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Abstract

Constrained estimators that enforce variable selection and grouping of
highly correlated data have been shown to be successful in finding sparse
representations and obtaining good performance in prediction. We consider
polytopes as a general class of compact and convex constraint regions. Well
established procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell
and Reich, 2008) are shown to be based on specific subclasses of polytopes.
The general framework of polytopes can be used to investigate the geo-
metric structure that underlies these procedures. Moreover, we propose a
specifically designed class of polytopes that enforces variable selection and
grouping. Simulation studies and an application illustrate the usefulness of
the proposed method.
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1 Introduction
We consider the linear normal regression model

y = Xβ + ε, ε ∼ Nn(0, σ
2I),

where the response y = (y1, ..., yn)
T and the design X = (x1|...|xp) are based

on n iid observations. Since the methods considered are not equivariant we will
use standardized data. Therefore, y = (y1, ..., yn)

T is the centered response and
xj = (x1j, ..., xnj)

T the j-th standardized predictor, j ∈ {1, ..., p}, so that
n∑

i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2ij = 1, ∀ j ∈ {1, ..., p},

holds.
In normal distribution regression problems one typically uses the ordinary

least squares estimator β̂OLS. The underlying loss function is the quadratic loss
or sum of squares

Q(β|y, X) := ‖y −Xβ‖2

and β̂OLS minimizes the unconstrained regression problem

β̂OLS = argmin
β

Q(β|y, X).

When c is appropriately chosen the contours of the quadratic loss

Sc(β|y, X) = {β ∈ IRp : Q(β|y, X) ≤ c}

form hyperellipsoids centered at β̂OLS. Moreover, Q(β|y, X) is upper semiconti-
nous and strictly convex, which are properties that guarantee an unique solution
of constrained estimates.

Constraining the domain of β can be motivated by non-sample information
given by some scientific theory. For example in economical input-output-systems
it is assumed that the inputs have a positive influence on the output. Then the
domain of the estimate is restricted by βinput > 0. More general, there is a math-
ematical motivation to constrain the parameter domain of a regression problem.
James and Stein (1961) proposed the first shrinkage estimator which became
known in the literature as James-Stein-estimator. The expression “shrinkage” is
due to the geometrical interpretation of Hoerl and Kennard. Hoerl and Kennard
(1970) described that the length of the OLS-vector |β̂OLS| tends to be longer than
the length of the true parameter vector |βtrue|. This effect can be overcome by
restricting the parameter domain to a centrosymmetric region around the origin
of the parameter space.

Hoerl and Kennard (1970) used centered p-dimensional spheres with radius t
which yields ridge regression. Centrosymmetric regions around the origin are a
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general concept to compensate for the “|βtrue| < |β̂OLS|-effect” since the prop-
erties of the loss function Q(β|y, X) together with compactness and convexity
of the domain guarantee existence and uniqueness of the solution. In the fol-
lowing we will call regions with the three properties convexity, compactness, and
centrosymmetry penalty regions.

The term penalty region is commonly used when the problem is represented in
its penalized form. For some constrained regression problems there exist alterna-
tive formulations which have equivalent solutions. For example, the constrained
version of the ridge estimator is

β̂ = argmin
β

‖y −Xβ‖2, s.t.
p∑

j=1

β2
j ≤ t, t ≥ 0. (1)

For fixed t the corresponding penalized regression problem has the form

β̂ = argmin
β

‖y −Xβ‖2 + λ

p∑

j=1

β2
j , λ ≥ 0. (2)

The proof of the equivalence is based on the theory of Lagrangian multipliers and
can be found in Luenberger (1969) where the equivalence for a set of constraints is
shown by using a vector λT ∈ IRp. It should be noted, that not every constrained
regression problem can be given as a penalized regression problem.

It is intuitively clear that a penalty region determines the properties of the
estimate beyond of tackling the “|βtrue| < |β̂OLS|-problem”. Therefore the penalty
regions should be carefully designed. We will focus on two properties of estimates:

Variable selection: Coefficients whose corresponding predictors have vanishing
or low influence on the response should be shrunk to zero.

Grouping (of highly correlated predictors): Predictors that are highly cor-
related should have (nearly) identical coefficients. This implies a selection
of groups of highly correlated variables.

A well-established shrinkage procedure that includes variable selection is the
LASSO (Tibshirani, 1996). One criticism of the LASSO, which has been pointed
out be Zou and Hastie (2005), is the behaviour when predictors are highly corre-
lated. In that case the LASSO tends to select only one or two from the group of
the correlated influential predictors . Therefore, Zou and Hastie (2005) proposed
the Elastic Net (EN) which tends to include the whole group of highly correlated
predictors. The EN enforces the grouping effect as stated in Theorem 1 of Zou
and Hastie (2005) where a relation between sample correlation and grouping was
given. The EN does not use the sample correlation explicitly, the grouping effect
is achieved by a second penalty term together with a second tuning parameter
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which do not depend on the sample correlation. In a similar way Bondell and Re-
ich (2008) introduced the OSCAR by including an alternative penalty term that
enforces grouping. OSCAR also selects variables and shows the grouping effect.
Also a relation between sample correlation and grouping may be derived. An
alternative penalty that explicitly uses the correlation and enforces the grouping
property was proposed by Tutz and Ulbricht (2009) under the name correlation-
based penalty. Variable selection was obtained by combining boosting techniques
with the correlation based penalty.

We will consider established procedures within the general framework of con-
straint regions based on polytopes and introduce a correlation-based penalty re-
gion called V8, which groups and selects variables. In contrast to the LASSO,
the EN, and the OSCAR the underlying penalty region is data driven. In Section
2 we give some basic concepts of polytope theory. Based on these concepts the
LASSO is discussed in Section 2.2 and OSCAR in Section 2.3. The embedding
into the framework of polytopes allows to derive some new results for these pro-
cedures. In Section 3 we introduce the V8 procedure and give algorithms that
solve the constrained least squares problem. In Section 4 the V8 procedure is
compared to established procedures on the basis of simulations.

2 Polytopes as Constraint Region
Polytopes provide a simple class of compact and convex regions that are useful
as constraint regions. They were implicitly used in established regression proce-
dures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008). In
general, polytopal constrained regression problems can be reformulated as linear
constrained regression problems (cf. Theorem 1). But in practice it can be hard to
reformulate the polytopal constrained regression problem as a linear constrained
problem. One objective of this article is to use geometrical arguments for ana-
lyzing and designing polytopal penalty regions. In the following the geometric
background and the mathematical foundation of polytopes is shortly sketched.

2.1 Some Concepts in Polytope Theory

Let in general a ≤ b denote that ar ≤ br for all components of a, b ∈ IRm. In
the following hyperplanes and corresponding halfspaces play an important role.
Definitions are given in the Appendix (see Definition A 1).

Polytopes are a class of fundamental geometric objects defined in IRp. The di-
mension of a polytope is the dimension of its affine hull and a p-dimensional poly-
tope is called p-polytope. There are two ways to describe polytopes: V-polytopes
and H-polytopes.
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Definition 1 (V-Polytope) A V-Polytope is the convex hull of a finite point
set V ⊂ IRp:

P (V) := conv(V).
Definition 2 (H-Polytope) A subset P ⊂ IRp is called an H-Polytope if it is
the bounded intersection of a finite number of closed lower linear halfspaces. For
A ∈ IRm×p, t ∈ IRm

P (A, t) := {x ∈ IRp : Ax ≤ t}
describes an H-Polytope if P (A, t) is bounded.

The intuitive question is whether there exists a relation between H-polytopes and
V-polytopes. The answer is given in Ziegler (1994) where the following theorem
is shown to hold.

Theorem 1 (Main Theorem) A subset P ⊆ IRp is the convex hull of a finite
point set (a V-Polytope)

P = conv(V), for some V ⊂ IRp×n

if and only if it is a bounded intersection of closed (lower linear) halfspaces (an
H-Polytope)

P = P (A, t) = {x ∈ IRp : Ax ≤ t} , for some A ∈ IRm×p, t ∈ IRm.

However, the transformation from H- to V-representation and vice versa can be
computationally expensive. The number of producing halfspaces and of vertices
is an indicator for the computational costs.

Each row of the system of inequalities Ax ≤ t describes a linear lower closed
halfspace. It represents the normal vector of a hyperplane generating a corre-
sponding halfspace. A vertex of a p-polytope P is an element v ∈ P which can
not be given as a convex combination of the remaining elements P \ {v} (see
Figure 1 where the five vertices are easily identified). Although in Definition 1 a
general finite set V is used to describe P it is sufficient to use only the vertices of P
to define the same polytope P . In other words, let P = conv(V) be a V-polytope
and E(V) ⊆ V be the set of all vertices of P then P = conv(V) = conv(E(V))
holds. We assume V = E(V) in the following. It is obvious that every point x
of a polytope P = conv(V) can be presented as the convex combination of all
vertices,

x =
∑

i∈I
λivi, λi ≥ 0,

∑

i∈I
λi = 1, vi ∈ V , (3)

where I is the index set of all vertices. In addition, we only consider H-polytopes
whose description is not redundant. This means the leaving out of any row of
Ax ≤ t will change the polytope.

Alternatively, a polytope can be described by its faces. The definition of
faces of a polytope are based on supporting hyperplanes or shortly supports (for
a definition see Def.2 in the Appendix).
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Figure 1: Illustration of the H- and V-representation of the Polytope P . The closed lower
halfspaces are on the opposite side of the illustrated normal vectors. The intersection of these
halfspaces is P which is shown by the shaded area. The graphed intersection of the hyperplanes
are the five vertices of P . The convex hull of the five vertices produces the same polytope P .

Definition 3 (Faces of a Polytope) Let P ⊂ IRp be a p-polytope and H ⊂
IRp be a support of P . Then the intersection P ∩ H is called face of P . A k-
dimensional face is called k-face. A 0-face is a vertex, an 1-face is an edge, and
a (p− 1)-face is a facet.

Figure 2: Illustration of Definition 3. Four hyperplanes F , G, H, I and their relationship to P :
I is not a support because I ∩ P = ∅. H is not a support because P is not entirely contained
in one of the both closed halfspaces H+ or H−. F and G are supports. P ∩G is a vertex of P .
P ∩ F? G ∩ F is a facet of P . (In IR2 an edge is also a hyperplane.)

An important feature is that every face is a convex hull of vertices but not every
convex hull of vertices is a face. Hence, not every convex combination of vertices
lies on the surface of the polytope, but every facet is the convex hull of q ≥ p
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vertices (see Ziegler (1994)). The linear hull of these q vertices is the intersecting
support which produces this facet. The intersecting support is given by one row
of Ax ≤ t in Definition 2. A p-polytope P is called simplicial iff every facet of
P contains the minimal number of p vertices.

The special class of polytopes which is of interest here is the following.

Definition 4 A p-polytope P is called centrosymmetric, if

1. the origin is an inner point of P : 0 ∈ P .

2. If v ∈ P then −1 · v ∈ P .

It is intuitively clear that a centrosymmetric p-polytope can be scaled up or down
in two ways

1. Multiplying the right hand side of Ax ≤ t with s > 0.

2. Multiplying all vertices with s > 0.

2.2 LASSO

The famous LASSO, proposed by Tibshirani (1996), is very popular because of
its variable selection property and has been used in many fields of statistics. The
LASSO constraint region is given by

p∑

j=1

|βj| ≤ t, t > 0, (4)

which corresponds to a p-polytope. The H-representation of the constraint region
is obtained by solving the absolute value function |.| in (4). The result is a system
of inequations

Lβ ≤ t, (5)

where L is a (2p × p)-matrix. Each row of L is one of the 2p variations of entries
−1 or +1 and t is a 2p-dimensional vector whose entries are equal to t > 0. An
example for the case p = 3 can be found in the Appendix (Example A 1). More
concise, the LASSO constraint region is a p- crosspolytope, which is scaled up or
down by the tuning parameter t > 0. (For the definition of a p-crosspolytope see
Ziegler (1994), p. 8.). The underlying polytope is simplicial and this property is
maintained by scaling up or down. An illustration in IR3 is given in Figure 3.

The vertices of the LASSO penalty region are

L = {t · e1, −t · e1, ..., t · ep, −t · ep, t > 0} , (6)

where ej, j = 1, ..., p, denotes the j-th unit vector of IRp. Therefore the V-
representation of the LASSO penalty region is P = conv(L).
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Since the constraint (4) is determined by the 2p constraints specified in the
rows of (5), it is easy to transform the LASSO problem in constrained form,

β̂L = argmin
β

‖y −Xβ‖2, s.t.
p∑

j=1

|βj| ≤ t, t ≥ 0,

into a penalized regression problem,

β̂L = argmin
β

‖y −Xβ‖2 + λ

p∑

j=1

|βj|, λ ≥ 0.

If the OLS estimate exists and
∑p

j=1 |βOLSj | = t0 then β̂L is the contact point
of the contour of the loss function Sc(β|y, X) and the penalty region

∑p
j=1 |βj| ≤

t, 0 < t < t0. The variable selection property of the LASSO can be illustrated
by using the V-representation. Although not all convex combinations of vertices
are on the surface the solution of a polytopal constrained regression problem lies
on the surface. So with respect to the simpliciality of the LASSO penalty region
variable selection is performed if the solution is a convex combination of less than
p vertices of its penalty region, i.e. at least one of the λis in (3) is zero. Thus, in
IR3 one can distinguish three cases of LASSO solutions:

1. If the LASSO solution lies on a vertex only one coefficient is nonzero,
i.e. only one λi in (3) is 1.

2. If the LASSO solution lies on an edge that connects two axes, two λi’s in
(3) are non-zero.

3. If the LASSO solution lies on a facet, three λi’s in (3) are non-zero.

In the first two cases variables are selected.

2.3 OSCAR

Bondell and Reich (2008) proposed a shrinkage methods called OSCAR, which
stands for Octagonal Shrinkage and Clustering Algorithm for Regression. Its
constraint region is

p∑

j=1

[
|βj|+ c ·

∑

j<k

max {|βj|, |βk|}
]
≤ t. (7)

Bondell and Reich (2008) also give an alternative representation of their penalty
region. Let |β|(k) denote the absolute value of the component of β ∈ IRp whose
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Figure 3: LASSO constraint region in IR3.

rank is k so that |β|(1) ≤ |β|(2) ≤ . . . ≤ |β|(p) holds. With |β|(.) the OSCAR
penalty region (7) is equivalent to

[
p∑

j=1

c(j − 1) + 1

]
· |β|(j) ≤ t. (8)

First we discuss the penalty region in the implicitly given H-representation.
Then we derive the vertices as a new result. That is helpful because the V-
representation allows an alternative perspective on the grouping property of OS-
CAR.

The analysis of the OSCAR penalty region in H-representation is based on
segmentation of the p-dimensional parameter space IRp. First we partition IRp in
the 2p orthants, which are regions for which the signs of components are fixed.
Second we segment every orthant in p! regions which are defined by a fixed order
of ranks of |βj|, j = 1, ..., p. Figure 4 illustrates the segmentation for one orthant
in IR3.

The absolute value function |.| in the OSCAR penalty term corresponds to
the orthants and the segmentation of each orthant is given by the sum of pairwise
maximum norms. It is seen from (8) that the OSCAR penalty region is an H-
polytope which depends on the order of ranks of |βj| and on the sign constellation
with the order of ranks being linked to the weights [c(j − 1) + 1].

For the derivation of the penalty region, P (A(c), t), we consider first the
orthant with only positive signs. For this orthant we create a (p! × p)-matrix
Ã(c) where every row represents one of the p! permutation of the p weights
[c(j − 1) + 1], j = 1, ..., p. In a second step we form (2p − 1) matrices Ã(c),
which are constructed by changing the sign in one column of Ã(c). Finally we
combine these matrices obtaining the (2p ·p!)×p-matrix A(c). The matrices built
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Figure 4: The region described by the shortly dashed lines corresponds to the ordering |βj | ≤
|βk| ≤ |βi|, long dashed lines correspond to the ordering |βj | ≤ |βi| ≤ |βk| holds and solid lines
correspond to the ordering |βi| ≤ |βj | ≤ |βk|.

in the second step correspond to the orthants. Example A 2 in the Appendix
shows the H-representation of an OSCAR penalty region.

Therefore the OSCAR penalty region with the tuning parameters t > 0 and
c > 0 is represented by the intersection of 2p · p! hyperplanes, which shows the
high complexity of the OSCAR penalty region. It is remarkable that the 2p · p!
constraints sum up to one constraint given in (7).

On OSCAR’s Vertices

Hitherto the OSCAR penalty region is considered only as a H-polytope. The
Main Theorem (Theorem 1) suggests to consider the OSCAR penalty region as a
V-polytope. The vertices of the OSCAR penalty region have a simple structure
which is given in the following proposition.

Proposition 1 Let an p-dimensional OSCAR penalty region with the tuning pa-
rameters t > 0 and c > 0 be given. Then the set of vertices of the OSCAR penalty
region is the set of points with the following properties:

1. From the p components 1 ≤ m ≤ p components are nonzero and the absolute
value of these components is equal. The remaining p −m components are
zero.
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2. The 1 ≤ m ≤ p nonzero components of a vertex have the absolute value

v(m) :=
t∑p

j=p+1−m[c(j − 1) + 1]
. (9)

For the proof see Appendix (Proof A 1).

Corollary 1 Under the conditions of Proposition 1 one obtains:

1. The OSCAR penalty region is the convex hull of 3p − 1 vertices,

2. The OSCAR penalty region is simplicial.

For the proof see Appendix (Proof A 2). It is remarkable that (9) depends not
only on the penalty level t and the tuning parameter c but also on the dimension
of the problem p.

Figure 5 shows the OSCAR penalty region for different tuning parameters.
For fixed tuning parameter t and p (9) becomes smaller by increasing c. So for
graphical illustration we adjust t so that the axis intercepts are equal. The first

c = 0.1 c = 0.5 c = 2.0

Figure 5: The OSCAR penalty region with three different tuning parameter c. In the first row
the projections in to a βi-βj-plane is shown. In the second row a oblique view is shown.

row of Figure 5 explains the naming of OSCAR. It illustrates that orthogonal
projections of an OSCAR penalty region on any βi-βj-plane form an octagon,
which may be shown by using orthogonal projections of the vertices on any βi-
βj-plane. Because of symmetry, in Figure 5 only one projection is shown. For
further illustration the set of all vertices of an OSCAR penalty region in the case
p = 3 are given in the Appendix (Example A 3).
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In general, the parameter c controls the form of the OSCAR penalty region.
For c → 0 it converges to the LASSO penalty region. This can be shown by
considering the limit c → 0 within the system of inequations. It is noteworthy
that for c → ∞ and p > 2 the OSCAR penalty region does not converge to
a p-dimensional cube (p-cube), which would enforce extreme grouping but no
variable selection. A p-cube would make sense only if all predictors were very
highly correlated. Rather for c→∞ the OSCAR converges to a specific polytope.
This can be derived by considering the following limit: limc→∞ v(m1)/v(m2) =
(
∑p

j=p+1−m2
(j − 1))/(

∑p
j=p+1−m1

(j − 1)), where v(.) is given by (9). In the limit
the ratio v(m1)/v(m2) depends only on m1 and m2, the different numbers of
nonzero components of vertices. Hence for c → ∞ the form of the OSCAR
polytope is fixed but does not converge to a p-cube.

Bondell and Reich (2008) describe the grouping (or clustering) property of OS-
CAR by giving a relation between correlation and grouping. Another perspective
on the properties variable selection and grouping is obtained by considering ver-
tices. From Figure 5 it is seen that grouping of three variables is forced by the
vertices in the middle of the orthants. In general, for grouping of more than two
predictors vertices with more than two nonzero components seem to be neces-
sary. Grouping or variable selection is performed if less than p vertices take part
in the convex combination of the OSCAR solution. Bondell and Reich (2008)
give an upper bound criterion for the relationship between the tuning parameter
c and the correlation of predictors but they do not use correlation directly for
generating the penalty.

3 The V8 procedure
In the following a correlation driven polytope is proposed, which uses the corre-
lation within data to define the penalty region.

3.1 The V8-polytope

The new V8-polytope is called V8 because it is a V-polytope for which projec-
tions on any βi-βj-plane are octagons. The construction focuses on the grouping
property, which was advocated in particular by Zou and Hastie (2005) and is be-
hind OSCAR (Bondell and Reich (2008)) and correlation-based penalties (Tutz
and Ulbricht (2009)). It means especially that if two standardized variables are
highly correlated then the estimate of their coefficients should be (nearly) equal
apart from the sign. From a geometrical point of view this means: if two variables
xi and xj are highly correlated the estimated coefficients should lie on the face
of a polytopal penalty region where |βi| = |βj| holds. This suggests to design
correlation driven polytopes where the correlation between predictors determines
the form of the polytope. Then no second tuning parameter is needed in contrast
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to OSCAR which uses two tuning parameters.
The V8-polytope should feature the following properties:

(P1) The orthogonal projection of the polytope on every βi-βj-plane, 1 ≤ i ≤
j ≤ p, is a (convex) octagon.

(P2) The octagons are centrosymmetric.

(P3) Four vertices of each octagon lie on the axis at the values ±t, two on the
βi-axis and two on the βj-axis.

(P4) The four remaining vertices are on the bisecting line of the βi-βj-plane
where |βi| = |βj|.

The OSCAR penalty region shares all of these properties, which may be shown
by projecting the vertices of the OSCAR penalty region on any βi-βj-plane. For
the V8-polytope in addition the penalty region is supposed to depend on the
estimated correlation between two predictors, ρij := corr(xi, xj) by use of a
function c : [−1, 1] 7→ [0, 1]. In general, every function c(ρij) with the following
properties is appropriate:

(1) c(0) = 1 .

(2) c(1) = c(−1) = 0.

(3) c(ρij) = c(−ρij).

(4) c(.) is increasing in [−1, 0] and decreasing in (0, 1].

In the following we will use c(ρij) := 1− |ρij|.
The vertices described by (P3) are defined as the same vertices as for the

LASSO L and do not depend on the correlation. The vertices characterized by
(P4) for any βi-βj-plane, 1 ≤ i ≤ j ≤ p, are specified by

Bij =
{
b ∈ IRp : |bi| =

t

1 + c(ρij)
, |bj| =

t

1 + c(ρij)
, bk = 0, k 6= i, j

}
.

It is obvious that |Bij| = 4. The assumptions (1)–(4) of the function c(.) induce
the following properties on Bij. If ρij → 0 the elements of Bij become redundant
because they are convex combinations of L. The projection on any βi-βj-plane
converges to a diamond with side length

√
2t and so variable selection is enforced.

For |ρij| → 1 the four elements {+tei, −tei, +tej, −tej} ⊂ L become redundant
because they are convex combinations of Bij. In this case the octagon converges
to a square with side length 2t and grouping of the variables xi and xj is enforced.
This behaviour is illustrated in the first row of Figure 6. With B =

⋃
i<j Bij the

vertices of the V8 penalty region are V = L∪B. There are
(
p
2

)
different sets Bij,
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and so |V| = 2p + 4 ·
(
p
2

)
= 2p2. An example for the case p = 4 is given in the

Appendix (Example A 4). It is obvious that V is convex and that for ρij = 0,
∀i 6= j, the V8 penalty region is the same as for LASSO. Figure 7 illustrates the
V8 penalty region for correlation structure given by ρ12 = 0.2, ρ13 = 0.5, ρ23 = 0.8.

ρ = 0.1 ρ = 0.5 ρ = 0.9

Figure 6: V8-polytopes with unique correlation ρij between all pairs i-j.

Figure 7: Top left: An oblique view of the V8 penalty region. Top right: Orthogonal projection
on the β1-β2-plane where ρ12 = 0.2. Bottom left: Orthogonal projection on the β1-β3-plane
where ρ13 = 0.5. Bottom right: The orthogonal projection on the β2-β3-plane where ρ23 = 0.8.

In summary, the V8 constraint region enforces variable selection through the
LASSO vertices and enforces grouping through the vertices that are added by
use of the correlation between two variables.
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3.2 Solving Polytopal Constrained Regression Problems

In general, a polytopal constrained regression problem can be formulated as fol-
lows:

β̂ = argmin
β

‖y −Xβ‖2, s.t. β ∈ P, (10)

where P is a polytope. Based on the Main Theorem (see Theorem 1) there are
two different ways to formulate (10). If P is an H-polytopes then (10) has the
form

β̂ = argmin
β

‖y −Xβ‖2, s.t. Aβ ≤ t. (11)

This is a linearly constrained regression problem with the quadratic loss function
which can be solved with established tools like lsqlin routine in MATLAB.

When P from (10) is a V-polytope let V = {v1, ..., vnV } denote the set of
vertices of P and I := {1, ..., nV } is the index set of V . Every point β ∈ P is a
convex combination of elements of V . The convex combination can be written in
matrix notation

β = V · λ with V = (v1| · · · |vnV ) and λ = (λ1, ..., λnV )
T (12)

with λi ≥ 0,
∑

i∈I λi = 1, vi ∈ V . So (10) turns into a quadratic optimization
problem in λ,

λ̂ = argmin
λ

‖y −XV · λ‖2, s.t. λi ≥ 0,
∑

i∈I
λi = 1, ∀i ∈ I. (13)

For λ̂ the estimate β̂ is obtained by

β̂ = V · λ̂. (14)

Since the transformation from H- to V-representation of a polytope can be
computationally very expensive it is advisable to use the representation that is
available. Thus we need an algorithm to find the optimal convex combination of
vertices for solving problem (13).

The definition of centrosymmetry (cf. Definition 4) states v ∈ P ⇔ −1·v ∈ P .
Thus the set V of all vertices of a centrosymmetric polytope includes two subsets
of vertices V+ and V− for which

V− = {−1 · v : v ∈ V+}, V+ = {−1 · v : v ∈ V−},
V+ ∩ V− = ∅, V = V+ ∪ V−, (15)

holds. The structure allows to use only one of these two subsets, because each
subset is its complement multiplied by −1. The idea is graphically illustrated for
p = 2 by Figure 8.
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Figure 8: The solid vertices are elements of V+. The remaining vertices of V− are produced by
multiplying with −1.

It is obvious that the reduction of the set of vertices changes the constraint
in (13). We take V+ and its index set of vertices I+ = {1, ..., nV +}. With v+

i ,
i ∈ I+, we denote the elements of V+. Now we structure V in the following way.
The first nV + elements of V are equal to V+ and the second part of V is given
by vnV++i = −1 · v+

i . Then, subject to the convexity constraint of λ, for every
β ∈ P holds

β =
∑

i∈I
λivi =

∑

i∈I+
λiv

+
i +

∑

i∈I+
λnV++ivnV++i

=
∑

i∈I+
λiv

+
i +

∑

i∈I+
λnV++i · (−1) · v+

i =
∑

i∈I+
(λi − λnV++i)v

+
i

=
∑

i∈I+
λ+i v

+
i .

Due to the convexity constraint of λ it is easy to show that
∑

i∈I+(λi−λnV++i) =∑
i∈I+ λ

+
i ∈ [−1, +1]. Analogously to (12) we convey V+ into a matrix V+ =(

v+
1 | · · · |v+

nV+

)
. With the reduced set of vertices (13) turns into

λ̂
+
= argmin

λ
+

‖y −XV+ · λ+‖2, s.t.
∑

i∈I+
|λ+i | ≤ 1 (16)

where λ+ = (λ+1 , ..., λ
+
nV+

)T . Analogously to (14) the estimate β̂ is obtained by

β̂ = V+ · λ̂+
. (17)

The constraint
∑

i∈I+ |λ+i | ≤ 1 in (16) is a LASSO penalty. The equal sign
holds if β̂OLS is not a inner point of the constraining polytope. We assume
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that the tuning parameter t is appropriately chosen. The constrained regression
problem (16) can be solved with the LARS algorithm from Efron et al. (2004)
quite efficiently. So if a centrosymmetric V-polytope constrains the quadratic loss
function the estimate is given by β̂ = V+ · λ̂+

with λ̂
+
given by (16)

4 Simulation study
In this section we investigate the performance of several methods. All simulations
are based on the linear model

y = Xβtrue + ε, ε ∼ N(0, σ2In).

Each data set consists a training, a validation, and a test data set. The notation
ntrain/nvali/ntest is used to describe the number of observation of the correspond-
ing data sets. For each simulation scenario we use 50 replications. For every
method we use the following procedure to measure the performance.

We center the response and standardize the predictors of the training data
set. xT

train = (x1,train, ..., xp,train) denotes the vector of means in the training
data set and ytrain is the mean over the responses in the training data set. We
use the transformed training data set to fit different models specified by a grid of
tuning parameters. By retransformation of the coefficients we get a set of models
M. The validation data set is used to determine the model β̂

opt ∈ M which
minimizes the prediction error on the validation data set PEy,vali =

1
nvali

rTvalirvali

with ri,vali = yi,vali− (ytrain+(xi,vali−xtrain)
T β̂ and β̂ ∈M. Finally we quantify

the performance of β̂
opt

on the test data set by computing two measures on the
test data set: The prediction error on the test data set PEy,test =

1
ntest

rTtestrtest

with ri,test = yi,test − (ytrain + (xi,test − xtrain)
T β̂

opt
) and the mean squared error

for the estimate MSEβ = ‖β̂opt − βtrue‖2. Finally PEy,test and MSEβ of the 50
replications are illustrated by boxplots. The standard deviation of the medians
is calculated by bootstrapping with B = 500 bootstrap iterations.

Because we focus on shrinkage procedures with variable selection and grouping
property we compare V8, OSCAR, and Elastic Net (EN). It is remarkable that the
EN penalty region is not polytopal. We add LASSO in our comparison because
it is a special case of these three procedures. For the OSCAR we use the MATLAB-
code which was available in 2007 on Bondell’s homepage. The procedure tuned
out to be computational very expensive. Therefore it was not possible to provide
OSCAR for all settings.

The settings are described in the following:

(1) Let the underlying parameter vector be βtrue = (3, 0, 0, 1.5, 0, 0, 0, 2)T

and standard error σ = 3. The correlation between the i-th and j-th
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predictor follows

corr(i, j) = 0.9|i−j|, ∀i, j ∈ {1, ..., 8}. (18)

The numbers of observations are 20/20/200. A similar setting is used in
the OSCAR paper (Bondell and Reich, 2008).

(2) This setting is the same as the first setting excepting βtrue =
(3, 2, 1.5, 0, 0, 0, 0, 0)T .

(3) In this setting the correlation is again given by (18) but the coefficient
vector is βtrue = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T .

(4) In this setting there are p = 100 predictors. The parameter vector is struc-
tured in blocks,

βtrue = (2, ..., 2︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

, 4, ..., 4︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

,−2, ..., −2︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

,

0, ..., 0︸ ︷︷ ︸
15

, 2, ..., 2︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
20

)T

and σ = 15. Between the first six blocks of 10 variables there is no corre-
lation. Within these six blocks we use the correlation structure from (18).
The remaining 40 variables are uncorrelated. The numbers of observations
are 200/200/1000. As noted above this setting is not analyzed by OSCAR.

(5) The last setting is equal to the forth setting but numbers of observations
changes to 50/50/1000.
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Figure 9: Boxplots of the prediction error on the test data set, PEy,test, and MSE of β,MSEβ,
for the different procedures and the five simulation settings.
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Procedure median(PE) median(MSE)
(Std. Err.) (Std. Err.)

LASSO 11.522 (0.330) 8.444 (1.081)
V8 11.279 (0.317) 10.488 (0.877)

Simulation 1 OSCAR 11.180 (0.337) 8.110 (0.945)
EN 11.809 (0.401) 9.302 (1.288)

LASSO 1.630 (0.241) 6.681 (0.970)
V8 1.256 (0.219) 5.373 (0.257)

Simulation 2 OSCAR 1.594 (0.230) 4.463 (0.595)
EN 1.169 (0.154) 5.883 (0.701)

LASSO 1.847 (0.199) 8.059 (0.406)
V8 1.586 (0.143) 5.088 (0.356)

Simulation 3 OSCAR 0.855 (0.158) 0.348 (0.067)
EN 1.787 (0.170) 8.463 (0.536)

LASSO 69.687 (1.584) 153.182 (7.143)
Simulation 4 V8 61.648 (1.958) 109.355 (6.946)

EN 67.783 (2.736) 164.480 (5.317)
LASSO 192.837 (12.852) 296.555 (11.757)

Simulation 5 V8 138.268 (8.502) 175.356 (8.342)
EN 185.793 (11.275) 341.093 (21.750)

Table 1: Median of prediction error on test test data set and of the MSE of β corresponding
standard deviations estimated by bootstrapping with 500 bootstrap iterations given in brackets.

It is obvious that Simulation 1 is a challenge for the V8 procedure since V8
tries to group the influential variable with their neighbors which have no influence
on the response. Nevertheless, the prediction error (Table 4) is even better than
the prediction error of the LASSO and the Elastic Net. As expected, for the
second setting the V8 procedure shows better performance. It is the second best
in both criteria.

Although we are mainly interested in procedures with variable selection prop-
erty we chose setting 3 because it was often used in the literature (cf. Bondell
and Reich (2008), Tibshirani (1996), Zou and Hastie (2005)). In this somehow
artificial setting the OSCAR is the best procedure because it can group all the
variables. All other procedures are unable to do this. But the setting shows that
adding new vertices to the LASSO penalty yields definitely better results. The
performance of the LASSO is topped by both polytopes with additional vertices
(OSCAR and V8). Again the V8 is the second best in both criteria.

The two last simulations show that the V8 procedure works quite well espe-
cially for the p >> n-case. LASSO as well as EN were outperformed by V8.
The computational costs of the OSCAR were so high that it was not possible to
include it in the competition.
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5 Data Example
The body fat data set has been published by Penrose et al. (1985). The aim was to
estimate the percentage of body fat of 252 men by use of thirteen regressors. The
regressors are age (1), weight (lbs) (2), height (inches) (3), neck circumference
(4), chest circumference (5), abdomen 2 circumference (6), hip circumference (7),
thigh circumference (8), knee circumference (9), ankle circumference (10), biceps
(extended) circumference (11), forearm circumference (12), and wrist circumfer-
ence (13). All circumferences are measured in cm. Some of the predictors are
highly correlated, i.e. ρij ≈ 0.9. The response has been calculated from the equa-
tion by Siri (Siri) using the body density determined by underwater weighting.
In order to survey the performances of the different procedures we split the data
at random into 25 training sets with ntrain = 151 and test sets with ntest = 101.
We choose the tuning parameters by tenfold cross validation on the training data
set. Afterwards we estimated the model on the whole training data set. The
median of prediction errors across 25 random splits were 22.03 (LASSO), 21.32
(V8), 21.99 (OSCAR) and 23.30 (Elastic Net). The corresponding boxplots are
shown in Figure 5. It is seen that correlation based penalization has the best
performance in terms of mean squared errors. Figure 5 shows that the V8 pro-

Figure 10: Boxplots of different methods for 25 random splits of the body fat data set with
ntrain = 151 and ntest = 101.

cedure has the lowest median and scatter. The OSCAR and the EN depend on
two tuning parameters. So the computational costs are high especially for fine
grids. The OSCAR procedure has the highest costs and does not preform better
than the V8.

21



6 Concluding Remarks
It has been shown that polytopes are very flexible geometric objects which are
useful for constraining regression problems. In particular their flexibility can be
used to design specific polytopes that incorporate additional information con-
tained in the data. The V8 procedure has been designed in this spirit as a
correlation-based V-polytope.

For the computation of least squares problems which are constrained by cen-
trosymmetric V-polytopes a modification of the LARS-algorithm has been pro-
posed. V8 works quite well, in particular in the p >> n case because it uses
the efficient LARS-Algorithm. Therefore it can be applied where OSCAR fails
because of its high computational costs. Moreover, V8 uses only one tuning
parameter, which adds to reduce computational costs when searching for appro-
priate tuning parameters.

We restricted attention here to penalty regions which do not assume order
information in the predictors. Therefore, we considered only the LASSO and
OSCAR as specific polytope based procedures. If order information is available,
as for example in signal regression, a successful strategy is to use the Fused Lasso
(Tibshirani et al. (2005)), which is also a polytopal penalized regression problem
with polytopes that reflect the order of predictors.
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A Appendix
The parameter space is the Euclidean space IRp. With (IRp)∗ we denote the dual
Euclidian space. IRp represents the vector space of all column vectors of length p
with real entries. (IRp)∗ is the vector space of all linear functions IRp → IR which
are the row vectors of length p with real entries.

Definition A 1 (Hyperplane and Linear Halfspaces) A subset H ⊂ IRp is
called hyperplane of IRp, if there is a linear functional c : IRp → IR, c ∈ (IRp)∗ \
{0}, and a t ∈ IR for which

H = {x ∈ IRp : cx = t}

holds.
A subset H− ⊂ IRp is called lower linear halfspace (of IRp), if there are a

linear functional c : IRp → IR, c ∈ (IRp)∗, and t ∈ IR with

H−(c, t) := {x ∈ IRp : cx ≤ t}.
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Analogously a subset H+ ⊂ IRp is called upper linear halfspace (of IRp), if there
are a linear functional c : IRp → IR, c ∈ (IRp)∗, and t ∈ IR with

H+(c, t) := {x ∈ IRp : cx ≥ t}.

Definition A 2 (Supporting Hyperplane) Let H a hyperplane H ⊂ IRp and
K ⊂ IRp a convex set. Then H is called supporting hyperplane or support for
K if H ∩K 6= ∅ and K is entirely contained in one of the both closed halfspaces
H+ or H−.

Example A 1 The H-representation of the LASSO penalty region in IR3 is

P (L, t) =




1 1 1
−1 1 1
1 −1 1
1 1 −1
−1 −1 1
−1 1 −1
1 −1 −1
−1 −1 −1







β1
β2
β3


 ≤




t
t
t
t
t
t
t
t




The generalization for p ∈ IN follows immediately.

Example A 2 For p = 3, t > 0, and c > 0 the H-representation of the OSCAR
penalty region is:




2c + 1 c + 1 1
2c + 1 1 c + 1
c + 1 2c + 1 1
c + 1 1 2c + 1

1 c + 1 2c + 1
1 2c + 1 c + 1

−(2c + 1) c + 1 1
−(2c + 1) 1 c + 1
−(c + 1) 2c + 1 1
−(c + 1) 1 2c + 1

−1 c + 1 2c + 1
−1 2c + 1 c + 1

2c + 1 −(c + 1) 1
2c + 1 −1 c + 1
c + 1 −(2c + 1) 1
c + 1 −1 2c + 1

1 −(c + 1) 2c + 1
1 −(2c + 1) c + 1

2c + 1 c + 1 −1
2c + 1 1 −(c + 1)
c + 1 2c + 1 −1
c + 1 1 −(2c + 1)

1 c + 1 −(2c + 1)
1 2c + 1 −(c + 1)

−(2c + 1) −(c + 1) 1
−(2c + 1) −1 c + 1
−(c + 1) −(2c + 1) 1
−(c + 1) −1 2c + 1

−1 −(c + 1) 2c + 1
−1 −(2c + 1) c + 1

−(2c + 1) c + 1 −1
−(2c + 1) 1 −(c + 1)
−(c + 1) 2c + 1 −1
−(c + 1) 1 −(2c + 1)

−1 c + 1 −(2c + 1)
−1 2c + 1 −(c + 1)

2c + 1 −(c + 1) −1
2c + 1 −1 −(c + 1)
c + 1 −(2c + 1) −1
c + 1 −1 −(2c + 1)

1 −(c + 1) −(2c + 1)
1 −(2c + 1) −(c + 1)

−(2c + 1) −(c + 1) −1
−(2c + 1) −1 −(c + 1)
−(c + 1) −(2c + 1) −1
−(c + 1) −1 −(2c + 1)

−1 −(c + 1) −(2c + 1)
−1 −(2c + 1) −(c + 1)







β1
β2
β3


 ≤




t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t




The generalization for p ∈ IN follows immediately.
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Example A 3 Given the H-representation of an OSCAR penalty region in IR3

as in Example A 2 the set of vertices of this penalty region is:

O =








±t
2c+1
0
0


 ,




0
±t

2c+1
0


 ,




0
0
±t

2c+1


 ,




±t
3c+2
±t

3c+2
0


 ,




±t
3c+2
0
±t

3c+2


 ,




0
±t

3c+2
±t

3c+2


 ,




±t
3c+2
∓t

3c+2
0


 ,




±t
3c+2
0
∓t

3c+2


 ,




0
±t

3c+2
∓t

3c+2


 ,




±t
3c+3
±t

3c+3
±t

3c+3


 ,




∓t
3c+3
±t

3c+3
±t

3c+3


 ,




±t
3c+3
∓t

3c+3
±t

3c+3


 ,




±t
3c+3
±t

3c+3
∓t

3c+3







.

Proof A 1 (Propostion 1) We consider a p-dimensional OSCAR penalty re-
gion for fixed tuning parameters t > 0 and c > 0. Let O denote the set of all
vertices of this OSCAR penalty region. As remarked every row of the system of
inequalities depends on the order of |βi| and one special orthant. For every facet
determined by row of the system of inequalities one can find exactly p elements of
O which confirm to the row by meanings of the order of |βi| and the signs. Con-
sider the orthant with only positive values and the order |β1| ≥ |β2| ≥ · · · ≥ |βp|
then only the following p vertices are elements of the corresponding row:

Õ =








v(1)
0
0
0

.

.

.
0




,




v(2)
v(2)
0
0

.

.

.
0




,




v(3)
v(3)
v(3)
0

.

.

.
0




, . . . ,




v(p)
v(p)
v(p)
v(p)

.

.

.
v(p)








By changing the signs and permuting the rows of the vertices of Õ we get the
other orders of |βi| in every orthant.

Hence every facet is defined by a p-elementic subset of O and one row of the
inequation system. The fact that no hyperplanes is ignored by a set of the kind
Õ and all elements of O are used completes the proof.

Proof A 2 (Corollary 1) If m of the p components of a vertex are nonzero then
there are

(
p
m

)
permutations of this m components. Further there are 2m different

sign combinations which are convenient. Its well known that
∑p

m=0

(
p
m

)
ap−mbm =

(a+ b)p. Now choose a = 1 and b = 2. Further 0 < m ≤ p and
(
p
0

)
1p20 = 1 holds

and immediately
∑p

m=1

(
p
m

)
2m = 3p − 1 follows.

The second statement follows directly from Proof A 1.

Example A 4 The set of vertices the V8 penalty region is the union of the
LASSO vertices L and vertices on the bisecting lines in every βi-βj-plane B =⋃

i<j Bij.
In IR4 the LASSO vertices are:

L =








±t
0
0
0


 ,




0
±t
0
0


 ,




0
0
±t
0


 ,




0
0
0
±t







.
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The remaining set B =
⋃

i<j Bij is

B =








± t
2−c12
± t

2−c12
0
0


 ,




± t
2−c12
∓ t

2−c12
0
0


 ,




± t
2−c13
0

± t
2−c13
0


 ,




± t
2−c13
0

∓ t
2−c13
0


 ,




± t
2−c14
0
0

± t
2−c14


 ,




± t
2−c14
0
0

∓ t
2−c14


 ,




0

± t
2−c23
± t

2−c23
0


 ,




0

± t
2−c23
∓ t

2−c23
0


 ,




0

± t
2−c24
0

± t
2−c24


 ,




0

± t
2−c24
0

∓ t
2−c24


 ,




0
0

± t
2−c34
± t

2−c34


 ,




0
0

± t
2−c34
∓ t

2−c34







.

The generalization to any finite p ∈ IN follows immediately. So The V8 penalty
region is P = conv(L ∪ B).
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