Logo
DeutschClear Cookie - decide language by browser settings
Kunz, Anne and Augustin, Thomas and Küchenhoff, Helmut (2010): Partially Identified Prevalence Estimation under Misclassification using the Kappa Coefficient. Department of Statistics: Technical Reports, No.74
[img]
Preview

PDF

952kB

Abstract

We discuss a new strategy for prevalence estimation in the presence of misclassification. Our method is applicable when misclassification probabilities are unknown but independent replicate measurements are available. This yields the kappa coefficient, which indicates the agreement between the two measurements. From this information, a direct correction for misclassification is not feasible due to non-identifiability. However, it is possible to derive estimation intervals relying on the concept of partial identification. These intervals give interesting insights into possible bias due to misclassification. Furthermore, confidence intervals can be constructed. Our method is illustrated in several theoretical scenarios and in an example from oral health, where prevalence estimation of caries in children is the issue.