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Abstract

While high-dimensional molecular data such as microarray gene expression

data have been used for disease outcome prediction or diagnosis purposes for

about ten years in biomedical research, the question of the additional predictive

value of such data given that classical predictors are already available has long

been under-considered in the bioinformatics literature.

We suggest an intuitive permutation-based testing procedure for assessing

the additional predictive value of high-dimensional molecular data. Our method

combines two well-known statistical tools: logistic regression and boosting re-

gression. We give clear advice for the choice of the only method parameter (the

number of boosting iterations). In simulations, our novel approach is found to

have very good power in different settings, e.g. few strong predictors or many

weak predictors. For illustrative purpose, it is applied to the two publicly avail-

able cancer data sets. Our simple and computationally efficient approach can be

used to globally assess the additional predictive power of a large number of can-

didate predictors given that a few clinical covariates or a known prognostic index

are already available.
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1 Background

While high-dimensional molecular data such as microarray gene expression data have

been used for disease outcome prediction or diagnosis purposes for about ten years

[1] in biomedical research, the question of the additional predictive value of such data

given that classical predictors are already available has long been under-considered in

the bioinformatics literature.

This issue can be summarized as follows. For a given prediction problem (for ex-

ample tumor subtype diagnosis or long-term outcome prediction), we consider two

types of predictors. On the one hand, conventional clinical covariates such as, e.g. age,

sex, disease duration or TNM scores are available as potential predictors. They have of-

ten been extensively investigated and validated in previous studies. On the other hand,

we have molecular predictors which are generally much more difficult to measure and

collect than conventional clinical predictors, and not yet well-established. In the con-

text of translational biomedical research, investigators are interested in the additional

predictive value of such predictors over classical clinical covariates.

A particular challenge from the statistical point of view is that these molecular pre-

dictors are often high-dimensional, which potentially leads to overfitting problems and

overoptimistic conclusions on their additional predictive power [2, 3]. The question

whether high-dimensional molecular data like microarray gene expression have addi-

tional predictive power compared to clinical variables can thus not be answered using

standard statistical tools such as logistic regression (for class prediction) or the pro-

portional hazard model (for survival analysis). Hence, there is a demand for alternative

approaches.

The formulation ”additional predictive value compared to classical clinical predic-

tors” is ambiguous because it actually encompasses two distinct scenarii. In the first

scenario, the prediction model based on clinical covariates is given (for instance from a

previous publication) and can be directly applied to the considered data set. Such mod-

els are usually denoted as ”risk score” or ”index” in the medical literature and often

use a very small number of predictors, such that they are widely applicable in further

studies. However, clinicians often want to develop their own clinical score using their

own data (second scenario) because it is expected to yield higher accuracy for their

particular patient collective, or because they want to predict a different outcome or use
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different predictors. These two scenarii are different from the statistical point of view:

in the first scenario the prediction rule based on clinical covariates is fixed, while it has

to be constructed from the data in the second scenario.

In this article, we present a method for testing the additional predictive value of

high-dimensional data that fulfills the following requirements:

• Requirement 1: The additional predictive value is assessed within a hypothe-

sis testing framework where the null hypothesis corresponds to ”no additional

predictive value”.

• Requirement 2: The focus is on the additional predictive value, i.e. the model

selection procedure for the high-dimensional data takes the clinical covariates

into account.

• Requirement 3: The method can address the two scenarii described above (fixed

risk score or clinical prediction model estimated from the data).

In the last few years, a couple of methods fulfilling one of these requirements

have been proposed to handle this problem. In the context of class prediction, the pre-

validation procedure proposed by Efron and Tibshirani [4, 5] consists of constructing

a prediction rule based on the high-dimensional molecular data only within a cross-

validation framework. The cross-validated predicted probabilities are then considered

as a new pseudo-predictor. The question of the additional predictive value is answered

by classical hypothesis testing within a logistic regression model involving both the

clinical covariates and the cross-validated predicted probabilities. However, this ap-

proach may yield a substantial bias because, roughly speaking, the cross-validated

probabilities are not independent from each other. This bias is quantitatively assessed

in the subsequent publication [5]. The authors suggest a (computationally intensive)

permutation-based testing scheme to circumvent this problem. Another pitfall of the

pre-validation procedure is that the cross-validated probabilities are constructed with-

out taking the clinical covariates into account. Hence, pre-validation does not fulfill

requirement 2. For example, if the high-dimensional molecular predictors are highly

correlated with the clinical predictors, so will be the cross-validated predicted probabil-

ities. Constructing the cross-validated predicted probabilities in such a way that they

are complementary to rather than redundant with the clinical covariates potentially
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yields different results [6]. On one hand, pre-validation as originally suggested [4]

may overestimate the additional predictive value because the predictive value of clini-

cal covariates is ”shared” by the clinical covariates themselves and the cross-validated

predicted probabilities in the logistic regression model, due to correlation. On the other

hand, it may be underestimated because subtle contributions of the high-dimensional

molecular data to the prediction problem are likely to be overcome by more obvious

contributions- which are redundant with the contributions of the clinical covariates.

Another important method for assessing high-dimensional predictors while adjust-

ing for clinical covariates is Goeman’s global test [7]. In the generalized linear model

framework, it is assumed that the regression coefficients of the molecular variables are

sampled from some common distribution with expectation zero and variance τ 2. The

null-hypothesis that all regression coefficients are zero can then be reformulated as

τ 2 = 0. In their second paper on this subject, the same authors suggest a variant of

this test that adjusts for additional (e.g. clinical) covariates in the context of survival

analysis [8]. This adjustment methodology can also be applied to the case of class

prediction and is implemented in the function globaltest from the Bioconductor

package globaltest [9] through the adjust option. In the present paper, we address

this question using a completely different methodology based on permutation testing

and boosting regression.

Other authors address the issue of the additional predictive value in the con-

text of prediction and derive combined prediction rules using both clinical predictors

and high-dimensional molecular data. A method proposed recently embeds the pre-

validation procedure described above into PLS dimension reduction and then uses both

clinical covariates and pre-validated PLS components as predictors in a random forest

[10]. This method has the same inconvenience as the original pre-validation approach,

in the sense that the PLS components are built without taking the clinical covariates

into account. They may thus be redundant with clinical predictors and do not focus

particularly on the residual variability, as outlined above for the original pre-validation

procedure. Hence, this method does not fulfill requirement 2. This pitfall is shared by

many recent machine learning approaches for constructing combined classifiers using

both clinical and high-dimensional molecular data [11, 12].

In contrast, the CoxBoost approach [6] for survival analysis with mandatory co-

variates takes clinical covariates into account while selecting the model for the high-
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dimensional predictors. Clinical covariates are forced into the model through a cus-

tomized penalty matrix. The authors suggest to set this penalty matrix to a diagonal

matrix with entries 1 and 0 for ”penalization” and ”no penalization”, respectively. This

approach has the major advantages that it can i) take into account the clinical covari-

ates while updating the coefficients of the molecular variables, ii) easily handle the

n� p, and iii) yield a sparse molecular signature without additional preliminary vari-

able selection procedure. The CoxBoost approach is presented as survival prediction

method. However, a similar procedure can be used in the context of class prediction

[13]. This approach fulfills requirements 2 but not requirement 1 since its aim is to

provide a combined prediction model rather than a testing procedure.

Motivated by the strong advantages of the CoxBoost approach, we suggest an al-

ternative simple two-stage approach which also uses a boosting algorithm, but in a

different scheme which is more appropriate for the testing purposes considered here.

Our approach combines a standard generalized linear model for modeling the clinical

covariates (step 1) with a boosting algorithm for modeling the additional predictive

value of high-dimensional molecular data (step 2). The differences between our ap-

proach and the CoxBoost approach [6] are as follows. In contrast to the CoxBoost

method, we first fit a classical generalized linear model to the clinical covariates (first

step) and then focus on the molecular variables (second step) without changing the

coefficients fitted in the first step. This makes our procedure potentially easier to in-

terpret, since most clinicians are familiar with standard logistic regression or Cox re-

gression which are used in the first step but might be confused by the iterative update

of the coefficients. Moreover, by fixing the coefficients of the clinical covariates in the

first step, we set the focus on additional predictive value more clearly than if these

coefficients are allowed to change depending on the effect of the molecular variables.

Moreover, we follow the well-established boosting algorithm described in [14] in each

the update g[m] (see Methods Section for an explanation of the notation) is multiplied

by a small shrinkage factor ν. Instead, CoxBoost does not multiply through ν but pe-

nalizes the update through a penalty matrix in the loss function. Like the CoxBoost

approach, our method fulfills requirement 2. To address requirement 1, we suggest a

simple permutation-based testing procedure. The resulting novel approach thus fulfills

the two first requirements. Moreover, we suggest a variant for addressing the applica-

tion of a risk score fitted previously using other data (requirement 3).
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In the next section, we briefly review the methods involved in the first step (logistic

regression) and second step (boosting with componentwise linear least squares), and

we describe the combined two-step procedure as well as the permutation test.

2 Methods

In the following, we consider a random vector of clinical covariates (Z1, . . . , Zq)
′ with

n independent realizations zi = (zi1, . . . , ziq)
′, for i = 1, . . . , n. Similarly, the random

vector of molecular covariates is denoted as (X1, . . . , Xp)
′ (with p > n) with n real-

izations xi = (xi1, . . . , xip)
′, for i = 1, . . . , n. The response variable is denoted as Y

and coded as Y ∈ {−1, 1}, with realizations y1, . . . , yn.

2.1 Logistic regression

Logistic regression is the standard statistical tool for constructing linear class predic-

tion rules and assessing the significance of each predictor. It is implemented in all sta-

tistical software tools, for instance in R within the generic function glm. The logistic

regression model is given as

log
P (Y = 1|Z1, . . . , Zq)

P (Y = −1|Z1, . . . , Zq)
= β0 + β1Z1 + · · ·+ βpZq,

where Y is the binary response variable of interest and Z1, . . . , Zq denote the q predic-

tors. In the two-stage approach suggested in this article, Z1, . . . , Zq correspond to the

clinical predictors. The maximum-likelihood estimates β̂0, . . . , β̂q of the model coeffi-

cients β0, . . . , βq can be obtained via iterative algorithms such as the Newton-Raphson

procedure. For each new observation znew = (znew,1, . . . , znew,q)
′, one obtains the

so-called linear predictor as

η̂new = β̂0 + β̂1znew,1 + · · ·+ β̂pznew,q,

from which the predicted probability P̂ (Y = 1|znew,1, . . . , znew,q) is derived as P̂ (Y =

1|znew,1, . . . , znew,q) = exp(η̂new)
1+exp(η̂new)

. In our two-stage approach, the estimated logistic

regression coefficients β̂0, . . . , β̂q of the clinical covariates which are fitted in the first

step are passed to the second step that uses the corresponding linear predictor as an

offset.
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2.2 Boosting with component linear least squares

2.2.1 General algorithm

In this section, we give a short general overview of boosting as reviewed by Bühlmann

and Hothorn [14], and explain which variant of boosting we use in the second step

of our two-stage procedure. The considered predictors are the molecular covari-

ates X1, . . . , Xp. The AdaBoost algorithm was originally developed by Freund and

Schapire as a machine learning tool, see [15] for an early reference. Friedman, Hastie

and Tibshirani [16] then developed a more general statistical framework which yields

a direct interpretation of boosting as a method for function estimation. The goal is to

estimate a real-valued function

f ∗(·) = arg min
f(·)

E[ρ(Y, f(X1, . . . , Xp))],

where ρ(·) is a loss function which will be discussed in this section. Friedman, Hastie

and Tibshirani [16] formulate boosting as a functional gradient descent algorithm for

estimating f(·) as sketched below [14].

1. Initialize f̂ [0](·) with an offset value, for instance f̂ [0](·) = 0 or f̂ [0](·) =

arg minc n
−1
∑n

i=1 ρ(yi, c). Set m = 0.

2. Increase m by 1. Compute the negative gradient − ∂
∂f
ρ(Y, f) and evaluate it at

f̂ [m−1](xi), for each observation i = 1, . . . , n:

ui = − ∂

∂f
ρ(yi, f)|f=f̂ [m−1](xi)

.

3. Fit the u1, . . . , un to x1, . . . ,xn using a so-called base procedure (which will be

discussed later in this section):

(xi, ui)
n
i=1

base procedure

−→
ĝ[m](·).

4. Update f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < µ ≤ 1 is a step-length factor

(see below), that is, proceed along an estimate of the negative gradient vector.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.
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2.2.2 The boosting version used in the present study

In the context of binary class prediction (i.e. when Y is binary), it is usual to use the

so-called log-likelihood loss function

ρlog-lik(y, f) = log2(1 + exp(−2yf))

in step 2 [14]. In the present study, we stick to this standard choice which yields

nice properties. For instance, it can be shown that the population minimizer of this

loss function has the intuitive form f ∗(X1, . . . , Xp) = 1
2
log p(X1,...,Xp)

1−p(X1,...,Xp)
, where

p(X1, . . . , Xp) = P (Y = 1|X1, . . . , Xp).

In order to fit a model which is linear in the molecular variables, componentwise

linear least squares regression is applied as an efficient base procedure in step 3. This

base procedure is defined as

ĝ(X1, . . . , Xp) = β̂j∗Xj∗ ,

where β̂j simply denotes the least square estimate of the coefficient βj in the univariate

regression model including Xj as single predictor

β̂j =

(
n∑

i=1

xijui

)
/

(
n∑

i=1

x2
ij

)
,

and j∗ corresponds to the predictor yielding the best prediction in this univariate re-

gression model:

j∗ = arg min
1≤j≤p

n∑

i=1

(ui − β̂jxij)2.

Meanwhile, componentwise linear least squares can be considered as one of the stan-

dard base procedures for boosting. We choose it as a base procedure for the second

step of our two-stage analysis scheme. A major advantage of componentwise linear

least squares as a base procedure in the context of our two-stage approach is that the

final estimated function f̂ (mstop)(·) can be seen as a linear combination of the molecular

predictors X1, . . . , Xp of the same form as the linear combination of the clinical co-

variates Z1, . . . , Zq output by the first step. Hence, it is easy to combine both steps of

the analysis, as explained in Section 2.3.
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2.3 Combining logistic regression (step 1) and boosting (step 2)

In this section, we show how logistic regression and boosting as described in the

two above sections can be combined into a two-step procedure. We first present the

procedure for the case when the model with clinical covariates has to be estimated

from the data and then address the other scenario (application of a fixed risk score

known from a previous study).

Step 1

1.1 Fit a logistic regression model as outlined in Section 2.1 to the clinical covari-

ates Z1, . . . , Zq, yielding estimates β̂0, β̂1, . . . , β̂q for the logistic regression co-

efficients.

1.2 Compute the linear predictor η̂(1)
i = β̂0 + β̂1zi1 + · · ·+ β̂qziq for i = 1, . . . , n.

Step 2: Boosting regression
This step involves one method parameter, the number of boosting iterations mstop,

which is discussed in Section 2.5.

2.1 Define the offset function f̂ [0](·) as f̂ [0](zi1, . . . , zip) = η̂
(1)
i and run the boosting

algorithm given in Section 2.2 using the log-likelihood loss function ρlog-lik and

componentwise linear least squares as a base procedure with mstop boosting iter-

ations, as implemented in the R package mboost [17, 18]. Derive the estimates

β̂∗0 , β̂
∗
1 , . . . , β̂

∗
p for the intercept and the regression coefficients of the variables

X1, . . . , Xp. Note that, in practice, many of these coefficients are zero.

2.2 Compute the resulting linear predictor as

η̂
(2)
i = β̂0 + β̂1zi1 + · · ·+ β̂qziq + β̂∗0 + β̂∗1xi1 + · · ·+ β̂∗pxip.

2.3 Compute the predicted probabilities p̂(2)
i from the linear predictor as p̂(2)

i =
exp(η̂

(2)
i )

1+exp(η̂
(2)
i )

and derive the average negative binomial log-likelihood as

` =
1

n

n∑

i=1

(
(0.5 + 0.5yi) log(p̂

(2)
i ) + (0.5− 0.5yi) log(1− p̂(2)

i )
)
.
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A small negative binomial log-likelihood indicates good model fit. Note that we could

have used another goodness criterion in place of the negative binomial log-likelihood.

However, the binomial log-likelihood is especially appropriate, since it is the crite-

rion optimized by the boosting procedure. To assess the additional predictive value of

the molecular data, we suggest to compare ` to the negative binomial log-likelihood

obtained from permuted data, as outlined in Section 2.4.

In the situation where a risk score is already available (e.g. from a previous publica-

tion), step 1 can be skipped. The linear predictor corresponding to the risk score is used

as an offset in boosting regression in place of the estimated linear predictor η̂(1)
i . In the

case where the risk score is given in form of the event probability P (Y = 1) = p
(RS)
i

for each observation, we first have to convert the probabilities into linear predictors:

η
(RS)
i = log

p
(RS)
i

1− p(RS)
i

.

This linear predictor is then used as an offset in boosting regression in place of the esti-

mated linear predictor η̂(1)
i . Our method can thus be accommodated to situations where

the clinical risk score is not based on a linear predictor in the context of logistic regres-

sion (for instance a risk score corresponding to a classification tree). Alternatively, our

method can also be used to globally assess the molecular variables independently of

any clinical covariates. This would be done by ignoring the first step (logistic regres-

sion) of our method and simply setting the offset to the value of the intercept.

2.4 Permutation-based testing procedure

We consider the null-hypothesis that the variables X1, . . . , Xp have no additional pre-

dictive power given the clinical covariates. The considered model is given as

log
P (Y = 1)

P (Y = −1)
= β0 +

q∑

j=1

βjZj +

p∑

j=1

β∗jXj

and the null-hypothesis is formally stated as

H0 : β∗1 = · · · = β∗p = 0.

We suggest to test this null-hypothesis using a permutation procedure by permuting

X1, . . . , Xp only. More precisely, we replace x1, . . . ,xn by xσ(1), . . . ,xσ(n), where
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σ is a random permutation of (1, . . . , n), while the clinical covariates zi are not per-

muted. The two-step procedure is applied and the negative binomial log-likelihood ` is

computed again for this permuted data set. The whole procedure is repeated a number

of timesB, yielding the negative binomial log-likelihoods `1, . . . , `B. The permutation

p-value is then obtained as

p-value =
1

B

B∑

b=1

1(`b ≤ `),

where 1 denotes the indicator function.

2.5 The choice of mstop

When boosting is used for building a prediction model, the choice of the number of

boosting iterations is crucial. A too large mstop would yield an overcomplex model

overfitting the training data, while a too small mstop would yield a too sparse model

that do not fully exploit the available predicting information. In practice, the number

of boosting iterations can be selected using an AIC-like criterion or by minimization

of the out-of-sample negative binomial likelihood within a bootstrap procedure [14].

In contrast to what happens in the context of prediction, the results of our ap-

proach for the assessment of additional predictive value are not strongly affected by

the number of boosting iterations. To illustrate this, we follow the simulation scheme

described in the Results section and consider two extrem case: a) one strongly infor-

mative molecular variable (µX = 5, p∗ = 1) and b) 200 very weakly informative

molecular variables (µX = 0.2, p∗ = 200), all the other molecular variables and clin-

ical covariates being irrelevant for the prediction problem. The second setting can be

considered as an extreme case, since there are often less than 200 informative variables

in practice, and relevant between-group shifts are often larger than µX = 0.2. In these

settings, we compute the negative binomial log-likelihood ` as well as its permuted

versions `1, . . . , `B for a grid of mstop values ranging from 10 to 2000. The resulting

curves are displayed in Figure 1. Similar curves are obtained for different values of the

simulation parameters.

To sum up, the curve of the original data set (with informative X variables) de-

creases with increasing mstop more rapidly than the curves of the permuted data sets

until a certain value of mstop. After this value, all curves are approximately parallel.

11



Hence, further increasing mstop would not change the test result. This is because,

roughly speaking, the newly added components do not improve the model anymore

- even with the original non-permuted variables. Except from the computational ex-

pense, there is no inconvenience to choose a relatively large mstop, and a large mstop

may better detect weak effects. In our experience, mstop = 1000 is a good compromise

between computation time and the capacity to detect weak effects.

3 Results

3.1 Simulation design

In all settings, the number n of observations is set to n = 100, the number p of molecu-

lar predictors to p = 1000 and the number q of clinical predictors to q = 5. The binary

variable Y is drawn from a Bernoulli distribution with probability of success 0.5. The

relevant molecular variables follow the conditional distributionXj|Y = 1 ∼ N (µX , 1)

and Xj|Y = −1 ∼ N (0, 1), for j = 1, . . . , p∗. The other molecular variables

Xp∗+1, . . . , Xp simply follow a standard normal distribution. Similarly, the clinical

covariates are drawn from the conditional normal distribution Zj|Y = 1 ∼ N (µZ , 1)

and Zj|Y = −1 ∼ N (0, 1), for j = 1, . . . , q.

We first consider the case of non-informative clinical covariates (µZ = 0) and

uncorrelated variables X1, . . . , Xp, Z1, . . . , Zq, and consider the six following cases:

(null) p∗ = 0 (no informative molecular variables), for comparison

(a) p∗ = 5 and µX = 0.5: few relevant variables, weak between-group shift

(b) p∗ = 5 and µX = 0.8: few relevant variables, strong between-group shift

(c) p∗ = 50 and µX = 0.3: many relevant variables, very weak between-group shift

(d) p∗ = 50 and µX = 0.5: many relevant variables, weak between-group shift

(e) p∗ = 200 and µX = 0.3: very many relevant variables, very weak between-group

shift

To show that our method focuses on the additional predictive value of high-

dimensional data, we also consider the following special setting (f): both the q = 5
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clinical covariates and the p∗ = 5 relevant molecular predictors are highly predictive

(µZ = µX = 1), but in the first case they are mutually uncorrelated (f.1), while we

have X1 = Z1, . . . , X5 = Z5 in the second case (f.2).

For each setting, 100 simulated data sets are generated. The two following methods

are applied to each data set for each setting:

A. Our method with mstop = 100, 500, 1000 and B = 200 permutation iterations

B. Goeman’s global test [7] with adjustment for the clinical covariates using the

globaltest package [9]

3.2 Simulation results

Figure 2 represents boxplots of the p-values for the eight different settings. Three im-

portant results can be observed from the boxplots. Firstly, the influence of the parame-

ter mstop seems to be minimal in all settings except in setting (f.1), where mstop = 1000

has a noticeably better power. Hence, this simulation study confirms that, as outlined

in Section 2.5, the choice of mstop is not of crucial importance in most cases, and that

mstop should rather be large. Secondly, our method shows high power in very different

difficult situations such as a small number of strong predictors or a large number of

very weak predictors. In all the examined settings, its power was better than the power

of the global test. The power difference between our approach and the global test is

especially striking in the case of a small number of strong predictors (b). Another in-

teresting result is that the p-values of the global test are not uniformly distributed in

the null case. Thirdly, our method finds additional predictive value in setting (f.1) but

does not in setting (f.2) (i.e. when X1 = Z1, . . . , Xq = Zq), thus fulfilling requirement

1.

3.3 Real data analysis

We first analyze the ALL data set included in the Bioconductor package ALL [19].

The ALL data set is an expression set from a study on T- and B-cell acute lymphoblas-

tic leukemia including 128 patients using the Affymetrix hgu95av2 chip with 12,625

probesets [20]. The data has been preprocessed using RMA. We consider the response
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remission/no remission, and the clinical covariates age, sex, T- vs. B-cell. After remov-

ing patients with missing values in the response or in the clinical covariates, we obtain

a data set with 97 patients with remission and 15 patients without remission.

The second example data set considered in this paper is the Van’t Veer breast cancer

data set [21]. The data set prepared as described in the original manuscript (only genes

that show 2-fold differential expression and p-value for a gene being expressed < 0.01

in more than 5 samples are retained, yielding 4348 genes) is included in the R package

DENMARKLAB [22], which we use in the article. The available clinical variables

are age (metric), tumor grade (ordinal), estrogen receptor status (binary), progesterone

receptor status (binary), tumor size (metric) and angioinvasion (binary).

We apply the global test with adjustment for the clinical covariates and our new ap-

proach (with mstop = 100, 500, 1000) to both data sets. Additionally, we also apply the

global test without adjustment and our method without first step (i.e. without adjust-

ment for clinical covariates) for comparison. The results are given in Table 1. Whereas

the ALL gene expression data seem to have additional predictive value, the Vant’Veer

data do not, which corroborates previous findings [2, 10]. A noticeable result of both

Goeman’s global test and our new approach is that the ALL data have more predic-

tive value with adjustment than without adjustment, which may indicate that clinical

and gene expression data are correlated and have contradictory effects on the response

variable. In contrast, the Vant’Veer gene expression data seem to be marginally infor-

mative, but their predictive value vanishes when adjustment is performed.

3.4 Good practice declaration

Our simulation and real data studies was performed with the values mstop =

100, 500, 1000 only. These values were chosen based on preliminary analyses in the

vein of Section 2.5, but not based on the final results. The simulation settings were

chosen based on short preliminary studies. The aim of these preliminary studies was to

ensure informativeness in the sense that we avoided settings where all hypotheses are

rejected (too strong predictors) or all hypotheses are accepted (too weak predictors).

The aim of the preliminary study was not to select the settings that would advantage

our method compared to the concurrent globaltest approach. For reproducibility, the

codes implementing our procedure and the simulation and real data studies are avail-
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able as supplementary files.

4 Conclusions

We propose a simple boosting-based permutation procedure for testing the additional

predictive value of high-dimensional data. Our approach shows good power in very

different situations, even when a very small proportion of predictors are informative

or when the signal in each informative predictors is very weak. Unlike approaches like

pre-validation [23], it assesses the additional predictive value of high-dimensional data

in the sense that the clinical covariates are involved in the model as a fixed offset.

We provide clear advice for choosing the parameters involved in the procedure. The

shrinkage factor ν should be set to the standard default value ν = 0.1 as recommended

in previous publications [14]. The number B of permutations should be set as high

as computationally feasible (the higher B, the more precise the p-value). The most

delicate parameter is the number of boosting iterations mstop. Note, however, that the

choice of mstop is not as crucial as in the context of prediction and almost no influence

on the results. Except for the computational expense, there is almost no inconvenience

to set mstop to a very large value. In practice, the value mstop = 1000 seems to be

reasonable. On one hand, the log-likelihood curves of real and permuted data plotted

against m are approximately parallel and usually do not intersect even if the optimal

number of boosting steps is much smaller. On the other hand, mstop = 1000 allows to

detect very weak signals at the border of biological relevance. In a way, our method

circumvents the difficult problem of complexity selection with high-dimensional data.

Note that our methodology can be easily generalized to a wide range of more com-

plex regression problems such as survival analysis or non-linear regression. These

problems can all be handled within the boosting regression framework using the

mboost package [17, 18]. Hence, our approach is essentially not limited to linear ef-

fects, although we focus on this special case in the present paper. Since, especially

for linear models, an efficient implementation of boosting is available [17], the com-

putational effort of our procedure is manageble with standard hardware. Furthermore,

the permutation procedure can be run in parallel which further reduces the required

computing time [24].
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Figures

Figure 1 - Choice of mstop

Negative log-likelihood for the original data (red) and the permuted data (black)

against the number of iterations mstop. (a) µX = 5, p∗ = 1. (b) µX = 0.2, p∗ = 200.
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Figure 2 - Boxplots of p-values

Boxplots of the p-values for the eight settings described in Section 3.1 using our new

method with mstop = 100, 500, 1000 (gray boxes) and using Goeman’s global test

(white boxes).
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Tables

Table 1
global test boosting-based permutation test

adjustment mstop = 100 mstop = 500 mstop = 1000

ALL yes 0.039 0.020 0.041 0.048

no 0.078 0.013 0.071 0.127

Van’t Veer yes 0.114 0.507 0.288 0.216

no 0.015 0.004 0.006 0.005
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