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Abstract

The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when ob-
served data are rather unexpected under the prior (and the sample size is not large enough to eliminate
the influence of the prior). Two approaches for Bayesian linear regression modeling based on conju-
gate priors are considered in detail, namely the standard approach also described in Fahrmeir, Kneib &
Lang (2007) and an alternative adoption of the general construction procedure for exponential family
sampling models. We recognize that – in contrast to some standard i.i.d. models like the scaled normal
model and the Beta-Binomial / Dirichlet-Multinomial model, where prior-data conflict is completely
ignored – the models may show some reaction to prior-data conflict, however in a rather unspecific
way. Finally we briefly sketch the extension to a corresponding imprecise probability model, where,
by considering sets of prior distributions instead of a single prior, prior-data conflict can be handled in
a very appealing and intuitive way.
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1 Introduction
Regression analysis is a central tool in applied statistics that aims to answer the omnipresent question
how certain variables (called covariates / confounders, regressors, stimulus or independent variables, here
denoted by x) influence a certain outcome (called response or dependent variable, here denoted by z). Due
to the complexity of real-life data situations, basic linear regression models, where the expectation of the
outcome zi simply equals the linear predictor xTiβ , have been generalized in numerous ways, ranging
from generalized linear models (Fahrmeir & Tutz (2001), see also Fahrmeir & Kaufmann (1985) for
classical work on asymptotics) for non-normal distributions of zi | xi, or linear mixed models allowing
the inclusion of clustered observations, over semi- and nonparametric models (Kauermann, Krivobokova
& Fahrmeir 2009, Fahrmeir & Raach 2007, Scheipl & Kneib 2009), up to generalized additive (mixed)
models and structured additive regression (Fahrmeir & Kneib 2009, Fahrmeir & Kneib 2006, Kneib &
Fahrmeir 2007).

Estimation in such highly complex models may be based on different estimation techniques such as
(quasi-) likelihood, general estimation equations (GEE) or Bayesian methods. Especially the latter offer
in some cases the only way to attain a reasonable estimate of the model parameters, due to the possibility
to include some sort of prior knowledge about these parameters, for instance by “borrowing strength”
(e.g., Higgins & Whitehead 1996).

The tractability of large scale models with their ever increasing complexity of the underlying models
and data sets should not obscure that still many methodological issues are a matter of debate. Since the
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early days of modern Bayesian inference one central issue has, of course, been the potentially strong
dependence of the inferences on the prior. In particular in situations where data is scarce or unreliable,
the actual estimate obtained by Bayesian techniques may rely heavily on the shape of prior knowledge,
expressed as prior probability distributions on the model parameters. Recently, new arguments came into
this debate by new methods for detecting and investigating prior-data conflict (Evans & Moshonov 2006,
Bousquet 2008), i.e. situations where “. . . the observed data is surprising in the light of the sampling
model and the prior, [so that] . . . we must be at least suspicious about the validity of inferences drawn.”
(Evans & Moshonov 2006, p. 893)

The present contribution investigates the sensitivity of inferences on potential prior-data conflict:
What happens in detail to the posterior distribution and the estimates derived from it if prior knowledge
and what the data indicates are severely conflicting? If the sample size n is not sufficiently large to discard
the possibly erroneous prior knowledge and thus to rely on data only, prior-data conflict should affect the
inference and should – intuitively and informally – result in an increased degree of uncertainty in posterior
inference. Probably most statisticians would thus expect a higher variance of the posterior distribution in
situations of prior-data conflict.

However, this is by no means automatically the case, in particular when adopting conjugate prior
models, which are often used when data are scarce, where only strong prior beliefs allow for a reasonably
precise answer in inference. Two simple and prominent examples of complete insensitivity to prior-data
conflict are recalled in Section 2: i.i.d. inferences on the mean of a scaled normal distribution and on the
probability distribution of a categorical variable by the Dirichlet-Multinomial model.

Sections 3 and 4 extend the question of (in)sensitivity to prior-data to regression models. We confine
attention to linear regression analysis with conjugate priors, because – contrary to the more advanced
regression model classes – the linear model still allows a fully analytical access, making it possible to
understand potential restrictions imposed by the model in detail. We discuss and compare two different
conjugate models:

(i) the standard conjugate prior (SCP, Section 3) as described in Fahrmeir et al. (2007) or, in more
detail, in O’Hagan (1994); and

(ii) a conjugate prior, called “canonically constructed conjugate prior” (CCCP, Section 4) in the follow-
ing, which is derived by a general method used to construct conjugate priors to sample distributions
that belong to a certain class of exponential families, described, e.g., in Bernardo & Smith (1994).

Whereas the former is the more general prior model, allowing for a very flexible modeling of prior
information (which might be welcome or not), the latter allows only a strongly restricted covariance
structure for β , however offering a clearer insight in some aspects of the update process.

In a nutshell, the result is that both conjugate models do react to prior-data conflict by an enlarged
factor to the variance-covariance matrix of the distribution on the regression coefficients β ; however, this
reaction is unspecific, as it affects the variance and covariances of all components of β in a uniform way
– even if the conflict occurs only in one single component.

Probably such an unspecific reaction of the variance is the most a (classical) Bayesian statistician
can hope for, and traditional probability theory based on precise probabilities can offer. Indeed, Kyburg
(1987) notes, that

[. . . ] there appears to be no way, within the theory, of distinguishing between the cases in which
there are good statistical grounds for accepting a prior distribution, and cases in which the prior distri-
bution reflects merely ungrounded personal opinion.

and the same applies, in essence, to the posterior distribution.
A more sophisticated modeling would need a more elaborated concept of imprecision than is actually

provided by looking at the variance (or other characteristics) of a (precise) probability distribution. In-
deed, recently the theory of imprecise probabilities (Walley 1991, Weichselberger 2001) is gaining strong
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momentum. It emerged as a general methodology to cope with the multidimensional character of un-
certainty, also reacting to recent insights and developments in decision theory1 and artificial intelligence,
where the exclusive role of probability as a methodology for handling uncertainty has eloquently been
rejected (Klir & Wierman 1999):

For three hundred years [. . . ] uncertainty was conceived solely in terms of probability theory. This
seemingly unique connection between uncertainty and probability is now challenged [. . . by several
other] theories, which are demonstrably capable of characterizing situations under uncertainty. [. . . ]

[. . . ] it has become clear that there are several distinct types of uncertainty. That is, it was realized
that uncertainty is a multidimensional concept. [. . . That] multidimensional nature of uncertainty was
obscured when uncertainty was conceived solely in terms of probability theory, in which it is manifested
by only one of its dimensions.

Current applications include, among many other, risk analysis, reliability modeling and decision the-
ory, see de Cooman, Vejnarová & Zaffalon (2007), Augustin, Coolen, Moral & Troffaes (2009) and
Coolen-Schrijner, Coolen, Troffaes & Augustin (2009) for recent collections on the subject. As a wel-
come byproduct imprecise probability models also provide a formal superstructure on models considered
in robust Bayesian analysis (Rı́os Insua & Ruggeri 2000) and frequentist robust statistic in the tradition
of Huber & Strassen (1973), see also Augustin & Hable (2009) for a review.

By considering sets of distributions, and corresponding interval-valued probabilities for events, im-
precise probability models allow to express the quality of the underlying knowledge in an elegant way.
The higher the ambiguity, the larger c.p. the sets. The traditional concept of probability is contained as a
special case, appropriate if and only if there is perfect stochastic information. This methodology allows
also for a natural handling of prior-data conflict. If prior and data are in conflict, the set of posterior
distributions are enlarged, and inferences become more cautious.

In Section 5 we briefly report that the CCCP model has a structure that allows a direct extension to an
imprecise probability model along the lines of Quaeghebeur & de Cooman’s (2005) imprecise probability
models for i.i.d. exponential family models. Extending the models further by applying arguments from
Walter & Augustin (2009) yields a powerful generalization of the linear regression model that is also
capable of a component-specific reaction to prior-data conflict.

2 Prior-data Conflict in the i.i.d. Case
As a simple demonstration that conjugate models might not react to prior-data conflict reasonably, infer-
ence on the mean of data from a scaled normal distribution and inference on the category probabilities in
multinomial sampling will be described in the following two subsections.

2.1 Samples from a scaled Normal distribution N(µ,1)

The conjugate distribution to an i.i.d.-sample x of size n from a scaled normal distribution with mean µ ,
denoted by N(µ,1) is a normal distribution with mean µ(0) and variance σ (0)22. The posterior is then

1See Hsu, Bhatt, Adolphs, Tranel & Camerer (2005) for a neuro science corroboration of the constitutive difference of stochastic
and non-stochastic aspects of uncertainty in human decision making, in the tradition of Ellsberg’s (1961) seminal experiments.

2Here, and in the following, parameters of a prior distribution will be denoted by an upper index (0), whereas parameters of the
respective posterior distribution by an upper index (1).
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again a normal distribution with the following updated parameters:

µ(1) =
1
n

1
n +σ (0)2 µ(0) +

σ (0)2

1
n +σ (0)2 x̄ =

1
σ (0)2

1
σ (0)2 +n

µ(0) +
n

1
σ (0)2 +n

x̄ (1)

σ (1)2
=

σ (0)2 · 1
n

σ (0)2 + 1
n

=
1

1
σ (0)2 +n

. (2)

The posterior expectation (and mode) is thus a simple weighted average of the prior mean µ(0) and the
estimation from data x̄, with weights 1

σ (0)2 and n, respectively.3 The variance of the posterior distribution
is getting smaller automatically.

Now, in a situation where data is scarce but with prior information one is very confident about, one
would choose a low value for σ (0)2

, thus resulting in a high weight for the prior mean µ(0) in the calcula-
tion of µ(1). The posterior distribution will be centered around a mean between µ(0) and x̄, and it will be
even more pointed as the prior, because σ (1)2

is considerably smaller than σ (0)2
as the factor to σ (0)2

in
(2) is quite smaller than one.

The posterior basically would thus say that one can be quite sure that the mean µ is around µ(1),
regardless if µ(0) and x̄ were near to each other or not, where the latter would be a strong hint on prior-
data conflict. The posterior variance does not depend on this; the posterior distribution is thus insensitive
to prior-data conflict.

Even if one is not so confident about one’s prior knowledge and thus assigning a relatively large
variance to the prior, the posterior mean is less strongly influenced by the prior mean, but the posterior
variance still is getting smaller no matter if the data support the prior information or not.

The same insensitivity appears also in the widely used Dirichlet-Multinomial model as presented in
the following subsection:

2.2 Samples from a Multinomial distribution M(θ)

Given a sample of size n from a multinomial distribution with probabilities θ j for categories / classes
j = 1, . . . ,k, subsumed in the vectorial parameter θ (with ∑k

j=1 θ j = 1), the conjugate prior on θ is a
Dirichlet distribution Dir(α(0)). Written in terms of a reparameterization used e.g. in Walley (1996),
α(0)

j = s(0) · t(0)
j such that ∑k

j=1 t(0)
j = 1, (t(0)

1 , . . . , t(0)
k )T =: t(0), it holds that the components of t(0) have a

direct interpretation as prior class probabilities, whereas s(0) is a parameter indicating the confidence in
the values of t(0), similar to the inverse variance as in Section 2.1, and the quantity n(0) in Section 4.4

The posterior distribution, obtained after updating via Bayes’ rule with a sample vector (n1, . . . ,nk),
∑k

j=1 n j = n collecting the observed counts in each category, is a Dirichlet distribution with parameters

t(1)
j =

s(0)

s(0) +n
t(0)

j +
n

s(0) +n
· n j

n
, s(1) = s(0) +n .

The posterior class probabilities t(1) are calculated as a weighted mean of the prior class probabilities
and n j

n , the proportion in the sample, with weights s(0) and n, respectively; the confidence parameter is
incremented by the sample size n.

3The reason for using these seemingly strange weights will become clear later.
4If θ ∼Dir(s, t), thenV(θ j) = t j(1−t j)

s+1 . If s is high, then the variances of θ will become low, thus indicating high confidence in the
chosen values of t.
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Also here, there is no systematic reaction to prior-data conflict. The posterior variance for each class
probability θ j calculates as

V(θ j | n) =
t(1)

j (1− t(1)
j )

s(1) +1
=

t(1)
j (1− t(1)

j )

s(0) +n+1
.

The posterior variance depends heavily on t(1)
j (1− t(1)

j ), having values between 0 and 1
4 , which do not

change specifically to prior data conflict. The denominator increases from s(0) +1 to s(0) +n+1. Imagine
a situation with strong prior information suggesting a value of t(0)

j = 0.25, so one could choose s(0) = 5,
resulting in a prior class variance of 1

32 . When observing a sample of size n = 10 all belonging to
class j (thus n j = 10), being in clear contrast to the prior information, the posterior class probability is
t(1)

j = 0.75, resulting the enumerator value of the class variance to remain constant. Therefore, due to
the increasing denominator, the variance decreases to 3

256 , in spite of the clear conflict between prior and
sample information. Of course, one can also construct situations where the variance increases, but this
happens only in case of an update of t(0)

j towards 1
2 . If t(0)

j = 1
2 , the variance will decrease for any degree

of prior-data conflict.

3 The Standard Approach for Bayesian Linear Regression (SCP)
The regression model is noted as follows:

zi = xTiβ + εi , xi ∈ IRp , β ∈ IRp , εi ∼ N(0,σ2) ,

where zi is the response, xi the vector of the p covariates for observation i, and β is the p-dimensional
vector of adjacent regression coefficients.

The vector of regressors xi for each observation i is generally considered to be non-stochastic, thus it
holds that zi ∼ N(xTiβ ,σ2), or, for n i.i.d. samples, z ∼ N(Xβ ,σ2I), where z ∈ IRn is the column vector
of the responses zi, and X ∈ IRn×p is the design matrix, of which row i is the vector of covariates xxxTi for
observation i.

Without loss of generality, one can either assume xi1 = 1 ∀i such that the first component of β is
the intercept parameter5, or consider only centered responses z and standardized covariates to make the
estimation of an intercept unnecessary.

In Bayesian linear regression analysis, the distribution of the response z is interpreted as a distribution
of z given the parameters β and σ2, and prior distributions on β and σ2 must be considered. For this, it is
convenient to split the joint prior on β and σ2 as p(β , σ2) = p(β | σ2)p(σ2) and to consider conjugate
distributions for both parts, respectively.

In the literature, the proposed conjugate prior for β | σ2 is a normal distribution with expectation
vector m(0) ∈ IRp and variance-covariance matrix σ2MMM(0), where MMM(0) is a symmetric positive definite
matrix of size p× p. The prior on σ2 is an inverse gamma distribution (i.e., 1/σ2 is gamma distributed)
with parameters a(0) and b(0), in the sense that

p(σ2) ∝
1

(σ2)a(0)+1
exp
{
− b(0)

σ2

}
.

The joint prior on θ = (β , σ2)T is then denoted as a normal – inverse gamma (NIG) distribution. The
derivation of this prior and the proof of its conjugacy can be found, e.g., in Fahrmeir et al. (2007) or in

5usually denoted by β0; however, we stay with the numbering 1, . . . , p for the components of β .
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O’Hagan (1994), the latter using a different parameterization of the inverse gamma part, where a(0) = d
2

and b(0) = a
2 .

For the prior model, it holds thus that (if a(0) > 1 resp. a(0) > 2)

E[β | σ2] = m(0) , V(β | σ2) = σ2MMM(0) ,

E[σ2] =
b(0)

a(0)−1
, V(σ2) =

(b(0))2

(a(0)−1)2(a(0)−2)
.

(3)

As σ2 is considered as nuisance parameter, the unconditional distribution on β is of central interest
because it subsumes the shape of prior knowledge on β as expressed by the choice of parameters m(0),
MMM(0), a(0) and b(0). It can be shown that p(β ) is a multivariate noncentral t distribution with 2a(0) degrees
of freedom, location parameter m(0) and dispersion parameter b(0)

a(0) MMM(0), such that

E[β ] = m(0) , V(β ) =
b(0)

a(0)−1
MMM(0) = E[σ2]MMM(0) . (4)

The joint posterior distribution p(θ | z), due to conjugacy, is then again a normal – inverse gamma distri-
bution with the updated parameters

m(1) =
(

MMM(0)−1
+XTX

)−1(
MMM(0)−1

m(0) +XTz
)

,

MMM(1) =
(

MMM(0)−1
+XTX

)−1
,

a(1) = a(0) +
n
2

,

b(1) = b(0) +
1
2

(
zTz+m(0)TMMM(0)−1

m(0)−m(1)TMMM(1)−1
m(1)

)
.

The properties of the posterior distributions can thus be analyzed by inserting the updated parameters into
(3) and (4).

3.1 Update of β | σ2

The normal distribution part of the joint prior is updated as follows:

E[β | σ2,z] = m(1)

=
(
MMM(0)−1

+XTX
)−1(MMM(0)−1

m(0) +XTz
)

= (I−AAA)m(0) +AAA β̂LS ,

where AAA =
(
MMM(0)−1

+XTX
)−1XTX. The posterior estimate of β | σ2 thus calculates as a matrix-weighted

mean of the prior guess and the least-squares estimate. The larger the diagonal elements of MMM(0) (i.e., the
weaker the prior information), the smaller the elements of MMM(0)−1

and thus the ‘nearer’ is A to the identity
matrix, so that the posterior estimate is nearer to the least-squares estimate.

The posterior variance of β | σ2 calculates as

V(β | σ2,z) = σ2MMM(1) = σ2
(

MMM(0)−1
+XTX

)−1
.
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As the elements of MMM(1)−1
get larger with respect to MMM(0)−1

, the elements of MMM(1) will, roughly speaking,
become smaller than those of MMM(0), so that the variance of β | σ2 decreases.

Therefore, the updating of β | σ2 is obviously insensitive to prior-data conflict, because the posterior
distribution will not become flatter in case of a large distance betweenE[β ] and β̂LS. Actually, as O’Hagan
(1994) derives, for any φ = aTβ , i.e., any linear combination of elements of β , it holds thatV(φ | σ2,z)≤
V(φ | σ2), becoming a strict inequality if X has full rank. In particular, the variance of each βi decreases
automatically with the update step.

3.2 Update of σ2

It can be shown (O’Hagan 1994) that

E[σ2 | z] = 2a(0)−2
2a(0) +n−2

E[σ2]+
n− p

2a(0) +n−2
σ̂2

LS +
p

2a(0) +n−2
σ̂2

PDC , (5)

where σ̂2
LS = 1

n−p (z−Xβ̂LS)T(z−Xβ̂LS) is the least-squares based estimate for σ2, and σ̂2
PDC = 1

p (m(0)−
β̂LS)T

(
MMM(0) + (XTX)−1

)−1(m(0) − β̂LS). For the latter it holds that E[σ̂2
PDC | σ2] = σ2; the posterior

expectation of σ2 calculates thus as a weighted mean of three estimates:

(i) the prior expectation for σ2,

(ii) the least-squares estimate, and

(iii) an estimate based on a weighted squared difference of the prior mean m(0) and β̂LS, the least-squares
estimate for β .

The weights depend on a(0) (one prior parameter for the inverse gamma part), the sample size n, and
the dimension of β , respectively. The role of the first weight gets more plausible when remembering
the formula for the prior variance of σ2 in (3), where a(0) appears in the denominator. A larger value
of a(0) means thus smaller prior variance, in turn giving a higher weight for E[σ2] in the calculation of
E[σ2 | z]. The weight to σ̂2

LS corresponds to the classical degrees of freedom, n− p. With the the sample
size approaching infinity, this weight will dominate the others, such that E[σ2 | z] approaches σ̂2

LS.
Similar results hold for the posterior mode instead of the posterior expectation.
Here, the estimate σ̂2

PDC allows some reaction to prior-data conflict: it measures the distance between
m(0) (prior) and β̂LS (data) estimates for β , with a large distance resulting basically in a large value of
σ̂2

PDC and thus an enlarged posterior estimate for σ2. The weighting matrix for the distances is playing
an important role as well. The influence of MMM(0) is as follows: for components of β one is quite certain
about the assignment of m(0), the respective diagonal elements of MMM(0) will be low, so that these diag-
onal elements of the weighting matrix will be high. Therefore, large distances in these dimensions will
increase t strongly. An erroneously high confidence in the prior assumptions on β is thus penalized by
an increasing posterior estimate for σ2. The influence of XTX interprets as follows: covariates with a low
spread in x-values, giving an unstable base for the estimate β̂LS, will result in low diagonal elements of
XTX. Via the double inverting, those diagonal elements of the weighting matrix will remain low and thus
give the difference a low weight. Therefore, σ̂2

PDC will not excessively increase due to a large difference
in dimensions where the location of β̂LS is to be taken cum grano salis. As to be seen in the following
subsection, the behavior of E[σ | z] is of high importance for posterior inferences on β .
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3.3 Update of β
The posterior distribution of β is again a multivariate t, with expectation E[β | z] = E

[
E[β | σ2,z] | z

]
=

m(1) (as described in Section 3.1) and variance

V[β | z] = b(1)

a(1)−1
MMM(1) = E[σ2 | z]MMM(1) (6)

=
(

2a(0)−2
2a(0) +n−2

E[σ2]+
n− p

2a(0) +n−2
σ̂2

LS +
p

2a(0) +n−2
σ̂2

PDC

)(
MMM(0)−1

+XTX
)−1

=
(

2a(0)−2
2a(0) +n−2

E[σ2]+
n− p

2a(0) +n−2
σ̂2

LS +
p

2a(0) +n−2
σ̂2

PDC

)

·
(

MMM(0)−MMM(0)XT(I+XMMM(0)XT)−1XMMM(0)
)

,

not being directly expressible as a function of E[σ2]MMM(0), the prior variance of β .
Due to the effect of E[σ2 | z], the posterior variance-covariance matrix of β can increase in case of

prior data conflict, if the rise ofE[β | z] (due to an even stronger rise of t) can overcompensate the decrease
in the elements of MMM(1). However, we see that the effect of prior-data conflict on the posterior variance of
β is globally and not component-specific; it influences the variances for all components of β to the same
amount even if the conflict was confined only to some or even just one single component. Taking it to
the extremes, if the prior assignment m(0) was (more or less) correct in all but one component, with that
one being far out, the posterior variances will increase for all components, also for the ones with prior
assignments that have turned out to be basically correct.

4 An Alternative Approach for Conjugate Priors in Bayesian Lin-
ear Regression (CCCP)

In this section, a prior model for θ = (β , σ2) will be constructed along the general construction method
for sample distributions that form a linear, canonical exponential family (see, e.g., Bernardo & Smith
1994). The method is typically used for the i.i.d. case, but the likelihood arising from z∼N(Xβ , σ2I) will
be shown to follow the specific exponential family form as well. The canonically constructed conjugate
prior (CCCP) model will also result in a normal - inverse gamma distribution, but with a fixed variance
- covariance structure. The CCCP model is thus a special case of the SCP model, which – as will be
detailed in this section – offers some interesting further insights into the structure of the update step.
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The likelihood arising from the distribution of z,

f (z | β ,σ2)

=
n

∏
i=1

f (zi | β ,σ2)

=
1

(2π)
n
2 (σ2)

n
2

exp

{
− 1

2σ2

n

∑
i=1

(zi− xxxTiβ )2

}

=
1

(2π)
n
2 (σ2)

n
2

exp
{
− 1

2σ2 (zzz−Xβ )T(zzz−Xβ )
}

=
1

(2π)
n
2

exp
{
− n

2
log(σ2)

}
exp
{
− 1

2σ2 zTz+
1

2σ2 zzzTXβ +
1

2σ2 (Xβ )Tzzz− 1
2σ2 (Xβ )T(Xβ )

}

=
1

(2π)
n
2

︸ ︷︷ ︸
a(zzz)=∏n

i=1 a(zi)

exp
{( β

σ2

)T

︸ ︷︷ ︸
ψ1

XTzzz︸︷︷︸
τ1(zzz)

− 1
σ2︸ ︷︷ ︸

ψ2

1
2

zTz
︸︷︷︸
τ2(zzz)

−
( 1

2σ2 βTXTXβ +
n
2

log(σ2)
)

︸ ︷︷ ︸
nb(ψ)

}
,

indeed corresponds to the linear, canonical exponential family form

f (z | ψ) = a(z) · exp{〈ψ,τ(z)〉−n ·b(ψ)} ,

where ψ = ψ(β ,σ2) is a certain function of β and σ2, the parameters on which one wishes to learn. τ(z)
is a sufficient statistic of z used in the update step. Here, we have

ψ =

(
β

σ2

− 1
σ2

)
, τ(z) =

(
XTz
1
2 zTz

)
, b(ψ) =

1
2nσ2 βTXTXβ +

1
2

log(σ2) . (7)

According to the general construction method, a conjugate prior for ψ can be obtained from these ingre-
dients by the following equation:

p(ψ) = c(n(0),y(0)) · exp
{

n(0) · [〈ψ,y(0)〉−b(ψ)]
}

,

where n(0) and y(0) are the parameters that define the concrete prior distribution of its distribution family;
whereas ψ and b(ψ) were identified in (7). c corresponds to a normalization factor for the prior. When
applying the general construction method to the two examples from Section 2, the very same priors as
presented there will result, where y(0) = µ(0) and n(0) = 1/σ (0)2

for the prior to the scaled normal model,
and y(0) = t(0) and n(0) = s(0) for the prior to the multinomial model.

Here, the conjugate prior writes as

p(ψ)dψ = c(n(0),y(0))exp
{

n(0)[y(0)T
(

β
σ2

− 1
σ2

)
− 1

2nσ2 βTXTXβ − 1
2

log(σ2)
]}

dψ .

As this is a prior on ψ , but we want to arrive at a prior on θ = (β , σ2)T, we must transform the density
p(ψ):

p(θ)dθ = p(ψ)dψ ·
∣∣∣∣det

(
dψ
dθ

)∣∣∣∣

9



For the transformation, we need the determinant of the Jacobian matrix dψ
dθ . As it holds that

dψi

dθ j
=

1
dβ j

βi

σ2 =

{
0 i 6= j

1
σ2 i = j

∀i, j ∈ {1, . . . , p} ,

dψp+1

dθ j
=

1
dβ j

(
− 1

σ2

)
= 0 ∀ j ∈ {1, . . . , p} ,

dψi

dθp+1
=

1
dσ2

βi

σ2 =− βi

(σ2)2 ∀i ∈ {1, . . . , p} ,

dψp+1

dθp+1
=

1
dσ2

(
− 1

σ2

)
=

1
(σ2)2 ,

we get

∣∣∣∣det
(

dψ
dθ

)∣∣∣∣=

∣∣∣∣∣∣
det




1
σ2 Ip − β

(σ2)2

0 1
(σ2)2



∣∣∣∣∣∣
=

1
(σ2)p+2 .

Therefore, the prior on θ = (β , σ2)T is

p(θ)dθ

= p(ψ)dψ ·
∣∣∣∣det

(
dψ
dθ

)∣∣∣∣

= c(n(0),y(0)) · exp
{

n(0)y(0)
1

T β
σ2 −n(0)y(0)

2
1

σ2 −
n(0)

2nσ2 βTXTXβ − n(0)

2
log(σ2)− (p+2) log(σ2)

}
.

(8)

θ can now be shown to follow a normal – inverse gamma distribution by comparing coefficients. In
doing that, some attention must be paid to the terms proportional to −1/σ2 (appearing as − log(σ2)
in the exponent) because the normal p(β | σ2) and the inverse gamma p(σ2) will have to ‘share’ it.
Furthermore, it is necessary to complete the square for the normal part, resulting in an additional term for
the inverse gamma part.

The density of a normal distribution on β | σ2 with a mean vector m(0) = m(n(0),y(0)) and a variance-
covariance matrix σ2MMM(0) = σ2MMM(n(0),y(0)), both to be seen as functions of the canonical parameters
n(0) and y(0), has the following form:

p(β | σ2) =
1

(2π)
p
2 (σ2)

p
2

exp
{
− 1

2σ2

(
β −m(0))TMMM(0)−1(

β −m(0))}

=
1

(2π)
p
2

exp
{

m(0)TMMM(0)−1 β
σ2 −

1
2σ2 βTMMM(0)−1

β − 1
2σ2 m(0)TMMM(0)−1

m(0)− p
2

log(σ2)
}

.

Comparing coefficients with the terms from (8) depending on β , we get

MMM(0)−1
= MMM(n(0))−1 =

n(0)

n
XTX , m(0) = m(y(0)) = n(XTX)−1 y(0) ,

where the latter derives from

n(0)y(0)
1

T β
σ2

!= m(0)T n(0)

nσ2 XTXβ

⇐⇒ n(0)y(0)
1

T != m(0)T n(0)

n
XTX

⇐⇒ y(0)
1

T
(XTX)−1 n != m(0)T .
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We must thus complete the square in the exponent with

− 1
2σ2 m(0)TMMM(0)−1

m(0) +
1

2σ2 m(0)TMMM(0)−1
m(0)

=− 1
2σ2

(
n ·n(0)y(0)

1
T
(XTX)−1y(0)

1

)
− 1

σ2

(
−n(0)n

2
y(0)

1
T
(XTX)−1y(0)

1

)
,

such that the joint density of β and σ2 reads as

p(β ,σ2) = c(n(0),y(0)) · exp
{

n(0)y(0)
1

T β
σ2 −

n(0)

2nσ2 βTXTXβ − 1
2σ2

(
n ·n(0)y(0)

1
T
(XTX)−1y(0)

1

)
− p

2
log(σ2)

︸ ︷︷ ︸
to p(β |σ2) (normal distribution)

− 1
σ2

(
− n(0)n

2
y(0)

1
T
(XTX)−1y(0)

1

)
−n(0)y(0)

2
1

σ2 −
(n(0) + p

2
+2
)

log(σ2)
︸ ︷︷ ︸

to p(σ2) (inverse gamma distribution)

}
.

(9)

Therefore, one part of the conjugate prior (9) reveals as a multivariate normal distribution with mean
vector m(0) = m(y(0)

1 ) = n(XTX)−1 y(0)
1 and covariance matrix σ2MMM(0) = σ2MMM(n(0)) = nσ2

n(0) (XTX)−1, i.e.

β | σ2 ∼ Np

(
n(XTX)−1 y(0)

1 ,
nσ2

n(0) (XTX)−1
)

. (10)

The other terms of (9) can be directly identified with the core of an inverse gamma distribution with
parameters

a(0) =
n(0) + p

2
+1 and

b
(0) = n(0)y(0)

2 −
n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1 = n(0)y(0)
2 −

1
2

m(0)TMMM(0)−1
m(0) ,

i.e., σ2 ∼ IG
(

n(0) + p+2
2

, n(0)y(0)
2 −

n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1

)
. (11)

We have thus derived the CCCP distribution on (β ,σ2), which can be expressed either in terms of the
canonical prior parameters n(0) and y(0) or in terms of the prior parameters from Section 3, m(0), MMM(0), a(0)

and b
(0)

. As already noted, MMM(0) = n
n(0) (XTX)−1 can be seen as a restricted version of MMM(0). (XTX)−1 is

known as a variance-covariance structure from the least squares estimateV(β ) = σ̂2
LS(X

TX)−1, and is here
the fixed prior variance-covariance structure for β | σ2. Confidence in the prior assignment is expressed
by the choice of n(0): With n(0) chosen large relative to n, strong confidence in the prior assignment of
m(0) can be expressed, whereas a low value of n(0) will result in a less pointed prior distribution on β | σ2.

The update step for a canonically constructed prior, expressed in terms of n(0) and y(0), possesses
a convenient form: In the prior, the parameters n(0) and y(0) must simply be replaced by their updated
versions n(1) and y(1), which calculate as

y(1) =
n(0)y(0) + τ(z)

n(0) +n
, n(1) = n(0) +n .
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4.1 Update of β | σ2

As y(0) and y(1) are not directly interpretable, it is certainly easier to express prior beliefs on β via the
mean vector m(0) of the prior distribution of β | σ2 just as in the SCP model. As the transformation
m(0) 7→ y(0) is linear, this poses no problem:

E[β | σ2, z] = m(1) = n(XTX)−1 y(1)
1

= n(XTX)−1
(

n(0)

n(0) +n
y(0)

1 +
n

n(0) +n
· 1

n
(XTz)

)

= n(XTX)−1 n(0)

n(0) +n
· 1

n
(XTX)m(0) +n(XTX)−1 n

n(0) +n
· 1

n
(XTz)

=
n(0)

n(0) +n
E[β | σ2]+

n
n(0) +n

β̂LS . (12)

The posterior expectation for β | σ2 is here a scalar-weighted mean of the prior expectation and the least
squares estimate, with weights n(0) and n, respectively. The role of n(0) in the prior variance of β | σ2 is
directly mirrored here. As described for the generalized setting in Walter & Augustin (2009, p. 258) in
more detail, n(0) can be seen as a parameter describing the “prior strength” or expressing “pseudocounts”.
In line with this interpretation, high values of n(0) as compared to n result here in a strong influence of
m(0) for the calculation of m(1), whereas for small values of n(0), E[β | σ2, z] will be dominated by the
value of β̂LS.

The variance of β | σ2 is updated as follows:

V(β | σ2, z) =
nσ2

n(1) (XTX)−1 =
nσ2

n(0) +n
(XTX)−1 .

Here, n(0) is updated to n(1), and thus the posterior variances are automatically smaller than the prior
variances, just as in the SCP model.

4.2 Update of σ2

For the assignment of the parameters a(0) and b
(0)

to define the inverse gamma part of the joint prior, only
y(0)

2 is left to choose, as n(0) and y(0)
1 are already assigned via the choice of m(0) and MMM(0). To choose

y(0)
2 , it is convenient to consider the prior expectation of σ2 (alternatively, the prior mode of σ2 could be

considered as well):

E[σ2] =
b

(0)

a(0)−1
=

n(0)y(0)
2 − 1

2 m(0)TMMM(0)−1
m(0)

n(0)+p
2 +1−1

=
2

n(0) + p

(
n(0)y(0)

2 −
n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1

)

=
2n(0)

n(0) + p
y(0)

2 −
1

n(0) + p
m(0)TMMM(0)−1

m(0) .

A value of y(0)
2 dependent on the value of E[σ2] can thus be chosen by the linear mapping

y(0)
2 =

n(0) + p
2n(0) E[σ2]+

1
2n(0) m(0)TMMM(0)−1

m(0) .
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For the posterior expected value of σ2, there is a similar decomposition as for the SCP model, and
furthermore two other possible decompositions offering interesting interpretations of the update step of
σ2. The three decompositions are presented in the following.

4.2.1 Decomposition Including an Estimate of σ2 Through the Null Model

The posterior variance of σ2 calculates firstly as:

E[σ2 | z] = b
(1)

a(1)−1
=

2n(1)

n(1) + p
y(1)

2 −
1

n(1) + p
m(1)TMMM(1)−1

m(1)

=
2n(0)

n(0) +n+ p
y(0)

2 +
1

n(0) +n+ p
zTz− 1

n(0) +n+ p
m(1)TMMM(1)−1

m(1)

=
n(0) + p

n(0) +n+ p
E[σ2]+

n−1
n(0) +n+ p

1
n−1

zTz

+
1

n(0) +n+ p

(
m(0)TMMM(0)−1

m(0)−m(1)TMMM(1)−1
m(1)

)
, (13)

and so displays as a weighted average of the prior expected value, 1
n−1 zTz, and a term depending on prior

and posterior estimates for β , with weights n(0) + p, n−1 and 1, respectively. When adopting the centered
z, standardized X approach, 1

n−1 zTz is the estimate for σ2 under the null model, that is, if β = 0. Contrary
to what a cursory inspection might suggest, the third term’s influence, having the constant weight of 1,
will not vanish for n→ ∞, as the third term does not approach a constant.6

The third term reflects the change in information about β :
If we are very uncertain about the prior beliefs on β expressed in m(0) and thus assign a small value for

n(0) with respect to n, we will get relatively large variances and covariances in MMM(0) by a factor n
n(0) > 1 to

(XTX)−1, resulting in a small term m(0)TMMM(0)−1
m(0). After updating, the elements in MMM(1) become smaller

automatically due to the updated factor n
n(0)+n

to (XTX)−1. If the values of m(1) do not differ much from the

values in m(0), the term m(1)TMMM(1)−1
m(1) would be larger than its prior counterpart, ultimately reducing

the posterior expectation for σ2 through the third term being negative. If m(1) does significantly differ

from m(0), then the term m(1)TMMM(1)−1
m(1) can actually result smaller than its prior counterpart and thus

give a larger value of E[σ2 | z] as compared with the situation m(1) ≈ m(0).
On the contrary, large values for n(0) with respect to n indicating high trust in prior beliefs on β

lead to small variances and covariances in MMM(0) by the factor n
n(0) < 1 to (XTX)−1, resulting in a larger

term m(0)TMMM(0)−1
m(0) as compared to the case with low n(0). After updating, variances and covariances in

MMM(1) will become even smaller, amplifying the term m(1)TMMM(1)−1
m(1) even more if m(1) ≈m(0), ultimately

reducing the posterior expectation for σ2 more than in the situation with low n(0). If, however, the values

of m(1) do differ significantly from the values in m(0), the term m(1)TMMM(1)−1
m(1) can result smaller than its

prior counterpart also here and even more so as compared to the situation with low n(0), giving eventually
an even larger posterior expectation for σ2.

6Although m(1) approaches β̂LS, and m(0) is a constant, MMM(0)−1
and MMM(1)−1

are increasing for growing n, with MMM(1)−1
increasing

faster than MMM(0)−1
. The third term will thus eventually turn negative, reducing the null model variance that has weight n−1.
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4.2.2 Decomposition Similar to the SCP Model

A decomposition similar to the one in Section 3.2 can be derived by considering the third term from (13)
in more detail:

m(0)TMMM(0)−1
m(0)−m(1)TMMM(1)−1

m(1)

= n(0) ·n · y(0)
1

T
(XTX)−1y(0)

1 −n(1) ·n · y(1)
1

T
(XTX)−1y(1)

1

= n(0) ·n · y(0)
1

T
(XTX)−1y(0)

1 − (n(0) +n) ·nn(0)y(0)T + zTX
n(0) +n

(XTX)−1 n(0)y(0) +XTz
n(0) +n

=

(
n(0) ·n− n ·n(0)2

n(0) +n

)
y(0)

1
T
(XTX)−1y(0)

1 −
2n(0) ·n
n(0) +n

y(0)
1

T
(XTX)−1XTz− n

n(0) +n
zTX(XTX)−1XTz

=
n

n(0) +n

[
m(0)TMMM(0)−1

m(0)−2m(0)TMMM(0)−1
β̂LS−

n
n(0) β̂T

LSMMM(0)−1
β̂LS

]

=
n

n(0) +n

[(
m(0)− β̂LS

)TMMM(0)−1(
m(0)− β̂LS

)
−
( n

n(0) +1
)
β̂T

LSMMM(0)−1
β̂LS

]

=
n

n(0) +n

(
m(0)− β̂LS

)TMMM(0)−1(
m(0)− β̂LS

)
− zTX(XTX)−1XTz .

Thus, we get

E[σ2 | zzz] = n(0) + p
n(0) +n+ p

E[σ2]+
1

n(0) +n+ p

(
zTz− zTX(XTX)−1XTz

)

+
1

n(0) +n+ p
· n

n(0) +n
(m(0)− β̂LS)TMMM(0)−1

(m(0)− β̂LS)

=
n(0) + p

n(0) +n+ p
E[σ2]+

n− p
n(0) +n+ p

· 1
n− p

(z−Xβ̂LS)T(z−Xβ̂LS)
︸ ︷︷ ︸

σ̂2
LS

+
p

n(0) +n+ p
· n

n(0) +n
1
p
(m(0)− β̂LS)TMMM(0)−1

(m(0)− β̂LS)
︸ ︷︷ ︸

=:σ2
PDC

. (14)

The posterior expectation for σ2 can therefore be seen also here as a weighted average of the prior
expected value, the estimation σ̂2

LS resulting from least squares methods, and σ2
PDC,7 with weights n(0) +

p, n− p and p, respectively. As in the update step for β | σ2, n(0) is guarding the influence of the prior
expectation on the posterior expectation. Just as in the decomposition for the SCP model, the weight
for σ̂2

LS will dominate the others when the sample size approaches infinity. Also for the CCCP model,
σ2

PDC is getting large if prior beliefs on β are skewed with respect to “what the data says”, eventually
inflating the posterior expectation of σ2. The weighting of the differences is similar as well: High prior

confidence in the chosen value of m(0) as expressed by a high value of n(0) will give a large MMM(0)−1
and

thus penalizing erroneous assignments stronger as compared to a lower value of n(0). Again, XTX (the

matrix structure in MMM(0)−1
) weighs the differences for components with covariates having a low spread

weaker due to the instability of the respective component of β̂LS under such conditions.

7E[σ2
PDC | σ2] = σ2 computes very similar to the calculations given in O’Hagan (1994, p. 249) and is given below.
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The calculations for E[σ2
PDC | σ2] are given in the following. As a preparation, it holds that

E[β̂LS | σ2] = E
[
E[β̂LS | β ,σ2]

∣∣σ2]= E[β | σ2] = m(0) ,

V(β̂LS | σ2) = E
[
V(β̂LS | β ,σ2)

∣∣σ2]+V
(
E[β̂LS | β ,σ2]

∣∣σ2)

= E[σ2(XTX)−1 | σ2]+V(β | σ2)

= σ2(XTX)−1 +
nσ2

n(0) (XTX)−1 =
n(0) +n

n(0) σ2(XTX)−1 .

With this in mind, we can now derive

E
[(

m(0)− β̂LS
)TMMM(0)−1(

m(0)− β̂LS
)∣∣σ2]= E

[
tr
(

MMM(0)−1(
m(0)− β̂LS

)(
m(0)− β̂LS

)T)∣∣σ2
]

= tr
(

MMM(0)−1
E
[(

m(0)− β̂LS
)(

m(0)− β̂LS
)T∣∣σ2])

= tr
(n(0)

n
(XTX) · n

(0) +n
n(0) σ2(XTX)−1

)

= tr
(n(0) +n

n
σ2I
)

=
n(0) +n

n
· p ·σ2 .

4.2.3 Decomposition with Estimates of σ2 Through Prior and Posterior Residuals

A third interpretation of E[σ2 | z] can be derived by another reformulation of the third term in (13):

m(0)TMMM(0)−1
m(0)−m(1)TMMM(1)−1

m(1) =
n(0)

n
m(0)TXTXm(0)− n(1)

n
m(1)TXTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))

+
n(1)

n
zTz− n(0)

n
zTz+

n(0)

n
2zTXm(0)− n(1)

n
2zTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))+ zTz−2zTXβ̂LS .

With this, we get

E[σ2 | z] = n(0) + p
n(0) +n+ p

E[σ2]+
n(0) + p

n(0) +n+ p
n(0)

n
· 1

n(0) + p
(z−Xm(0))T(z−Xm(0))

︸ ︷︷ ︸
=:σ (0)2

, as E[σ (0)2|σ2]=σ2

+
2(n− p)

n(0) +n+ p
σ̂2

LS−
n(1) + p

n(0) +n+ p
n(1)

n
· 1

n(1) + p
(z−Xm(1))T(z−Xm(1))

︸ ︷︷ ︸
=:σ (1)2

, as E[σ (1)2|σ2,z]=E[σ (1)2|σ2]=σ2

. (15)

Here, the calculation of E[σ2 | z] is based again on E[σ2] and σ̂2
LS, but now complemented with two

special estimates: σ (0)2
, an estimate based on the prior residuals z−Xm(0), and a respective posterior

version σ (1)2
, based on z−Xm(1). However, E[σ2 | z] is only “almost” a weighted average of these

ingredients, as the weights sum up to n(0) − p + n instead of n(0) + p + n. Especially strange is the
negative weight for σ (1)2

, actually making the factor to σ (1)2
result to −1. A possible interpretation
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would be to group E[σ2] and σ (0)2
as prior-based estimations with joint weight 2(n(0) + p), and σ̂2

LS as
data-based estimation with weight 2(n− p). Together, these estimations have a weight of 2(n(0) + n),
being almost (neglecting the missing 2p) a “double estimate” that is corrected back to a “single” estimate
with the posterior-based estimate σ (1)2

.

4.3 Update of β
As for the SCP model, the posterior on β , being the most important distribution for inference, is a multi-
variate t with expectation m(1) as described in Section 4.1. For V(β | z), one gets different formulations
depending on the formula for E[σ2 | z]:

V(β | z) =
b

(1)

a(1)−1
MMM(1) = E[σ2 | z] n

n(1) (X
TX)−1 (16)

(13)
=

n(0) + p
n(0) +n+ p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1

︸ ︷︷ ︸
V(β )

+
n−1

n(0) +n+ p
n

n(1)
1

n−1
zTz(XTX)−1

+
1

n(0) +n+ p
n

n(1)

(
m(0)TMMM(0)−1

m(0)−m(1)TMMM(1)−1
m(1)

)
(XTX)−1

(14)
=

n(0) + p
n(0) +n+ p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1

︸ ︷︷ ︸
V(β )

+
n− p

n(0) +n+ p
n

n(1) σ̂2
LS(X

TX)−1
︸ ︷︷ ︸

V(β̂LS)

+
p

n(0) +n+ p
n

n(1) σ2
PDC(XTX)−1

(15)
=

n(0) + p
n(0) +n+ p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1

︸ ︷︷ ︸
V(β )

+
n(0) + p

n(0) +n+ p
n(0)

n(1) σ (0)2 n
n(0) (X

TX)−1

︸ ︷︷ ︸
=:V(0)(β )

+
2(n− p)

n(0) +n+ p
n

n(1) σ̂2
LS(X

TX)−1
︸ ︷︷ ︸

V(β̂LS)

− n(1) + p
n(0) +n+ p

σ (1)2 n
n(1) (X

TX)−1

︸ ︷︷ ︸
=:V(1)(β )

.

In these equations, it is possible to isolate V(β ), V(β̂LS) and, in the formulation with (15), the newly
defined V(0)(β ) and V(1)(β ). However, all three versions do not constitute a weighted average, even
when the formula for E[σ2 | z] did have this property. Just as in the SCP model, V(β | z) can increase
if the automatic abatement of the elements in MMM(1) is overcompensated by a strong increase of E[σ2].
Again, this reaction to prior-data conflict is unspecific because it depends on E[σ2 | z] alone.

5 Discussion and Outlook
For both the SCP and CCCP model, E[β | z] results as a weighted average of E[β ] and β̂LS, such that
the posterior distribution on β will be centered around a mean somewhere between E[β ] and β̂LS, with

16



the location depending on the respective weights. The weights for the CCCP model appear especially
intuitive: β̂LS is weighted with the sample size n, whereas E[β ] has the weight n(0) reflecting the “prior
strength” or “pseudocounts”. Due to this, prior-data conflict may at most affect the variances only. Indeed,
for both prior models, E[σ2 | z] can increase in the presence of prior-data conflict, as shown by the
decompositions in Sections 3.2 and 4.2. Through the formulations (6) and (16) forV(β | z), respectively,
it can be seen that the posterior distribution on β can in fact become less pointed than the prior when prior-
data conflict is at hand. Nevertheless, the effect might be not be as strong as desired: In the formulations
(5) and (14), respectively, the effect is based only on one term of the decomposition, and furthermore may
be foiled through the automatic decrease of MMM(1) and MMM(1).

Probably the most problematic finding is that this (possibly weak) reaction affects the whole variance-
covariance matrix uniformally, and thus, in both models, the reaction to prior-data conflict is by no means
component-specific.

Therefore, the prior models lack the capability to mirror the appropriateness of the prior assignments
for each covariate separately. As the SCP model is already the most general approach in the class of
conjugate priors, this non-specificity feature seems inevitable in Bayesian linear regression based on
precise conjugate priors.

In fact, as argued in Section 1, a more sophisticated and specific reaction to prior-data conflict is only
possible by extending considerations beyond the traditional concept of probability. Imprecise probabili-
ties, as a general methodology to cope with the multidimensional nature of uncertainty, appears promising
here. For generalized Bayesian approaches, the possibility to mirror the quality of prior knowledge is one
of the main reasons for the paradigmatic skip from classical probability to interval / imprecise probability.
In this framework ambiguity in the prior specification can be modeled by considering sets Mϑ of prior
distributions. In the most common approach based on Walley’s Generalized Bayes Rule (Walley 1991),
posterior inference is then based on a set of posterior distributions Mϑ |z, resulting from updating the
distributions in the prior set element by element.

Of particular computational convenience are again models based on conjugate priors, as developed
for the Dirichlet-Multinomial model by Walley (1996), see also Bernard (2009), and for i.i.d. exponen-
tial family sampling models by Quaeghebeur & de Cooman (2005), which were extended by Walter &
Augustin (2009) to allow an elegant handling of prior-data conflict: With the magnitude of the set Mϑ |z
mapping the posterior ambiguity, high prior-data conflict leads, ceteris paribus, to a large Mϑ |z, resulting
in high imprecision in the posterior probabilities, and cautious inferences based on it, while in the case of
no prior-data conflict Mϑ |x, and thus the imprecision, is much smaller.

The essential technical ingredient to derive this class of models is the general construction principle
also underlying the CCCP model from Section 4, and thus that model can be extended directly to a
powerful corresponding imprecise probability model.8 A detailed development is beyond the scope of
this contribution.

We are very grateful to Erik Quaeghebeur and Frank Coolen for intensive discussions on foundations of general-
ized Bayesian inference, and to Thomas Kneib for help at several stages of writing this paper.
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