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Ecological data are highly complex, often with a
large array of variables interacting and explaining
different components of the dependent variable of
interest. Because nature itself is very complex, most
of the variables measured by ecologists do not
operate independently, so that interactions and
correlations between variables need to be accounted
for.  Moreover, the number of variables
influencing an ecological phenomenon may be very
large, and the use of simplifying indices in ecology
and wildlife management has been criticized for
many years (Anderson et al. 2003).

Determining which variables have the
greatest effect on a response variable can be a
formidable challenge in many ecological data sets.
Traditional linear regression models, which are
widely used as tools to quantify and understand the
ecological relationship between several explanatory
variables and a dependent, reach their limitations
when the number of predictor variables is large
(Fielding 1999, Breiman 2001b, Burnham and
Anderson 2002).

Despite the recognized shortcomings of
generalized linear regression models (GLM), such
approaches are still widely used and promoted in
recent literature (Planque and Buffaz 2008, Yee et
al. 2008, Bolker et al. 2009, Gompert and Buerkle
2009, Koper and Manseau 2009). Many ecologists
are hesitant to use Bayesian approaches (Cressie et
al. 2009), or machine learning methods (Cutler et al.
2007, Olden et al. 2008, Cutler et al. 2009), both of
which have existed for several decades and have
become popular among ecologists over the past 10
years (Fielding 1999, De'ath and Fabricius 2000).
Poor understanding of advanced techniques and an

inherent reluctance to try novel approaches are
likely causes for the slow adoption of Bayesian and
machine learning techniques (Bolker 2009, Uriarte
and Yackulic 2009).

Recently, in a paper published in Ecology
(Murray and Conner 2009), the presentation of
methods to quantify variable importance was
limited to standard parametric methods and the
results appeared to contradict the statistical
literature. This paper prompted us to (i) remind
ecologists of the great utility of machine learning
methods, which can provide enhanced and reliable
measures of variable importance even in situations
with a large number of predictor variables
containing potentially complex interactions, and (ii)
emphasize the importance of using correct
terminology when evaluating statistical approaches.
Specifically, we clarify the identification and
simulation of spurious variables.

Alternative approaches to
dimensional data

modeling high

For modeling high dimensional data containing
potentially complex interactions, a variety of new
methods adopted from machine learning have
become popular in many disciplines such as
genetics and, more recently, ecology. Some of these
so called algorithmic models can incorporate many
predictor variables, and methods exist to reliably
identify the most important predictors (Strobl et al.
2007, Archer and Kimes 2008, Strobl et al. 2008).
Algorithmic models encompass a suite of analytical
approaches (Elith et al. 2006); for simplicity and



brevity we here focus on a widespread ensemble
method, the Random Forest (Breiman 2001a), to
demonstrate that the concept of algorithmic models
is easy to understand and implement with freely
available software solutions for virtually any
ecologist worldwide.

In contrast to traditional data models like
GLMs, algorithmic models do not require the a
priori specification of a model to relate explanatory
and dependent variables, but rather use an algorithm
to learn the form of those relationships (Breiman
2001b). The basic decision tree algorithm
underlying many modern algorithmic models was
developed in the 1980s (Breiman et al. 1984), and
was introduced to ecologists more than a decade ago
(O'Connor and Jones 1997, Fielding 1999, De'ath
and Fabricius 2000). Since then, classification trees
and more advanced techniques have increased in
popularity among ecologists due to their high
classification accuracy, ability to incorporate a large
number of predictor variables, ability to handle
missing data, ability to characterize complex
interactions among Vvariables, and comparatively
easy application and interpretation (Cutler et al.
2007, De'ath 2007, Hochachka et al. 2007, Elith et
al. 2008, Olden et al. 2008, Elith and Graham 2009).

Algorithmic  models have been used
successfully in many ecological applications, such
as analyses of species range shifts (Hill et al. 1998,
Lawler et al. 2009), species richness patterns
(Leathwick et al. 2006), species presence and
distribution patterns (O'Connor et al. 2004, Peters et
al. 2005, Elith et al. 2008, Elith and Graham 2009),
identification of populations (Perdiguero-Alonso et
al. 2008), and analyses of behavioral patterns
(Grubb and King 1991, Low et al. 2006, Oppel et al.
2009). When compared to traditional statistical
models such as GLMs, algorithmic models provide
convenience, speed, and most importantly superior
model fit and prediction (Elith et al. 2006, Prasad et
al. 2006, Peters et al. 2007). They require
substantially less prior knowledge about the study
system to achieve the same accuracy as, for
example, logistic regression models (Hochachka et
al. 2007, Ritter 2007).

To understand how algorithmic models
determine the importance of a variable it is
necessary to briefly review the structure of
algorithmic models. We emphasize that our
comment is not designed to serve as a manual for
the successful application of algorithmic models;
such introductions already exist in the ecological
literature (Cutler et al. 2007, De'ath 2007,
Hochachka et al. 2007, Elith et al. 2008, Olden et al.
2008). Here we merely provide an exemplary, brief
description of one particular algorithmic modeling
technique, the Random Forest (Breiman 2001a,
Cutler et al. 2007), and its extensions designed to
reliably estimate variable importance in highly
complex data sets (Hothorn et al. 2006, van der
Laan 2006, Strobl et al. 2007).

A brief overview of Random Forests

The Random Forest algorithm is based on
classification and regression tree analysis (Breiman
et al. 1984, De'ath and Fabricius 2000). A
classification or regression tree uses a series of rules
to recursively split the data set into binary groups by
identifying regions with the most homogenous set of
a response to predictor variables. For each node the
predictor variable and the split point are chosen to
maximize the homogeneity of the data set along
each of the two branches. Each branch can then be
split again, either until a stopping criterion is
reached, or until a user-specified number of terminal
nodes is reached. The two main advantages of trees
are that predictor variables can be both, categorical
and continuous, and that irrelevant predictors are
seldom selected for a split. Thus, there is no cost to
including a large number of predictor variables. In
contrast to GLMs, trees also incorporate, and benefit
from, interactions due to the hierarchical structure
within the tree. At each split the response depends
not only on the value of the predictor at that split,
but also on the predictors at all splits that occurred
higher up in the tree. Further, trees are insensitive to
outliers or missing values in a data set, which is a
common occurrence in large spatial data sets (Craig
and Huettmann 2008).



A Random Forest is an assemblage of a
large number of classification or regression trees
using two levels of randomisation in the
construction of every tree in the Random Forest
(Breiman 2001a). First, each tree is constructed
from a random subset of the original data, either
taken with a bootstrap sample with replacement or
sampled randomly to a specified proportion of the
entire data set. The data not chosen to construct the
tree (termed ‘out-of-bag’ data, oob) are used to
assess the predictive ability of that tree. Each tree
thus provides both an algorithm to classify the data
and an error estimate of predictive ability based on
the oob data. Second, at each split within each tree a
random subset m of the available predictor variables
is used to partition the data set into two groups with
minimal heterogeneity. Each tree recursively
partitions the data using a random subset of
predictor variables until homogeneity of the data in
each terminal node cannot be increased by a further
subdivision. After a user-specified number of trees
(100s — 1000s) have been constructed, each data
point is run down every single tree in the Random
Forest. Different trees may predict different
outcomes for the same data point, and the most
common classification across all trees is used to
determine the predicted outcome of a data point.

Variable importance estimation

To estimate the importance of predictor variables,
Random Forests use a specific permutation
procedure. In this procedure, the values for a given
variable are randomly permuted over the oob data
set and the resulting reduction in model accuracy is
assessed. Variable importance is inversely related to
the reduction in model accuracy after permutation
(Strobl et al. 2007). For easier interpretation, the
variable importance can be standardized, with the
most important variable being assigned a relative
variable importance of 100%. A Random Forest
provided a reliable method to identify the most
important predictor variables in a large simulation
study including 100 variables (Archer and Kimes
2008). Hence, algorithmic models usually provide a

simpler, more accurate and more widely applicable
approach to determine variable importance in
ecology than approaches that rely on correlations
among variables or models with different subsets of
the full suite of predictor variables (Burnham and
Anderson 2002, Murray and Conner 2009).
Advanced algorithms based on a conditional
inference framework (Hothorn et al. 2006) are able
to reliably identify the most important predictor
variables even when continuous and categorical
variables are used simultaneously (Strobl et al.
2007), or when variables are correlated (Strobl et al.
2008).

Conclusion

The continued use and promotion of simple linear
techniques in ecology is troublesome because such
models require a higher level of statistical
knowledge to adequately describe the complexities
of many large ecological data sets (Hochachka et al.
2007). Despite many recent advances, such as
information-theoretic approaches to model selection
(Burnham and Anderson 2002), the use of Bayesian
approaches (Stauffer 2008, Cressie et al. 2009), and
attempts to overcome the problem of spurious and
correlated variables (Murray and Conner 2009),
traditional regression models will rarely be able to
match algorithmic models in situations where a
large number of explanatory variables need to be
included in a model that is based on a limited
number of observations (Breiman 2001b). We
therefore recommend that ecologists that are
challenged by large data sets, interactions, and
correlated variables consider the application of
algorithmic models to improve the explanatory
power and robustness of their analysis.

We realize that the widespread adoption of
algorithmic approaches faces similar challenges as
the adoption of hierarchical Bayesian modeling
techniques (Uriarte and Yackulic 2009): ecologists
struggle to use new analysis tools that go beyond
their original training and education. We encourage
ecologists to broaden their analytical horizons with
existing literature (Cutler et al. 2007, Hochachka et



al. 2007, Elith et al. 2008, Olden et al. 2008) and
make use of powerful techniques that have been
developed in fields outside of ecology in order to
better understand ecological patterns and processes.

A note about spurious vs. suppressor variables

A spurious variable, for example in a multivariate
regression problem with predictor variables x;
through x, and response variable y, is a variable that
has no effect on the response, but is highly
correlated with another predictor variable that does
have an effect on the response (Burnham and
Anderson 2002, Brett 2004). Consider, for example,
that the number of storks that occur in an area (xy) is
correlated with the number of newborn infants in
that area (y). However, stork abundance has no
biological influence on the number of newborns; in
fact, a third variable, for example a low degree of
environmental pollution (x;), positively influences
both the number of storks and the birthrate. As long
as environmental pollution is not entered as
predictor variable in a model of birthrate, the
number of storks will act as a spurious variable that
could be mistaken to explain birthrate.

Spurious correlations can affect inference
from data, and it is important to detect them. Murray
and Conner (2009) recognized this problem and
offered a solution based on simulations with
artificial data. Unfortunately, the simulation design
used by Murray and Conner (2009: Ecological
Archives E090-026-S1), where the response variable
was simulated together with the predictor variables,
generated a suppressor variable (Velicer 1978,
Smith et al. 1992, Maassen and Bakker 2001), rather
than a spurious variable. While a suppressor
variable also leads to a spurious correlation, the
difference between spurious and suppressor
variables is that, when considering the parameter
estimates in a linear model, the effect of a spurious
variable only appears when the truly relevant
correlated predictor is absent from the model
(Prairie and Bird 1989, Brett 2004). For a
suppressor variable, however, the effect appears
only if another correlated variable is entered into the

model (Conger 1974, Tzelgov and Stern 1978,
Velicer 1978, Smith et al. 1992).

The distinction between suppressor and
spurious variables is not formally recognized by
many ecologists (see Juenger and Bergelson (2000)
for a notable exception), and may arguably be
inconsequential if spurious correlations are
considered in general. However, we argue that the
distinction is important to facilitate effective
communication with statisticians to make use of
approaches developed outside the field of ecology.
For example, the simulation by Murray and Conner
(2009) lead them to erroneously conclude that a
spurious variable could be identified by means of
simple zero-order correlations. In fact, however, a
spurious variable cannot be revealed by means of a
zero-order correlation (which would indicate a
strong association between the number of storks and
the birthrate), but only by means of a partial
correlation for the number of storks and the birthrate
given the degree of environmental pollution (which
would reveal that, once the truly influential variable
is incorporated, the spurious variable “number of
storks” proves irrelevant for predicting the
birthrate)(Simon 1954). Because Murray and
Conner (2009) unknowingly generated suppressor
rather than spurious variables in their simulation,
they found that the zero-order correlation was zero,
while the partial correlation was not zero. This
result is correct and unsurprising for describing a
suppressor effect, but is misleading and inconsistent
with statistical literature due to the incorrect usage
of the term “spurious variable”.
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