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Abstract

Summary: Finite mixture models are routinely applied to time course microarray data.
Due to the complexity and size of this type of data the choice of good starting values plays
an important role. So far initialization strategies have only been investigated for data
from a mixture of multivariate normal distributions. In this work several initialization
procedures are evaluated for mixtures of regression models with and without random
effects in an extensive simulation study on different artificial datasets. Finally these
procedures are also applied to a real dataset from E. coli.
Availability: The latest release versions of R packages flexmix, gcExplorer and kernlab
are always available from CRAN (http://cran.r-project.org/).

1 Introduction

Finite mixtures of regression models are the state-of-the-art technique for modeling time
course microarray data. The Expectation-Maximization (EM) algorithm (Dempster et al.,
1977) is the most common method for maximum likelihood (ML) estimation despite its draw-
backs such as convergence only to a local optimum in dependence of the initialization. Good
starting values are therefore crucial for the EM algorithm to perform well. A common strategy
is to use random initialization and to run the algorithm several times in order to overcome
this convergence to local optima already determined by the initialization.

Up to our knowledge different initialization strategies have only been investigated for
mixtures of multivariate normal distributions in a model–based clustering setting. In this
study the performance of the initialization strategies proposed for this setting is investigated
for mixtures of regression models with respect to time course microarray data.

Biernacki et al. (2003) give an overview of simple initialization strategies including random
initialization, classification EM (CEM) algorithms, stochastic EM (SEM) algorithms and
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preliminary short runs of EM itself. Their aim is to identify a simple method that gives the
highest likelihood in a fixed number of iterations.

Wehrens et al. (2004) present an approach for large datasets where a random sub-sample is
clustered prior to applying the model to the whole dataset (sampling method). A modification
of this method is given in Fraley et al. (2005). They propose incremental model-based clus-
tering for large datasets with small clusters and apply it to image data (incremental method).
The situation of large datasets with small clusters is also characteristic of microarray data.

A completely different approach is given by spectral clustering (e.g., Ng et al., 2001) which
does not make any assumptions on the form of the clusters. The cluster solution can be used
as a starting value for EM.

In this paper several initialization strategies are investigated in an extensive simulation
study on different artificial time course datasets, i.e., random initialization, classification EM,
stochastic EM, short runs of EM itself, the sampling and the incremental method as well as
spectral clustering. The aim of this study is to find good initialization strategies for clusterwise
regression and to evaluate the differences between mixtures of linear models and mixtures of
linear mixed models. Finally these procedures are also applied to a real dataset from E. coli.

2 Methods

2.1 Model specification

The mixture density h of a finite mixture model with K components is given by

h(y|x, ψ) =
K∑
k=1

πkf(y|x, θk).

y is the response, x are the predictors and ψ denotes the vector of all parameters for the
mixture density h. For the component weights πk it holds that πk > 0 for all k and

∑K
k=1 πk =

1. θk is the component-specific parameter vector for the component-specific density function
f .

Mixtures of mixed-effects models (e.g., Celeux et al., 2005 or Ng et al., 2006) are used
to account for different kinds of heterogeneity between individuals. The components of the
mixture correspond to different groups with distinct parameterizations while the random
effects allow for individual differences which cluster around a common mean value.

The data of each individual i is given by (Yi, Xi, Zi) which consists of ni observations of the
dependent variables Yi = (yij)j=1,...,ni , the covariates for the fixed effects Xi = (x′ij)j=1,...,ni

and the covariates for the random effects Zi = (z′ij)j=1,...,ni . The finite mixture density of
mixed effects models with K components is given for the observations of individual i by

h(Yi|Xi, Zi, ψ)

=
∑K

k=1 πk
∫∏ni

j=1 φ1(yij ;x′ijβk+ z′ijb
k
i , σ

2
k)φq(b

k
i ; 0,Ψk)dbki

=
∑K

k=1 πkφni(Yi;Xiβk, ZiΨkZ
′
i + σ2

kIni).

φd(.;µ,Σ) denotes the d-dimensional multivariate normal distribution with mean µ
and variance-covariance matrix Σ.
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• Fixed effects: x′ijβk with βk deterministic.

• Random effects: z′ijb
k
i with bki ∼ N(0,Ψk).

Splines are frequently included in mixtures of mixed-effects models to treat the gene
expression level as a continuous function of time without requiring the specification of the
functional relationship. These are used with B-splines (Luan and Li, 2003; Bar-Joseph et al.,
2003) and smoothing splines (Ma et al., 2006). For smoothing splines the degree of smoothness
is chosen automatically by cross-validation.

In this study smoothing splines and B-splines are used to fit finite mixtures of linear
regression models to time course gene expression data. Mixtures of linear models in combina-
tion with smoothing splines are compared to mixtures of linear mixed models with B-splines
using various initialization strategies.

2.2 Parameter Estimation

The EM algorithm (Dempster et al., 1977) is the standard tool for ML estimation of finite
mixture models. In the E-step the expectation of the complete likelihood is taken, i.e.,
the a-posteriori probabilities are computed. In the M-step the expected complete likelihood
is maximized where the missing component memberships are replaced by the a-posteriori
probabilities. The likelihood is increased in each step and convergence of the algorithm is
guaranteed for bounded likelihoods. Detection of the global optimum however cannot be
ensured.

2.3 Initialization Strategies

• True cluster membership: For simulated data the true cluster memberships can be
used for initialization in order to investigate the behavior of the EM algorithm when
started in the optimal solution.

• Random initialization: A commonly used approach is to run EM t times with random
starting values and to select the solution maximizing the likelihood among those t runs.

• Classification EM algorithm: CEM (Celeux and Govaert, 1992) is a three step proce-
dure where the E-step is equivalent to the standard algorithm. In the C-step a partition
is derived by assigning each individual to the component with the maximum a-posteriori
probability. In the M-step the ML estimates are computed for the mixture components
using the sub-sample induced by the partition of the C-step. CEM converges in a finite
number of iterations and tends to produce a mixture with well separated components
(Biernacki et al., 2003). It is not maximizing the observed likelihood but the complete
likelihood.

As an initialization strategy CEM is run from t random starting positions and the one
providing the highest data log-likelihood is chosen as an initial solution for EM. CEM
is started with K much larger than the desired number of clusters in the data as hard
classification tends to omit too small clusters whereas the large ones dominate.

• Stochastic EM algorithm: SEM (Diebolt and Ip, 1996) includes a restoration of the
unknown component labels by drawing them at random from their current a-posteriori

3



probabilities. The E-step is equivalent to the standard algorithm. In the S-step a par-
tition is desired by assigning each point at random to one of the mixture components
according to the multinomial distribution with parameter equal to the a-posteriori prob-
abilities. In the M-step the ML estimates are computed for the mixture components
using the sub-sample induced by the partition of the S-step. Random drawing at each
iteration prevents the SEM from being trapped in local optima.

For initialization SEM is run t times keeping the position leading to the highest max-
imum likelihood value. The stopping criterion for SEM is the maximum number of
iterations which is set to 100.

• Short runs of EM: This procedure is suggested by Biernacki et al. (2003). EM is
run t times from random starting positions before passing to EM without waiting for
convergence using the threshold value |Lq−Lq−1|/(|Lq|+0.1) < tol, where the tolerance
(tol) is set to 10−2. Lq is the log-likelihood at the qth iteration.

• Sampling: Wehrens et al. (2004) modify the simple strategy to cluster larger datasets
by clustering a small random sample of the data and to apply the resulting estimated
model to the full dataset. The sampling method starts with drawing t samples of size
100 from the full dataset. Next, the EM algorithm is run 3 times on the t samples and
the ML solution is used to initialize the EM algorithm for the full dataset. Finally, the
ML solution of the t models is selected.

• Incremental Method: Fraley et al. (2005) developed incremental model-based clus-
tering which is an extension of the sampling method. The method starts by drawing a
random sample of the data, selecting and fitting a clustering model to the sample that
underestimates the number of components, and extending the model to the full dataset
by additional EM iterations. New clusters are added incrementally, initialized with the
observations that are poorly fit by the current model. The algorithm stops if adding
further components does not increase the log-likelihood or if an a-priori fixed maximum
number of components is reached.

In this simulation the incremental method is started on t samples of size 100 with K
equal to 6. As in the sampling method EM is started 3 times and the ML solution is
applied to the full dataset. New clusters are added incrementally and initialized with
those observations with the lowest 5% log-likelihoods.

• Spectral clustering: In spectral clustering (e.g., Ng et al., 2001) data points are
clustered using eigenvectors of matrices derived from the data. The success of spectral
clustering is mainly based on the fact that it does not make any assumptions on the
form of the clusters.

In this simulation study the algorithm of Ng et al. (2001) is applied where the K
eigenvectors are used simultaneously. The cluster solution from spectral clustering is
used as starting value for the EM algorithm.

An overview of the investigated initialization strategies is given in Table 1. Throughout all
computations the minimum component weight of clusters is 0.005 (Leisch, 2004) and the
maximum number of iterations is 5000 (except for SEM where it is 100). The convergence
criterion for the EM algorithm is |Lq − Lq−1|/(|Lq| + 0.1) < tol, where the tolerance tol is
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Table 1: Overview of the initialization strategies and parameters used where e.g. cem.em indi-
cates the procedure of initializing the EM algorithm in the cluster solution of CEM providing
the highest log-likelihood.

Method K t

true True cluster membership 16 1
rep.em Random initialization 16 10
cem Classification EM (CEM) 30 10
cem.em CEM.EM result from cem 1
sem Stochastic EM (SEM) 16 10
sem.em SEM.EM result from sem 1
tol Short runs of EM (Short) 16 10
tol.em Short.EM result from tol 1
sam Sampling 16 10 · 3
inc Incremental Method 6 10 · 3
sc Spectral clustering (SC) 16 1
sc.em SC.EM result from sc 1

set to 10−6. In Table 1 K is the number of clusters the algorithm starts with and t is the
number of times the algorithm is started keeping only the solution with maximum likelihood.
For the incremental method the number of starts is 10 · 3, i.e., 10 samples are drawn from the
full datasets and the algorithm is started 3 times with random initialization on each of the
samples. Due to the minimum component weight of clusters smaller components are omitted
during the run of the EM algorithm and the number of components in the cluster solutions
is often smaller than the number of clusters K the algorithm starts with.

2.4 Evaluation

For the comparison of the different methods the adjusted Rand index is used (Hubert and
Arabie, 1985) as well as the log-likelihood, AIC and BIC. Additionally the runtimes of the
different procedures are compared.

3 Simulation Study

The performance of the different cluster methods is first evaluated on artificial datasets which
are designed to resemble time course gene expression patterns. The number of clusters is set
to 15 (as used in Thalamuthu et al. (2006)) plus an additional noise cluster of genes. The
number of time points is set to 16 (equal to the number of time points in the E. coli dataset
also used in this paper in the next section). This is a common length for time series microarray
data (see for example Cho et al., 1998). The cluster sizes vary between 10 and 100 yielding
a total of 630 genes with defined cluster patterns.

Typical time course microarray data have the following form

yij = bi + εij ,

where bi ∼ N(µk, σ2
b ) and εij ∼ N(0, σ2

ε ).
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Table 2: Overview of the varying noise parameters.
Noise level low medium high

N number of noise genes 100 500 1000
σε SD of mean of genes 0.1 0.3 0.5
σm SD of mean of noise genes 0 1 2
σb SD of RI 0.1 0.7 1.5

The expression pattern y of each gene i at time point j in a given cluster k is assumed
to follow the shape of the cluster center µk but with a gene specific shift bi (specified by the
noise parameter “SD of RI” (σb) where SD denotes standard deviation and RI is the Random
Intercept). Additionally a normally distributed measurement error εij (specified by the noise
parameter “SD of mean of genes” (σε)) is added to each observation (time point) j. For
simplicity σ2

b and σ2
ε are constant across all K components in the simulations.

As typical gene clusters do have arbitrary cluster sizes all simulated datasets consist of
clusters of sizes between 10 and 100. Finally an additional noise set of genes of specified size
N (given by the noise parameter “number of noise genes”) is added to the data. For each
noise gene µk ∼ N(0, σ2

m) and σb ∼ U(0.1, 0.3). σm is specified by the noise parameter “SD
of mean of noise genes”.

An overview of the different noise parameters used is given in Table 2. One set of cluster
centers is used to generate 81 datasets using all possible combinations of noise parameters.

The framework of this simulation study is the following:

1. Add the 81 different combinations of noise to the cluster centers (as given in Table 2).

2. Perform clusterwise regression using the different initialization strategies.

3. Evaluate the performance of initialization strategies on the datasets where the noise
set of genes is omitted using the adjusted Rand index (Hubert and Arabie, 1985), the
log-likelihood, AIC and BIC.

In this simulation setup cluster centers are created using integrated autoregressive (AR)
models. These have been used before to describe gene expression time series (e.g., Ramoni
et al., 2002) as AR processes resemble the shape of gene expression over time observed in real
time course data very well. An AR process Aj of order 1 is defined by

Aj = αAj−1 + εj

where εj is a series of uncorrelated random variables with mean 0 and variance σ2. It describes
how each observation is a function of the previous observation.

An integrated AR(1) process is a process whose dth difference is an AR(1) process. If
d = 0 the observations are modeled directly, if d = 1 the differences between consecutive
observations are modeled, i.e.,

Aj = Aj−1 + α(Aj−1 −Aj−2) + εj .

If d = 2 the differences of differences are modeled, etc.
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Figure 1: Artificial dataset with low noise level where integrated AR processes are used to
create cluster centers.
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In this study parameter d is either 1 or 2 in order to get different degrees of smoothness.
Half of the generated time series are then reversed and finally transformed to the range of
typical gene expression profiles.

One set of cluster centers consists of 15 expression patterns yielding datasets of 15 clusters
with dimension (number of time points) 16. The framework in this setting is to generate 50
sets of cluster centers and to perform the simulations on all 50 · 81 datasets. An artificial
dataset where low noise is added to the cluster centers is given in Figure 1 where cluster 16
is a noise cluster of genes showing no differential expression.

Each cluster of the artificial datasets is generated by adding noise to the cluster center.
Therefore the underlying cluster structure is known throughout all simulations on artificial
data. For simplicity this a priori known starting number of clusters K = 16 (15 clusters and
an additional noise set of genes) is used for all initialization strategies. Exceptions are CEM
and the incremental method where the starting number of clusters are 30 and 6 respectively
(see Section 2.3 on CEM).

4 Software

All computations are performed in the statistical computing environment R (R Develop-
ment Core Team, 2009). The EM algorithm for ML estimation of finite mixture models
is implemented in the R package flexmix (Grün and Leisch, 2008). The E-step is treated
as fixed whereas arbitrary models can be fitted by modifying the M-step. For mixtures of
linear mixed models FLXMRlmer() and for mixture of linear models with smoothing splines
FLXMRsmooth.spline() are used as model drivers for the M-step. Spectral clustering is
implemented in the R package kernlab (Karatzoglou et al., 2004).

R package gcExplorer (Scharl and Leisch, 2009) contains functionality to generate a wide
range of time course gene expression data. The idea is to start with a set of cluster centers
which are created by some data generating process. The following data generating processes
are currently possible:

• simulate from a normal distribution,

• simulate from an integrated AR process, and

• manually define patterns.

The gene cluster simulator gcSim() is used as follows to generate the set of centers

cent <- gcSim(sim = "arima", time = 16, sd = 0.1,
sd.ri = 0, size = 1, n = 15)

where

• sim: data generating process

• time: number of time points

• sd: SD of the mean of genes

• sd.ri: SD of RI

8



• size: number of genes in a cluster

• n: number of clusters

A set of centers can be used to form 81 different datasets using all possible combinations of
noise parameters (as given in Table 2), e.g. with

data1 <- gcData(
gcSim(sim = "pattern", cent = cent,

sd = 0.1, sd.ri = 0.1,
size = rep(c(10, 20, 30, 50, 100),
each = 3)),

gcSim(sim = "noise", time = 16, size = 100))

where cent is the set of centers

5 Results

In the following the performance of the different initialization strategies is analyzed in detail.

5.1 Mixtures of linear models

First the cluster results of the models without random intercept (RI) are summarized (in
the following called “mixtures of LMs”). Figure 2 shows the adjusted Rand index of cluster
solutions of the different initialization strategies and the true cluster membership when low,
medium and high noise level is present in the data. For a low noise level starting in the
true cluster solution yields the best results as expected. In this case sampling and spectral
clustering are also good initialization strategies whereas the CEM variants performs worst.
For medium or high noise level the performance of all models is not good and even starting
in the true solution yields adjusted Rand indices smaller than 0.5. For these noisy datasets
spectral clustering outperforms clusterwise regression.

In Figure 3 the adjusted Rand index is used to compare the performance of the different
methods when only one type of noise is present in the data. The corresponding log-likelihoods
and runtimes are displayed in Figures 4 and 5. Figure 4 shows that hardly any increase in
log-likelihood is observed when starting EM in the solution of CEM, SEM or short runs of
EM. The same conclusions can be drawn from the boxplots of the corresponding AIC and
BIC values (cf. supplementary material). Runtimes are only shown in Figure 5 for the three
noise scenarios where the number of genes is the same, i.e., large SD of mean of genes, large
SD of RI and large mean of noise genes. As the number of noise genes added to a dataset is
much larger in the forth noise scenario (yielding a total of 1630 genes) the longer runtimes
cannot directly be compared to the other scenarios where the number of genes is always 730.

In the case of a large SD of the mean of genes the true cluster solution is the best starting
partition, followed by SEM and spectral clustering (see Figure 3). The overall performance
is good. However, the runtimes of sampling and the incremental method are the longest,
followed by SEM and random initialization.

When a large SD of the RI is present in the data the models without RI cannot identify
the components no matter what initialization strategy is used. In this case the runtimes
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Figure 2: Adjusted Rand index of the different initialization strategies for mixtures of LMs
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Figure 3: Adjusted Rand index of the different initialization strategies for mixtures of LMs
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Figure 4: Log-likelihood of the different initialization strategies for mixtures of LMs when
only one type of noise is present in the data.

12



sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

5 10 15

sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

large SD of mean of noise genes

sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

large SD of random intercept

5 10 15

sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

sc.em

sc

inc

sam

tol.em

tol

sem.em

sem

cem.em

cem

rep.em

true

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

large SD of mean of genes

Figure 5: log2-transformed system time of the different initialization strategies for mixtures
of LMs when only one type of noise is present in the data, i.e., large SD of mean of genes,
large SD of RI or large SD of mean of noise genes.

13



of sampling, the incremental method, SEM, and random initialization are again very large.
Furthermore, spectral clustering outperforms clusterwise regression.

For clusters with large SD of the mean of the noise genes the agreement between the
cluster solutions and the true cluster memberships is in general very high. This indicates that
noise genes do not affect the clustering of differentially expressed genes. In this case CEM
and the incremental method yield the worst results. Again, sampling and the incremental
method have the longest runtimes.

Finally, in the case of a large number of noise genes starting in the true cluster solution
clearly outperforms the other initialization strategies but the performance of all methods is
very good.

5.2 Mixtures of linear mixed models

Next the cluster results of mixture models with RI (in the following called “mixtures of
LMMs”) are summarized in boxplots. Figure 6 shows the adjusted Rand index of cluster
solutions of the different initialization strategies and the true cluster membership when low,
medium and high noise level is present in the data. In contrast to the model without RI
(Figure 2) where the quality of the cluster solutions decreases tremendously when medium
or high noise is added to the datasets now the overall impression of the cluster solutions is
much better. Even for high noise level the corrected Rand index is about 0.6. CEM and the
incremental method perform among the worst for low noise level whereas starting in the true
cluster solution and SEM yield the best results. In addition mixture models with a RI clearly
outperform spectral clustering.

The performance of the mixture of LMMs when only one type of noise is present in the
data (see Figures 7 and 8) is also much better compared to the mixtures of LMs (Figure 3).
Again, the results for the log-likelihoods are very similar to those using AIC and BIC and
hence, the boxplots of AIC and BIC are omitted here. As expected the performance of all
initialization strategies is very good for data generated with a large SD of the RI.

The big disadvantage of mixture of LMMs are the long runtimes (not shown here) which
are by a factor of 10 longer than the runtimes of the mixture of LMs (see Figure 5). However,
the trend is the same for models with and without RI. Random initialization, SEM, the
sampling and the incremental method cannot be recommended due to the extremely long
runtimes.

5.3 Comparison of LMs vs. LMMs

A fair comparison of mixtures of LMs and mixtures of LMMs is only possible for data sets
without gene-specific shift because only in this case also the smaller model is appropriate
whereas otherwise the true data structure can only be captured by LMMs. However, assuming
no individual-specific effect seems implausable and hence we use the data sets of the scenario
’low SD of RI’ but ’large SD of mean of genes’ where the gene-specific shift is only 0.1, for
comparison. Even in the case of large SD of mean of genes which corresponds to clusters
with negligible gene-specific shift but large measurement noise mixtures of LMMs seem to
perform no worse than mixtures of LMs (see Figure 9). The adjusted Rand index is larger for
mixtures of LMs when starting in the true cluster solution. On the other hand mixtures of
LMMs yield better results for CEM. This implies that the unnecessary flexibility of the more
complex model class does not deteriorate the results by capturing for example noise effects.
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Figure 6: Adjusted Rand index of the different initialization strategies for mixtures of LMMs
for low, medium and high noise level.
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Figure 7: Adjusted Rand index of the different initialization strategies for mixtures of LMMs
when only one type of noise is present in the data.
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However, the big disadvantage of mixtures of LMMs in cases where they are not actually
needed are the much longer runtimes.

5.4 E. coli data

The goal of the E. coli experiment is the detailed investigation of the cellular response of
E. coli BL21(DE3) to high level expression of recombinant human super–oxide–dismutase
(SOD) on the transcriptional level. The experiment is available at ArrayExpress (http://
www.ebi.ac.uk/microarray-as/ae/) with accession number E-MARS-19. The data consists of
530 genes at 16 time points after filtering genes not differentially expressed at least at one
time point (p-value < 0.05, log ratio M > 2 and average intensity A > 8).

In the case of time course microarray data the definition of clusters is not clear and there-
fore the quality of a cluster solution is difficult to evaluate. Even the number of components is
hard to specify as practitioners usually prefer small clusters which can easily be investigated.
However, too many clusters are even harder to interpret. In an exploratory step different
cluster solutions using random initialization were compared starting with 5 to 60 components
and yielding up to 29 components. The likelihood criterion as well as AIC and BIC select
the model where the EM algorithm was started with K = 58 and where 27 components are
found. For the comparison of initialization strategies all algorithms are therefore started with
K = 58 components.

The data was clustered using the methods investigated in the simulation study using
58 components for mixtures of regression models and 30 centers for spectral clustering. The
primary goal of the comparison of the different cluster solutions is to find out which algorithm
yields the best likelihood or the likelihood penalized for model complexity as the true cluster
structure is unknown. Cluster results using the different initialization strategies are given
in Table 3 where K is the number of components found and df is the number of degrees of
freedom used. For LMs smoothing splines are used whereas b-splines are used for LMMs.
This implies that for mixtures of LMs the numbers of df do not only depend on the number of
components but also on the complexity of the smoothing splines in each of the components.
For mixtures of LMs the number of components found is between 15 (sampling method) and
31 (short runs of EM). Initializing EM in the solution of short runs of EM is also the method
with the largest log-likelihood and smallest AIC. BIC selects the solution of SEM where 23
clusters are found. In the case of mixture models with RI the number of components found
varies between 10 (incremental method) and 35 (random initialization and short runs of EM).
AIC, BIC and log-likelihood select the results of random initialization as the best solution.

6 Summary and Outlook

In this simulation study on artificial time course gene expression data commonly used initial-
ization strategies were investigated to find the most appropriate ones for clusterwise regres-
sion.

Some general observations were made for this type of data:

1. For noisy datasets mixtures of LMs should not be used. Mixtures of LMMs clearly
outperform mixtures of LMs and spectral clustering on noisy datasets. However, the
user should be aware of the much longer runtimes.
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Table 3: Results of the initialization strategies used on the E. coli dataset using mixtures of
LMs and mixtures of LMMs when starting with K = 58 components.

RI K df time iter logLik BIC AIC

sc N 30 - 16 - - - -

rep.em N 28 499 1305 39 -4045 12603 9088
cem N 18 259 305 21 -5080 12500 10678
cem.em N 18 320 99 68 -4954 12800 10547
sem N 23 350 1638 96 -4437 12038 9573
sem.em N 23 409 16 9 -4403 12502 9623
tol N 31 550 260 9 -3893 12765 8886
tol.em N 31 551 155 74 -3683 12347 8468
sam N 15 266 24410 47 -5303 13010 11138
inc N 18 314 4357 20 -5202 13243 11031
sc.em N 30 535 104 48 -3814 12464 8698

rep.em Y 35 279 31666 37 -3113 8748 6783
cem Y 23 183 5115 21 -3799 9253 7964
cem.em Y 23 183 2969 88 -3717 9090 7800
sem Y 31 247 25464 96 -3267 8769 7029
sem.em Y 31 247 568 14 -3261 8757 7017
tol Y 35 279 5302 10 -3256 9036 7071
tol.em Y 35 279 2251 48 -3124 8772 6806
sam Y 13 103 11434 90 -4559 10049 9323
inc Y 10 79 23870 12 -4990 10695 10139
sc.em Y 30 239 2142 53 -3455 9072 7388
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2. Running SEM, CEM or short runs of EM and using their best solution for the initial-
ization of EM does hardly increase the performance already reached by these strategies.
This was observed using the classification criterion as well as the likelihood criterion.

3. Computationally intensive methods like the sampling or incremental method are hardly
worth the effort.

4. Random initialization yields very long runtimes compared to CEM or short runs of EM.
However, the cluster results are similar.

5. The impact of the cluster method used is much larger than the impact of the initializa-
tion strategy.

6. For short runs of EM the tradeoff between the quality of the cluster solutions and
runtime is very good.

In the future it would be interesting to extend this simulation study and compare the cluster
results from mixture models to solutions from partitioning cluster algorithms. For this purpose
further measures like a cluster stability score (e.g., Handl et al., 2005) will be investigated
beside the currently used methods.

Additionally, simulations on smaller data sets with less time points will be performed.
First results on the E. coli data (cf. supplementary material) are very promising and indicate
that the cluster methods perform similar on smaller data sets.
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Figure 8: Log-likelihood of the different initialization strategies for mixtures of LMMs when
only one type of noise is present in the data.
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Figure 9: Adjusted Rand index of the different initialization strategies for mixtures of LMs
versus mixtures of LMMs for the noise scenario ’low SD of RI’ but ’large SD of mean of genes’.
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