are known,
they can be included in the linear design matrices and thus, the additive model can be
estimated by linear programming algorithms from linear quantile regression. However,
in this case the question arises how to determine the number and positions of knots
adequately. To avoid an arbitrary choice of these parameters, penalty methods, such
as quantile smoothing splines treated in Koenker, Ng, and Portnoy (1994), are in use.
For a univariate situation with only one continuous covariate zi (q = 1) the minimization
problem in (3) is extended by a penalty term to

argmin
fτ

n∑

i=1

ρτ (yi − fτ (zi))− λV (f ′τ ) . (5)

Here, V (f ′τ ) denotes the total variation of the derivative f ′τ which is defined as
V (f ′τ ) = sup

∑n
i=1 |f ′τ (zi+1) − f ′τ (zi)| and λ is a tuning parameter that controls the

smoothness of the estimated function. Therefore, this approach is also called ‘total
variation regularization’. For continuously differentiable f ′τ , the total variation can be



4 Risk Factors for Severe Childhood Malnutrition

written as V (f ′τ ) =
∫
|f ′′τ (z)|dz, i.e., as the L1-norm of f ′′τ . This points out the link to

penalty approaches in mean regression where the penalty term consists of the L2-norm
of f ′′τ . In classical quantile regression, the L2-norm is less suitable since it inhibits the
use of linear programming to determine the optimal estimate. Koenker et al. (1994) show
that the solution to (5) can still be obtained by linear programming when considering
a somewhat larger function space comprising also functions with derivative existing only
almost everywhere. Within this function space, the minimizer of (5) is a piecewise linear
spline function with knots at the observations zi, for further details see Koenker et al.
(1994); Koenker (2005). An implementation of this technique is available in the function
rqss() of the quantreg package (Koenker 2008) in R (R Development Core Team 2008).

An alternative approach for estimating additive quantile regression models based on local
polynomial estimation with nice asymptotic properties has been suggested by Horowitz
and Lee (2005). Also, other versions for the penalty term in (5) are imaginable, e.g., an
L1-norm as in Li and Zhu (2008); Wang and Leng (2007) or a Reproducing Kernel Hilbert
Space (RKHS) norm as explored in Takeuchi, Le, Sears, and Smola (2006) and Li, Liu, and
Zhu (2007). By using the RKHS norm, Takeuchi et al. (2006) obtain remarkable results,
particularly with regard to prevention of quantile crossing. However, the estimation of
nonlinear effects by piecewise linear splines might seem somewhat limited if smoother
curves are of interest. Moreover, the choice of λ is crucial for the shape of the estimated
functions, but currently there is no algorithm implemented to select λ automatically at
least for additive models with several nonlinear functions.

A practically important issue arising in any regression context is model and variable
selection. Thereby questions concerning the design and inclusion of covariate effects
are of interest: How should continuous covariates be included in the model, in linear
or nonlinear form? Which covariates and interaction effects are relevant and necessary in
order to describe the response variable adequately? Is it possible to identify and to rank
the covariates according to their importance? For usual regression models, the Akaike
Information Criterion (AIC) is one approach to answer this kind of questions. For linear
quantile regression, Koenker (2005) suggests an adapted AIC (aAIC) where the likelihood
is replaced by the empirical risk in (3) as follows:

aAIC(τ) = −2 log

(
1
n

n∑

i=1

ρτ (yi − x>i β̂τ )

)
+ 2 p (6)

Here, p denotes the number of parameters estimated by the model. Alternative criteria
have been proposed in the literature which are also based on the replacement of the
likelihood by the empirical risk, see e.g., Cade, Noon, and Flather (2005). In order to
trade off between model fit and the number of parameters, this ‘ad hoc’ replacement seems
to make sense; on the other hand the question arises how it can be justified theoretically.
In case of additive quantile regression models, the AIC criterion in (6) can be modified to:

aAIC(λ) = −2 log

(
1
n

n∑

i=1

ρτ (yi − f̂τ,λ(zi))

)
+

1
n
pλ , (7)

where pλ are the effective degrees of freedom, which can be interpreted as the number
of ‘active’ knots in the resulting piecewise linear spline, see Koenker and Mizera (2004).
Although the specification of (7) (and analogous criteria) was originally motivated by the
bandwidth choice for λ in (5), it can also be used for model and variable selection.

In this article, we propose boosting as an alternative estimation method for linear and
additive quantile regression models by combining the models described above with the
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boosting algorithms for additive models described in Kneib, Hothorn, and Tutz (2009).
In brief, boosting is an optimization algorithm that aims at minimizing an expected loss
criterion by stepwise updating an estimator according to the steepest gradient descent of
the loss criterion. In order to find the stepwise maxima, base-learners are used, i.e., simple
regression models fitting the negative gradient by (penalized) least-squares. For quantile
regression, the check function ρτ (·) is employed as appropriate loss function.

With the objective of quantile regression, Kriegler and Berk (2007) also combine boosting
with the loss function ρτ (·), but they use regression trees as base-learners in contrary
to the additive modeling approach described here. Therefore, when using larger trees
as base-learners the final model can only be described as a ‘black box’ and does not
easily allow to quantify the partial influence of the single covariates on the response, as
provided by our approach. Stumps as base-learners lead to non-smooth step functions for
each of the covariates. In a similar way, Meinshausen (2006) introduces a machine-learning
algorithm that permits quantile regression by linking random forests to the check function.
This leads again to a black box which is justified by focusing rather on constructing
prediction intervals for new observations than on quantifying the influence of covariates
on the response.

In summary, the advantages offered by our boosting approach are the following:
(i) Additive quantile regression estimation is embedded in the well studied class of
boosting algorithms for empirical risk minimization. (ii) Estimation of additive quantile
regression is usually conducted by linear programming algorithms. In case of additive
models with a nonlinear predictor this yields piecewise linear functions as estimators for
the nonlinear effects. By using a boosting algorithm, the flexibility in estimating the
nonlinear effects is considerably increased, since the specification of differentiability of
the nonlinear effects remains part of the model specification and is not determined by
the estimation method itself. (iii) In comparison to the currently available software for
additive quantile regression, more complex models with a larger number of nonlinear
effects can be fitted using our approach. (iv) The variable and model selection process is
implicitly supported when using boosting for model estimation. In particular, parameter
estimation and variable selection are combined into one single model estimation procedure.
(v) Finally, standard boosting software can be used for estimating quantile regression
models.

The remainder of this article is structured as follows: Section 2 introduces a functional
gradient descent boosting algorithm as an alternative for estimation in linear and additive
quantile regression models. Section 3 presents the results of an empirical simulation study
to compare usual linear programming algorithms and boosting for estimation in quantile
regression, also with regard to model selection. In Section 4, our methods are applied to
and evaluated on the India childhood malnutrition data set. Section 6 contains concluding
remarks.

2. Quantile Regression by Boosting

Functional gradient boosting as discussed extensively in Friedman (2001) and Bühlmann
and Hothorn (2007) is a functional gradient descent algorithm that aims at finding the
solution to the optimization problem

η∗ = argmin
η

E[L(y, η)] (8)
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where η is the predictor of a regression model and L(·, ·) corresponds to the loss function
that represents the estimation problem. For practical purposes, the expectation in (8) has
to be replaced by the empirical risk

1
n

n∑

i=1

L(yi, ηi).

In case of additive quantile regression, the appropriate loss function is given by the
check function introduced in the decision theoretical justification of quantile modeling,
i.e., L(y, η) = ρτ (y − η). The regression model, on the other hand, is specified by the
general additive predictor in (4). To facilitate description of the boosting algorithm, we
will suppress dependence of regression effects on the quantile τ in the following.

Different types of base-learning procedures are of course required for linear and nonlinear
effects. Let β be decomposed into disjoint sets of parameter vectors βl such that
β = (βl, l = 1, . . . , L) (possibly after appropriate re-indexing) and let Xl denote the
corresponding design matrix. Each of the coefficient vectors βl relates to a block of
covariates that shall be attributed to a joint base-learning procedure. For example, all
binary indicator variables representing a categorical covariate will typically be subsumed
into a vector βl with one single base-learner. Another example are polynomials of a
covariate, where also several regression coefficients may be combined into a single base-
learner. Still, in most cases βl will simply correspond to a single regression coefficient
forming the effect of a single covariate component of the vector x. The base-learner
assigned to a vector βl will be denoted as bl in the following. Similarly, the base-learner
for the vector of function evaluations fj = (fj(z1j), . . . , fj(znj))> will be denoted as gj .

A componentwise boosting algorithm for additive quantile regression models is then given
as follows:

[i.] Initialize all parameter blocks βl and vectors of function evaluations fj with suitable
starting values β̂[0]

l and f̂ [0]
j . Choose a maximum number of iterations mstop and set

the iteration index to m = 1.

[ii.] Compute the negative gradients of the empirical risk

ui = − ∂

∂η
L(yi, η)

∣∣∣∣
η=η̂

[m−1]
i

, i = 1, . . . , n,

that will serve as working responses for the base-learning procedures. Inserting the
check function for the loss function yields the negative gradients

ui = ρ′τ (yi − η̂[m−1]
i ) =





τ yi − η̂[m−1]
i > 0

0 yi − η̂[m−1]
i = 0

τ − 1 yi − η̂[m−1]
i < 0.

[iii.] Fit all base-learning procedures to the negative gradients to obtain estimates b̂[m]
l and

ĝ
[m]
j and find the best-fitting base-learning procedure, i.e., the one that minimizes

the L2 loss
(u− û)>(u− û)

inserting either Xlb̂
[m]
l or ĝ[m]

j for û.
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[iv.] If the best-fitting base-learner is the linear effect with index l∗, update the
corresponding coefficient vector as

β̂
[m]
l∗ = β̂

[m−1]
l∗ + νb̂

[m]
l∗

where ν ∈ (0, 1] is a given step size, and keep all other effects constant, i.e.,

β̂
[m]
l = β̂

[m−1]
l , l 6= l∗ and f̂

[m]
j = f̂

[m−1]
j , j = 1, . . . , q.

Correspondingly, if the best-fitting base-learner is the nonlinear effect with index j∗,
update the vector of function evaluations as

f̂
[m]
j∗ = f̂

[m−1]
j∗ + νĝ

[m]
j∗

and keep all other effects constant, i.e.,

β̂
[m]
l = β̂

[m−1]
l , l = 1, . . . , L, and f̂

[m]
j = f̂

[m−1]
j , j 6= j∗.

[v.] Unless m = mstop increase m by one and go back to [ii.].

Note that there is some ambiguity in defining the gradient since the check function is
not differentiable in zero. In practice, this case will only occur with zero probability (for
continuous responses), so there is no conceptual difficulty and the gradient could similarly
be defined as ρ′τ (0) = τ (as in Meinshausen 2006) or as ρ′τ (0) = τ − 1.

To complete the specification of the componentwise boosting algorithm for additive
quantile regression, the starting values, the base-learning procedures, the number of
boosting iterations mstop and the step length factor ν have to be chosen. While it is
natural to initialize all effects at zero, it turns out that faster convergence and more reliable
results are obtained by defining a fixed offset as a starting value for the intercept. An
obvious choice may be the τ -th sample quantile of the response variable but our empirical
experience suggests that the median is more suitable in general, as will be illustrated in
an example in Section 3.

Concerning the base-learning procedures, least-squares base-learners are a natural choice
for the parametric effects, i.e.,

b̂
[m]
l = (X>l Xl)−1X>l u.

For nonlinear effects, we consider penalized spline base-learners that can be cast in the
framework of penalized least-squares estimation. Penalized splines can be motivated from
simple scatterplot smoothing for inferring a non-linear relationship ui = gj(zij) + εi from
data (ui, zij), i = 1, . . . , n. Following Eilers and Marx (1996), we approximate the function
gj(zj) in terms of a moderately sized B-spline basis, i.e.,

gj(x) =
K∑

k=1

γjkBk(zj)

where Bk(zj) are B-splines of degree D defined upon a set of equidistant knots. The degree
D can be chosen by the user according to subject-matter knowledge to obtain a function
estimate with the desired overall smoothness properties since a spline of degree D is D−1
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times continuously differentiable. Estimation of the spline coefficients γj = (γj1, . . . , γjK)>

is based on minimizing the penalized least squares criterion

argmin
γj

(u−Zjγj)>(u−Zjγj) + λjγ
>
j Kγj (9)

where u = (u1, . . . , un)> is the vector of responses and Zj is the corresponding B-spline
design matrix. The penalty term augmented to the least squares fit criterion consists of
a smoothing parameter λj as in (5) that trades off fit against smoothness and a penalty
matrix K that penalizes variability in the function estimate. Eilers and Marx (1996)
suggest a simple approximation to the typical integrated squared derivative penalties that
is based on squared differences within the sequence of coefficients γj and leads to the
penalty matrix K = D>D where D is a difference matrix, usually of second order to
approximate the second derivative. Solving (9) yields the penalized least squares estimate

ĝ
[m]
j = Zj(Z>j Zj + λjK)−1Z>j u

that defines the base-learning procedure for a non-linear effect fj(zj) (Schmid and Hothorn
2008).

The step length factor ν and the optimal number of boosting iterations trade off each other
with smaller step lengths resulting in more boosting iterations and vice versa. Therefore
we can safely fix one of them and derive an optimal choice only for the remaining quantity.
Since the number of boosting iterations is easier to vary in practice, we fix the step length
at ν = 0.1 to obtain relatively small steps of the boosting algorithm. The optimal number
of boosting iterations mstop should then be chosen to obtain a model that generalizes well
to new data. In the presence of test data, mstop can therefore be determined by evaluating
the empirical risk on the test data as a function of the boosting iterations and by choosing
the point of minimal risk on the test data.

Stopping the boosting algorithm early enough is also crucial to employ the inherent variable
selection and model choice abilities of boosting. Suppose that a large number of covariates
is available in a particular application. Then the boosting algorithm will start by picking
the most influential ones first since those will allow for a better fit to the negative gradients.
When the boosting algorithm is stopped after an appropriate number of iterations, spurious
noninformative covariates are likely to be not selected and therefore effectively drop from
the model equation. In addition, both the first iteration when a base-learner has been
selected and the relative frequency of selections within the total mstop boosting iterations
may serve as rough guides characterising the importance of an effect. When considering
competing modeling possibilities, such as linear and nonlinear base-learners for the same
covariate, boosting also enables model choice. Note also that the componentwise boosting
approach with separate base-learners for the different effects allows to set up candidate
models that may even contain more covariates than observations.

3. Empirical Evaluation

In order to evaluate the performance of the algorithm introduced in Section 2, we
conducted a simulation study. In particular, we wanted to explore three partial questions:
(Q1) How does boosting estimation work in situations with linear effects on the response’s
quantile function, i.e., when linear quantile regression is appropriate? (Q2) How does
boosting estimation work in situations with nonlinear covariate effects on the response’s



Nora Fenske, Thomas Kneib, Torsten Hothorn 9

quantile function, i.e., when additive quantile regression is appropriate? (Q3) Is boosting
estimation capable of selecting the covariates with influence on the response’s quantile
function correctly?

Although the linear simulation setup is not aimed at additive regression models directly,
we think that it is indispensable in order to get an idea how our algorithm works for linear
quantile regression – also in consideration of the fact that the additive model in (4) consists
of both, a linear and a nonlinear term. In addition, this setup gives us the opportunity to
compare boosting estimation with linear programming which can be seen as the current
‘gold standard’ for quantile regression estimation.

3.1. Linear Quantile Regression

Model. To investigate the question (Q1) for the linear simulation setup, we considered the
following location-scale-model:

yi = x>i β + (x>i α) εi where εi
iid∼ H for i = 1, . . . , n (10)

Here, the location as well as the scale of the response yi depend in linear form on a
covariate vector xi = (1, xi1, . . . , xip)> and an error term εi with distribution function Hε

not depending on covariates. The coefficient vector β = (β1, . . . , βp)> affects the response’s
location while α = (α1, . . . , αp)> affects its scale. The resulting quantile function has a
linear predictor structure and can be written as

QYi(τ |xi) = x>i β + (x>i α)H−1(τ) = x>i (β +αH−1(τ)) = x>i βτ .

Hence, quantile specific coefficients as in (1) can be determined as βτ = β +αH−1(τ).

Based on the linear model in (10), we draw 100 datasets with the following parameter
combinations:

� Homoscedastic setup: n = 200,β = (3, 1)>,α = (4, 0)>

� Heteroscedastic setup: n = 200,β = (4, 2)>,α = (4, 1)>

� Multivariable setup: n = 500,β = (5, 8,−5, 2,−2, 0, 0)>,α = (1, 0, 2, 0, 1, 0, 0)>

All required covariates were independently drawn from a continuously uniform distribution
U [0, 10]. We repeated all setups for three different distributions of the error terms: a
standard normal distribution, a t-distribution with 2 degrees of freedom and a gamma
distribution, where E(εi) = V(εi) = 2. Figure 1 visualizes data examples from the first
two setups with one covariate for normal or gamma distributed error terms. Note that
α = (4, 1) leads to a heteroscedastic data structure where the quantile curves are no longer
parallel shifted as for α = (4, 0).

Estimation. For each of the generated datasets, we estimated the parameter vector βτ for
a fixed quantile grid on τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} by our algorithm (function glmboost()
from package mboost) and by linear programming (function rq() from package quantreg).
In the boosting case, we fixed the step length at ν = 0.1 and determined the optimal
number of boosting iterations mstop by evaluating the empirical risk on a test dataset with
1000 observations drawn from the respective simulation setup and by choosing the point
of minimal risk on the test data.

As already mentioned in Section 2, we decided to take the median as starting value for the
intercept instead of the τ -th sample quantile of the response variable. This decision was
based on the following empirical results. For quantiles smaller than τ = 0.5, we explored
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(a) n = 200, β = (3, 1)>, α = (4, 0)>, ε ∼ N (0, 1)
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(b) n = 200, β = (4, 2)>, α = (4, 1)>, ε ∼ N (0, 1)
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(c) n = 200, β = (3, 1)>, α = (4, 0)>, ε ∼ G(1, 2)
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(d) n = 200, β = (4, 2)>, α = (4, 1)>, ε ∼ G(1, 2)

Figure 1: Data examples for linear simulation setups with one covariate in a homoscedastic
(left) or heteroscedastic (right) data structure with normal (top) or gamma (bottom)
distributed error terms. Lines designate true underlying quantile curves for τ ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

hardly any differences between resulting mstop criteria and estimators for βτ depending
on the starting values. However, for quantiles larger than τ = 0.5 the mstop criterion
was dramatically increased when taking the τ -th sample quantile as starting value. As
an example, Figure 2 illustrates the stepwise approach of the boosting estimation to the
true underlying 90% quantile curves depending on the starting value. Note that it takes
considerably more iterations until the estimation approaches the true quantile curve when
beginning at the 0.9-th sample quantile, shown in Figure 2(a). On the contrary, Figure
2(b) displays that the estimation converges much faster when beginning at the median.

Performance results. In order to evaluate and to compare estimation results of the two
considered algorithms, we estimated Bias and MSE for each quantile specific parameter
(βτ0, βτ1, . . . , βτp)> by the following formulae:

Bias(β̂τj) =
1

100

100∑

k=1

(β̂τj,k − βτj) , MSE(β̂τj) =
1

100

100∑

k=1

(β̂τj,k − βτj)2 , (11)

where j = 0, . . . , p indexes the number of covariates and k = 1, . . . ,K the simulation
replications. In case of boosting, we also considered the mstop criteria.

In the following, we will focus on a short summary of the results by just showing some
typical examples. Figure 3 displays boxplots for the estimated parameters (β̂τ0, β̂τ1)>



Nora Fenske, Thomas Kneib, Torsten Hothorn 11

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

0 2 4 6 8 10

−10

0

10

20

30

40

x1

y

(a) Starting value = 90% quantile (horizontal
line), mstop = 18474
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(b) Starting value = median (horizontal line),
mstop = 7513

Figure 2: Data example with parameters n = 200, β = (2, 1)> and α = (2, 1)> and normal
distributed error terms. Dashed black lines show the true underlying quantile curve for
τ = 0.9, grey lines illustrate the stepwise boosting fit after each 2000 iterations beginning
at the horizontal line.

in the heteroscedastic setup with normal distributed error terms. Note that estimators
resulting from linear programming (rq) are less biased but have a larger variance than
those resulting from boosting (boost). This is consistent to previously reported results
and to the fact that boosting estimators are usually shrunken towards zero, which can be
traced back to the implicit regularization property of boosting estimation (Bühlmann and
Hothorn 2007).

Regarding the MSE, Table 1 shows estimators for setups with one covariate and gamma
distributed error terms, obtained according to (11). For the slope estimator β̂τ1, boosting
achieves smaller MSE estimators on almost the whole quantile grid. Concerning the
intercept estimator β̂τ0, boosting performs better in the homoscedastic setup while linear
programming obtains better results in the heteroscedastic setup.

In addition, the optimal number of boosting iterations, determined by means of test data,
ranges roughly between 3000 and 10000 in cases with one covariate and is considerably
increased (30000 – 70000) for the multivariable model with six covariates.

Table 1: Estimated MSE criteria from 100 replications of linear simulation setups with one
covariate and gamma distributed error terms. Shown in bold are quantile and parameter
specific smaller estimators.

Homoscedastic setup Heteroscedastic setup
MSE(βτ0) MSE(βτ1) MSE(βτ0) MSE(βτ1)

τ rq boost rq boost rq boost rq boost
0.1 0.328 0.350 0.010 0.008 0.762 1.007 0.050 0.038
0.3 0.676 0.582 0.016 0.012 1.417 1.475 0.063 0.052
0.5 0.732 0.685 0.020 0.015 1.627 1.962 0.099 0.074
0.7 1.751 1.595 0.048 0.040 4.168 4.165 0.229 0.157
0.9 4.983 2.992 0.129 0.066 10.404 17.971 0.618 0.657
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Figure 3: Simulation results for heteroscedastic linear setup with one covariate and normal
distributed error terms. Boxplots display the empirical distribution of the estimated
parameters (β̂τ0, β̂τ1)> from 100 replications, depending on quantile τ and estimation
algorithm (rq for linear programming and boost for boosting). Horizontal lines designate
true underlying parameters (βτ0, βτ1)>.

Even if not plotted here, we observed similar results for all other simulation setups,
i.e., with more covariates or alternative error distributions. Therefore, we conclude that
boosting estimation is competitive to linear programming estimation in situations with
linear effects on the response’s quantile function, i.e., when linear quantile regression is
appropriate.

Variable selection results. Concerning model and variable selection, we wanted to explore
whether the algorithms are able to extract the right covariates in the multivariable
setup. In case of linear programming, models for all different covariate combinations
were estimated followed by a calculation of aAIC values. Then, the covariate combination
with the smallest aAIC value was chosen. In case of boosting, we answered the following
three questions: Which covariate was not chosen at all during the boosting estimation?
When was a covariate chosen for the first time? In how many iterations was a covariate
chosen? In this regard, we observed the following results: The more important a covariate
was (measured in terms of |βτ |), the earlier it was chosen for the first time and the more
often it was chosen during the estimation process, and this independent of τ . In the
majority of cases, only covariates with βτ = 0 were not chosen at all. Some problems
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Table 2: Summary of variable selection results for τ = 0.7 from linear multivariable
simulation setup with normal distributed error terms. β coefficients are quantile specific
for τ = 0.7. MPI: Mean proportion of iterations (relating to mstop), where covariate was
chosen; MFI: Mean first iteration (relating to mstop), where covariate was chosen; PEB:
Proportion of simulations (relating to 100), where covariate was not chosen by boosting;
PEA: Proportion of simulations (relating to 100), where covariate was excluded in model
with smallest aAIC.

Int. x1 x2 x3 x4 x5 x6

β0 = 5.5 β1 = 8.0 β2 = −4.0 β3 = 2.0 β4 = −1.5 β5 = 0 β6 = 0

boost MPI 0.284 0.266 0.134 0.170 0.084 0.036 0.035
MFI 0.323 0.000 0.027 0.191 0.129 0.430 0.428
PEB 0 0 0 0 0 0.11 0.16

rq PEA 0 0 0 0 0 0.33 0.21

occured at upper quantiles in the setup with gamma distributed error terms, but in these
cases also the aAIC driven model selection did not lead to the correct model. To exemplify
these results, Table 2 gives a summary for normal distributed error terms and quantile
τ = 0.7. It shows that the covariates x5 and x6 with both β0.7,5 = β0.7,6 = 0, i.e., no
influence on the response, are chosen fewer and later than all other covariates. Compared
to variable selection by aAIC, this criterion excludes non significant covariates more often
than boosting.

To sum up, boosting provides useful support in the variable selection process, even though
there is currently no explicit criterion available. Particularly in cases with numerous
covariates, boosting has the advantage that it yields to variable selection information
within the estimation process, whereas the use of aAIC requires multiple model fits.

3.2. Additive Quantile Regression

Model. Analogous to the linear simulation setup in (10) we considered an additive model
with nonlinear terms for location and scale, as follows:

yi = β0 + f1(zi1) + . . .+ fq(ziq) + [α0 + g1(zi1) + . . .+ gq(ziq)] εi where εi
iid∼ H (12)

In this model, location and scale of the response can depend in nonlinear form on covariates
zi1, . . . , ziq. Choosing all f and g as linear functions yields the linear model as in (10).
If some functions f and g are zero, the associated covariates have no influence on the
response. The resulting quantile function has a nonlinear predictor structure, as given by

QYi(τ |zi) = β0 + f1(zi1) + . . .+ fq(ziq) +H−1(τ)[α0 + g1(zi1) + . . .+ gq(ziq)] .

Note that it is not possible to explicitly determine quantile specific coefficients here, like
βτ in the linear simulation.

Based on the additive model in (12), we draw 100 datasets with the following parameter
combinations:

‘sin’-setup: q = 1 β0 = 2 α0 = 0.5 f1(zi1) = 3 sin( 2
3zi1) g1(zi1) = 1.5(zi1 − 1.5)2

‘log’-setup: q = 1 β0 = 2 α0 = 0.7 f1(zi1) = 1.5 log(zi1) g1(zi1) = 0.5zi1

multivariable setup: q = 6 β0 = 2 α0 = 0.7
f1(zi1) = 3 sin( 2

3zi1) f2(zi2) = 1.5 log(zi2) f3(zi3) = 2 f4(zi4) = −2 f5(zi5) = f6(zi6) = 0
g1(zi1) = 1.5(zi1 − 1.5)2 g2(zi2) = g3(zi3) = 0.5 g4(zi4) = g5(zi5) = g6(zi6) = 0
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(a) n = 400, ‘sin’-setup, ε ∼ N (0, 1)
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(b) n = 400, ‘log’-setup, ε ∼ N (0, 1)
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(c) n = 400, ‘sin’-setup, ε ∼ t(2)

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●●

●

●
●●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●
●

●

●
●

●

●
●

● ●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−20

−10

0

10

20

z1

y

(d) n = 400, ‘log’-setup, ε ∼ t(2)

Figure 4: Data examples for nonlinear simulation setups with one covariate in the ‘sin’-
setup (left) or ‘log’-setup (right) with standard normal (top) or t(2) (bottom) distributed
error terms. Lines designate true underlying quantile curves for τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We fixed the number of observations to 400 for all setups. Covariates zi were independently
drawn from a uniform distribution U [0, 3]. As in the linear simulation, we repeated all
setups for a standard normal, a gamma and a t distribution. In the multivariable setup,
two covariates relate in a nonlinear way to the response, two have a linear influence on
it and the last two have no influence at all. Figure 4 shows data examples from ‘sin’-and
‘log’-setups for normal and t distributed error terms. Due to its heavy tail property, the
t-distribution leads to some extreme outliers.

Estimation. For each of the generated datasets, we estimated nonlinear effects for all
covariates for a fixed quantile grid on τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} by our algorithm (function
gamboost() from package mboost) and by linear programming with a total variation
regularization approach (function rqss() from package quantreg). In case of boosting,
we used cubic penalized spline base-learners with second order difference penalty, 20 inner
knots and three degrees of freedom, and fixed the step length at ν = 0.1. In accordance
with the linear simulations, the optimal number of boosting iterations mstop was chosen by
means of a test dataset with 1000 observations. This test data was also used to determine
covariate specific smoothing parameters λ1, . . . , λq for the penalty terms for rqss, as given
in (5), at the point of minimal risk on the test data.

Performance results. The evaluation of the estimation results was also based on these
test datasets. In every simulation step, models were estimated on training data while
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Table 3: Estimated evaluation criteria from 100 replications of nonlinear ‘log’ simulation
setup with gamma distributed error terms. Shown in bold are quantile specific better
results.

Risk Bias MSE
τ rqss boost rqss boost rqss boost

0.1 0.248 0.245 0.003 0.019 0.059 0.048
0.3 0.593 0.590 0.028 0.023 0.080 0.071
0.5 0.772 0.769 0.028 0.015 0.113 0.097
0.7 0.761 0.758 0.026 -0.016 0.177 0.149
0.9 0.454 0.451 0.062 -0.104 0.392 0.281

evaluation was conducted on the test data. Therefore we considered the empirical risk as
well as a sort of Bias and MSE for nonlinear functions. The resulting quantile specific
empirical risk is given by

Risk(τ) =
1

100

100∑

k=1

Riskτk where Riskτk =
1

1000

1000∑

j=1

ρτ (yj − ŷτj,k) .

Here, yj stands for the response of observation j in the test data, while ŷτj,k denotes
the estimated response value at quantile τ for observation j and iteration k. Thus, the
final empirical risk is determined as the mean of the single risks from 100 replications.
Analogously the quantile specific Bias and MSE were estimated as means of the single
criteria, which can directly combined to

Bias(τ) =
1

100 · 1000

100∑

k=1

1000∑

j=1

(ŷτj,k − yτj) MSE(τ) =
1

100 · 1000

100∑

k=1

1000∑

j=1

(ŷτj,k − yτj)2 ,

where yτj is the true underlying τ -th quantile of the response. Note that Bias and MSE
as defined above can be interpreted as monte carlo estimators of the true Bias and MSE
of the nonlinear functions.

Just as for the linear simulation results, we will shortly summarize the results and give
some typical examples. Table 3 shows the described performance criteria for the ‘log’
setup with gamma distributed error terms.

At first glance it appears that boosting performs better than total variation regularization,
but a closer look, which is provided by Figure 5, shows that the performance results are
mostly located in the same range for both algorithms. Similar results were obtained for
the other situations.

In order to illustrate the estimation results, Figure 6 displays the estimated quantile curves
for the ‘sin’-setup with normal distributed error terms. Even if the estimated curves
obtained by boosting seem to be smoother than the piecewise linear curves obtained by
total variation regularization, there are hardly any differences between the performance
results.

Regarding mean mstop criteria from boosting, they are considerably smaller than those
from the linear simulation. Even in case of the multivariable setup, less than 5000 iterations
are needed in the majority of simulations. This might be due to a larger flexibility of the
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Figure 5: Simulation results for nonlinear ‘log’-setup with gamma distributed error terms.
Boxplots display the empirical distribution of the estimated criteria Risk, Bias and MSE
from 100 replications, depending on quantile τ and estimation algorithm (rq for linear
programming and boost for boosting).

used base-learners which permit nonlinearities and can adapt much faster to the respective
data situation than linear functions.

Variable selection results. Concerning variable selection in the multivariable setup, we
observed analogous results as for the linear simulation. Covariates without influence were
chosen less often during the estimation procedure and considerably later for the first
time. Therefore, we refrain from describing these results in detail. However, we could
not compare our results to those obtained by total variation regularization followed by
calculating aAIC because of severe estimation problems with the function rqss() from
package quantreg in R.

In summary, we conclude that boosting and total variation regularization lead to
comparable performance results for additive quantile regression. However, by using
our boosting approach, the flexibility in estimating the nonlinear effects is considerably
increased, since the specification of differentiability remains part of the model specification
and is not determined by the estimation method itself. Comparing the currently avaible
software for both algorithms, boosting can handle a larger number of nonlinear covariate
effects.
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(a) Boosting estimation
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(b) Total variation regularization

Figure 6: Example for estimated quantile curves for ‘sin’-setup and standard normal
distributed error terms. True underlying quantile curves are shown in Figure 4(a).

4. Childhood Malnutrition in India

Malnutrition of wide parts of the population, and in particular childhood malnutrition,
is one of the most urgent problems in developing and transition countries. In order to
provide information not only on the nutritional status but on health and population
trends in general, MEASURE Demographic and Health Surveys (DHS) conduct nationally
representative surveys on fertility, family planning, maternal and child health, as well as
child survival, HIV/AIDS, malaria, and nutrition. The resulting data, more than 200
surveys in 75 countries so far, are available free of charge for research purposes.

Childhood malnutrition is usually measured in terms of a score Z that compares an
anthropometric characteristic of the child to values from a reference population, i.e.,

Zi =
ACi −m

s

where AC denotes the anthropometric characteristic of interest while m and s correspond
to median and standard deviation in the reference population (stratified with respect to
age, gender, and some further covariates). While weight might be considered as the most
obvious indicator for malnutrition, we will focus on stunting, i.e., insufficient height for age,
in the following. Stunting provides a measure of chronic malnutrition, while insufficient
weight for age might result from either acute or chronic malnutrition. Note that the score
Z, despite its name, is not assumed to be normally distributed. Typically, it will not
even be symmetric or have mean zero, since it is used to assess the nutritional status
in a malnourished population with respect to a reference population. The score is not
standardized and ranges from −600 to 600 in our data set.

Most previous analyses like the ones in Kandala et al. (2001, 2008) have analyzed
malnutrition based on regression models for the expectation of the malnutrition score,
yielding an implicit focus on average nutritional status. However, when we are interested
in severe malnutrition, regression models for quantiles such as the 5% or the 10% quantile
may be much more interesting and natural.
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Table 4: Variables in the childhood malnutrition data set.

Variable Explanation
Z Score for stunting (continuous)
cage age of the child in months (continuous)
cfeed duration of breastfeeding in months (continuous)
csex gender of the child (categorical: male, female)
ctwin indicator for twin children (categorical: single birth, twin)
cbord number of the child in the birth order (categorical: 1,2,3,4,5)
mbmi body mass index of the mother (continuous)
mage age of the mother in years (continuous)
medu years of education of the mother (continuous)
medupart years of education of the mother‘s partner (continuous)
munem employment status of the mother (categorical: employed, unemployed)
mreli religion of the mother (categorical: christian, hindu, muslim, sikh, other)
resid place of residence (categorical: rural, urban)
nodead number of dead children (categorical: 0,1,2,3)
wealth wealth index (categorical: poorest, poorer, middle, richer, richest)
electricity household has electricity supply (categorical: yes, no)
radio household has a radio (categorical: yes, no)
tv household has a television (categorical: yes, no)
fridge household has a refrigerator (categorical: yes, no)
bicycle household has a bicycle (categorical: yes, no)
mcycle household has a motorcycle (categorical: yes, no)
car household has a car (categorical: yes, no)

In the following, we will present an analysis on childhood malnutrition in India based
on DHS data from 2005/06 since India is one of the fastest growing economies and
the second-most populated country in the world. From the original data set obtained
from www.measuredhs.com, we extracted a number of covariates that are deemed to be
important determinants of childhood malnutrition, see Table 4 for an overview and short
descriptions. Based on this set of covariates, we specified a candidate model where all
continuous covariates are included with possibly nonlinear effects based on cubic penalized
spline base-learners with second order difference penalty, 20 inner knots and five degrees
of freedom. All categorical covariates were assigned least-squares base-learners where
dummies corresponding to different levels of the same covariate are combined into one
single base-learner. This yields the quantile-specific model equation

Zi = x>i βτ + fτ1(cagei) + fτ2(cfeedi) + fτ3(mbmii) + fτ4(magei)
+fτ5(medui) + fτ6(meduparti) + ετi.

We considered three different quantiles, namely 5%, 10%, and 50%, to compare effects on
severe malnutrition as well as effects on average nutrition measured in terms of the median.
After plausibility checks and deletion of observations with missing values, we obtained a
data set with 37,623 observations. Two thirds of the data were used for estimation, while
the remaining third (12,541 observations) were used to determine the optimal stopping
iteration of the boosting algorithm. To be more specific, we evaluated the out-of-sample
risk on one third of the data and chose mstop as the iteration index where the out-of-sample
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Figure 7: Estimated nonparametric effects for the 50% quantile (dotted line), the 10%
quantile (dashed line) and the 5% quantile (solid line) of the stunting score. All effects
are adjusted for the overall quantile levels.

risk was minimized. The minimum was achieved after 107,754 (5% quantile), 84,966 (10%
quantile) and 41,702 (50% quantile) iterations.

Estimated nonlinear effects for the three selected quantiles are visualized in Figure 7. Note
that all effects are centered around the average effect of all further continuous covariates
and that the reference category has been inserted for categorical covariates to make the
levels comparable. In most cases, we find the expected relation between the three estimated
effect curves insofar as the median effect has a higher level than the 10% quantile which
itself has a higher level than the 5% quantile. However, there are also some rare cases
where quantile crossing occurs, namely for the effect of the mother‘s body mass index
and (to a much lesser extent) for years of education and duration of breastfeeding. The
underlying reason is that separate models have been fitted for the three quantiles and
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Figure 8: Selected estimated effects of categorical covariates for the 50% quantile (dotted
line), the 10% quantile (dashed line) and the 5% quantile (solid line) of the stunting score.
All effects are adjusted for the overall quantile levels.

therefore no ordering restriction can be imposed on the estimated curves. Note that we
have checked the distribution of the covariates and that the crossing of quantiles does not
seem to be related to sparse data in this area of the covariate domain.

The effect of the age of the child shows a strong decrease within the first months which
stabilizes at an almost constant level after 20 months. This qualitative behaviour is
consistently observed for all quantiles and has also been found in regression models for the
expectation. Still, the decrease in the first 20 months is more strongly expressed for the
median regression than for the 5% quantile regression curve. Another interesting effect
is found for the age of the mother. It has been hypothesized (see for example Kandala
et al. (2001)) that this effect should be close to an inverse u-shape which we find for the
5% quantile while the 10% quantile and the median effects rise steadily over the domain
of observed ages. Obviously, these differences could not have been identified with a usual
regression model for the expectation.

Figure 8 shows the effects of some selected categorical covariates. Again, all effects have
been adjusted for the overall quantile level to make them comparable across the three
quantile regression models. The effects of gender and the presence of electricity supply
in a household seem to have no influence on any of the three quantiles, but interesting
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Table 5: Variable selection information for the childhood malnutrition data. FI: First
iteration (relative to mstop) when a variable was chosen. PI: Proportion of iterations
(relative to mstop) when a variable was chosen.

τ = 0.05 τ = 0.1 τ = 0.5
Variable FI PI FI PI FI PI
cage 0.034 0.161 0.017 0.272 0.001 0.204
cfeed 0.273 0.084 0.125 0.069 0.020 0.174
csex 0.275 0.017 0.212 0.019 0.213 0.007
ctwin 0.328 0.035 0.128 0.025 0.063 0.012
cbord 0.061 0.092 0.057 0.071 0.032 0.046
mbmi 0.070 0.077 0.057 0.064 0.013 0.054
mage 0.106 0.161 0.082 0.092 0.035 0.175
medu 0.000 0.097 0.000 0.091 0.000 0.065
medupart 0.070 0.081 0.026 0.137 0.017 0.122
munem 0.277 0.021 0.302 0.009 0.303 0.002
mreli 0.786 0.006 0.212 0.012 0.064 0.013
resid 0.275 0.035 0.228 0.021 0.097 0.014
nodead 0.216 0.023 0.108 0.029 0.069 0.020
wealth 0.000 0.040 0.002 0.030 0.000 0.031
electricity 0.811 0.006 0.711 0.000 0.052 0.009
radio NA 0.000 0.826 0.003 NA 0.000
tv NA 0.000 NA 0.000 0.236 0.003
fridge NA 0.000 0.948 0.000 0.036 0.011
bicycle 0.061 0.044 0.074 0.034 0.302 0.008
mcycle NA 0.000 0.610 0.002 0.045 0.016
car 0.255 0.019 0.100 0.018 0.047 0.013

differences can be found for other covariates. For example, the effect of position in the
birth order does not show a clear pattern for the median regression, apart from a sharp
drop between position one and two. In contrast, both lower quantiles show a steady
decrease of the nutritional status for increasing birth order. For religion, we find the
reverse behaviour: The effect on the two lower quantiles seems to be negligible while at
least some effect is observed on the median. The effect of the wealth index reflects the
expected relation that richer households indicate a better nutritional status of the child.
This effect is found consistently over the three quantiles with most differences being related
to the shift between the quantiles.

Table 5 collects information on the inherent variable selection of boosting-based quantile
regression. Apart from some of the asset variables, all covariates are included in all three
regression models in at least one iteration. The very early inclusion of the covariates
wealth and education of the mother indicates their relevance, again irrespective of the
chosen quantile. The proportion of iterations reflect the importance of age of the child
and age of the mother, which also corresponds to the strongly nonlinear effect observed for
these two variables. Note that equal contributions of all variables would lead to proportions
of 1/21 = 0.0476.
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5. Computational Details

For the implementation of our boosting algorithm, already available standard software
for boosting was slightly extended. The described methodology is implemented in the
R add-on package mboost (Hothorn, Bühlmann, Kneib, Schmid, and Hofner 2009).
Linear or additive quantile regression can easily be performed by using the standard
functions glmboost() or gamboost(), respectively, in combination with the argument
family=QuantReg() allowing for specification of τ and an offset quantile.

In order to make the results of our data analyses reproducible, an electronic supplement
to this paper contains all necessary R commands to prepare and analyze the Indian
malnutrition data (provided that the original data set has been obtained from www.
measuredhs.com). If package mboost is installed, simply type

R> source(system.file("India_quantiles.R", package = "mboost"))

to reproduce our analyses.

6. Discussion

Motivated by the analysis of risk factors for childhood malnutrition in India, we developed
a boosting algorithm for estimation in additive quantile regression models in this paper.
The data our investigation is based on were collected in the 2005/06 Demographic and
Health Survey and contained numerous covariates as well as a malnutrition score serving
as response. By using its lower quantiles instead of just the mean or median as regression
objective—i.e., by using quantile regression—it was possible to identify risk factors for
severe malnutrition and not only for the population average of the score. Before applying
our boosting algorithm to the India data, we conducted an empirical simulation study in
order to explore if and how the method works, also in comparison with currently used
algorithms for quantile regression estimation which are based on linear programming.

The results of this empirical evaluation suggest that boosting estimation is competitive
to linear programming, both for linear and additive quantile regression models. With
regard to variable selection, boosting provides useful support in the following way. When
a covariate is not chosen at all during the estimation process, this indicates no (or only
weak) influence on the response. For the other covariates being chosen, further information
about their importance can be obtained by checking how often they are chosen, and in
which iteration they are chosen for the first time.

The application of additive quantile regression to the India data led to interesting results
which could not have been obtained with a usual mean regression model. For the age
of the mother, an inverse u-shape effect was detected for the 5% quantile but not for
the median. Concerning the categorical covariate birth order, the estimated effects for
the lower quantiles were considerably different than for the median. We conclude that
quantile regression models are an appropriate tool for exploring risk factors for childhood
malnutrition. However, since all quantile curves are estimated independent from each
other, these models may also involve problems with quantile crossing, as observed for the
body mass index of the mother.

In comparison to total variation regularization, boosting estimation for additive quantile
regression offers three main advantages. First, boosting enables data-driven determination
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of the amount of smoothness required for the nonlinear effects and does not necessarily lead
to piecewise linear functions. Second, comparing the currently available software for both
algorithms, boosting can handle a larger number of nonlinear covariate effects. Third,
parameter estimation and variable selection are executed in one single estimation step
which is particularly favorable for high-dimensional predictors. Both estimation algorithms
require the specification of a hyper parameter, the optimal number of iterations mstop in
case of boosting and the smoothness parameter λ in case of total variation regularization,
which is usually done by splitting the original dataset into training and test data.

Apart from malnutrion, quantile modeling is also of interest in applications where the
quantiles depend on covariates in a different way than the mean, with the simplest form
being heteroscedastic data. Other typical areas of application for quantile modeling are
the construction of reference charts in epidemiology (e.g., Wei 2008), the analysis of
quantiles of gene expression through probe level measurements (Wang and He 2007), or
the analysis of the value at risk in financial econometrics, see Yu, Lu, and Stander (2003)
for further examples. Our approach helps to overcome the variable selection and model
choice problems, especially when the primary aim is to fit a sparse quantile regression
model based on a moderate or high number of potentially useful covariates.

Extensions of the boosting algorithm for random and spatial effects seem feasible by
including these effects in the predictors of the base-learners in a way similar to the
approach developed by Kneib et al. (2009). The same methodology can then be used
to allow for time-varying effects, an application also studied by Cai and Xu (2008). Using
similar techniques, future research will focus on quantile regression for longitudinal data
to account for more complex data structures.

Acknowledgements

We thank Jan Priebe for his assistance in the preparation of the India data and Ludwig
Fahrmeir for motivating the investigation of boosting for quantile regression. This paper
has been written while Thomas Kneib was visiting the University of Göttingen in the
winter term 2008/09.

References

Buchinsky M (1998). “Recent Advances in Quantile Regression Models: A Practical
Guideline for Empirical Research.” The Journal of Human Resources, 33(1), 88–126.
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