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Abstract

Many of the popular nonlinear time series models require a priori the choice of parametric
functions which are assumed to be appropriate in specific applications. This approach is used
mainly in financial applications, when sufficient knowledge is available about the nonlinear
structure between the covariates and the response. One principal strategy to investigate a
broader class on nonlinear time series is the Nonlinear Additive AutoRegressive (NAAR) model.
The NAAR model estimates the lags of a time series as flexible functions in order to detect non-
monotone relationships between current observations and past values. We consider linear and
additive models for identifying nonlinear relationships. A componentwise boosting algorithm
is applied to simultaneous model fitting, variable selection, and model choice. Thus, with the
application of boosting for fitting potentially nonlinear models we address the major issues in
time series modelling: lag selection and nonlinearity. By means of simulation we compare the
outcomes of boosting to the outcomes obtained through alternative nonparametric methods.
Boosting shows an overall strong performance in terms of precise estimations of highly nonlinear
lag functions. The forecasting potential of boosting is examined on real data where the target
variable is the German industrial production (IP). In order to improve the model’s forecasting
quality we include additional exogenous variables. Thus we address the second major aspect
in this paper which concerns the issue of high-dimensionality in models. Allowing additional
inputs in the model extends the NAAR model to an even broader class of models, namely
the NAARX model. We show that boosting can cope with large models which have many
covariates compared to the number of observations.
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1 INTRODUCTION

1 Introduction

An essential property of a time series is its unknown evolution over time. Some paths are more
probable than others and this motivates researchers to try to understand the data generating process
and possibly to forecast future events. Linear models provide a starting point for modelling the
nature of time series. Linear time series models, however, encounter various limitations in the real
world and are applicable only under very restrictive conditions. The field of time series has witnessed
various new developments in the past two decades which has relaxed some of these constraints. In
particular, the development of nonparametric regression added more flexibility to standard linear
regression adopted by the time series paradigm, see for example Lewis and Stevens (1991), Chen
and Tsay (1993), or Huang and Yang (2004). A leading aspect to be explored throughout this
paper is the nonparametric modelling and the resulting forecasting techniques.

The second major aspect concerns the issue of high-dimensionality in the models, i.e., models
taking potentially many covariates into account. Boosting, one of the most influential strategies
that deal with high-dimensional models, has its roots in machine learning. The idea has undergone
significant evolution in the last decade. It has been successfully applied to statistical model fitting
(e.g., Bühlmann and Hothorn, 2007). The novel component of the present work is the application
of boosting to time series, where nonlinear functions of lagged values of a time series have to be
estimated.

Due to the frequent use of the simple univariate autoregressive model (AR), we draw on it as
a benchmark in the application part to follow. For a substantially broader discussion on times
series, see Hamilton (1994). In addition we consider the vector autoregressive (VAR) model. The
VAR model suggests that every variable is a linear combination of its past observations and the
past observations of supplemental variables. In practice such assumptions enjoy great popularity.
Multivariate time series are considered in greater depth by Lütkepohl (1991, 2006).

The literature offers a great amount of nonlinear modelling tools. Many of them are developed in
the spirit of nonlinear parametric models. They require an a priori choice of parametric functions,
which are assumed to be appropriate in specific situations. That approach is used mainly in
financial applications, when sufficient knowledge is available about the nonlinear structure between
the covariates and the response. However, the appropriateness of such assumptions is usually hard
to justify in practice.

In contrast to parametric nonlinear models, nonparametric techniques are not restricted to
a particular choice of parametric functions. One principal strategy is to study the times series
counterpart of the additive model; the so-called Nonlinear Additive AutoRegressive (NAAR) model
(Chen and Tsay, 1993). When further (exogenous) variables are available, we suitably extend the
model with more functions and call it NAARX (Chen and Tsay, 1993). Thus, NAARX encompasses
linear regressive models and many nonlinear models as special cases.

The literature on nonlinear additive models is extensive, therefore, we concentrate on nonpara-
metric approaches. Huang and Yang (2004) recently introduced a method that attracted much
attention because of appealing lag-selection properties for univariate nonlinear time series. It es-
sentially represents an additive version of the linear stepwise procedure using truncated splines or
B-Splines as base expansions of the predictors. The proposed base functions are not penalized.
Instead, a formula is suggested which determines a relatively small number of evenly spaced knots.
In terms of lag selection, the proposed method performed quite well with simulated time series.
However, no results were provided that show the goodness-of-fit of models. We will use some of the
artificial times series, provided by Huang and Yang (2004) in Section 3.2 and will shed light upon
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2 BOOSTING LINEAR AND ADDITIVE MODELS

the goodness-of-fit as well.
Multivariate Adaptive Regression Splines (MARS) were introduced by Friedman (1991). A

neat overview of the method is available in Hastie et al. (2001), Hastie, Tibshirani and Friedman
(2009, Chapter 9) and an application of MARS in a time series context is provided by Lewis
and Stevens (1991). The last nonparametric model that we consider is the BRUTO procedure
(Hastie and Tibshirani, 1990, Chapter 9). BRUTO combines inputs selection with backfitting by
using smoothing splines. It was applied to time series by Chen and Tsay (1993). See Hastie and
Tibshirani (1990, p. 90-91) for details concerning backfitting and Hastie and Tibshirani (1990,
p. 262) for the BRUTO algorithm.

We proceed as follows. In Section 2, we shortly review the general ideas of boosting. We adopt
the statistical view on boosting, which is considered purely a numerical optimization, rather than
a “traditional” statistical model. Exemplified by two weak learners, we examine the structure of
the boosting algorithm for continuous data. The first weak learner is a simple linear models, the
second weak learner is a penalized B-Spline (Eilers and Marx, 1996).

Section 3 examines the results of a simulation study. We analyze the performance of boosting
with P-Spline weak learners in Monte Carlo simulations with six artificial, nonlinear, autoregressive
time series. We compare the outcomes of boosting to the outcomes obtained through alternative
nonparametric methods. Their performances are considered in terms of lag-selection and goodness-
of-fit.

In Section 4 we apply boosting, both with linear and additive learners, to real world data
in terms of forecasting. The target variable is the German industrial production. We compare
boosting, along with other methods, to the simple univariate autoregressive model.

2 Boosting Linear and Additive Models

Boosting, in its famous AdaBoost formulation, was developed by Freund and Schapire (1996).
Friedman (2001) embedded this algorithm into the framework of functional gradient descent opti-
mization for function estimation and made connections to statistical model fitting, for example to
logistic regression. Bühlmann and Yu (2003) established componentwise boosting as a means of
fitting generalized linear and additive models. This seminal paper showed that boosting procedures
can be used to fit a huge class of classical and modern statistical models. For an overview on
boosting in general we refer to Bühlmann and Hothorn (2007).

2.1 Steepest Descent

The statistical framework developed by Friedman (2001) interprets boosting as a method for direct
function estimation. He shows that boosting can be interpreted as a basis expansion, in which every
single basis term is iteratively refitted. Still, some care must be taken in interpreting boosting as a
basis expansion. In contrast to conventional basis expansions, where the basis functions are known
in advance, the basis’s members and also their number are iteratively determined by the fitting
procedure. Our notation is as follows:

zt = (y>t ,x
>
t )> = (yt−1, . . . , yt−p, x

(1)
t−1, . . . , x

(1)
t−p, . . . , x

(q)
t−1, . . . , x

(q)
t−p)> ∈ R(q+1)p

denotes the p-lagged vector of explanatory variables representing the lagged values yt = (yt−1, . . . , yt−p)> ∈
Rp of the endogenous variable yt ∈ R and the lagged values of q exogenous variables xt ∈ Rqp. The
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proposed model is then

E(yt|zt) =
p∑

i=1

fi(yt−i) +
p∑

i=1

f
(1)
i (x(1)

t−i) + · · ·+
p∑

i=1

f
(q)
i (x(q)

t−i)

=
p∑

i=1

fi(yt−i) +
q∑

j=1

p∑
i=1

f
(j)
i (x(j)

t−i) =: F (zt). (NAARX)

The objective is to obtain an estimate F̂ of the function F . With real data one wants to minimize

F̂ = argmin
F

1
T

T∑
t=1

L(yt, F (zt)). (2.1)

where L is some loss function. One of the frequently employed loss functions is the squared-error
loss, also called L2-loss,

L(yt, F (zt)) =
1
2

(yt − F (zt))2, (2.2)

which is also chosen in this paper. A discussion of the specification of several loss functions can
be found in Hastie, Tibshirani and Friedman (2009, chap. 10), Bühlmann and Hothorn (2007),
Friedman (2001) and in particular in Lutz et al. (2007).

One concern about (2.1) is that it is a function optimization problem which does not necessarily
lead to a statistically interpretable model. Therefore, we introduce parameters that will facilitate
interpretation later on and reformulate the problem as

F̂ = F ( · ; β̂) = argmin
β

1
T

T∑
t=1

L(yt, F (zt; β)). (2.3)

The final solution of (2.3) is expressed in terms of a sum over M so-called weak learners h, the mth
of which depends on a parameter vector γ̂[m]:

F ( · ; β̂[M ]
) =

M∑
m=0

νh( · ; γ̂[m]) (2.4)

where γ̂[0] is an arbitrary chosen start vector of parameters, ν ∈ (0, 1) is a shrinkage parameter
or step size and the parametric function h is referred to as a the weak learner that we mentioned
already in our introductory remarks.

All members of the additive expansion in (2.4), or more precisely all γ̂[m]’s, will be determined
iteratively by successively improving (updating) them and accumulating the whole estimation in

β̂
[M ]

. The underlying structure in the parameters is assumed to be

β̂
[M ]

=
M∑

m=0

ν γ̂[m]. (2.5)

Hence, the step size ν can be thought of as an improvement penalty which prevents the model from
taking the full contribution of the updates.
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2.2 Componentwise Boosting 2 BOOSTING LINEAR AND ADDITIVE MODELS

In many situations it is unfeasible to solve (2.3) directly and therefore an appropriate numerical
optimization method should be applied. One option is the steepest-descent optimization algorithm.

Given any approximation F (zt; β̂
[m−1]

), the increments h(zt; γ̂
[m]) are determined by computing

the current negative gradient

−g[m](zt) = −
[
∂

∂F
L(yt, F )

]
F=F (zt;β̂

[m−1]
)

= −(yt − F (zt; β̂
[m−1]

)) (2.6)

which gives the steepest-descent direction. Note that the appealing form of the gradient in (2.6), i.e.,
the residuals of the preceding boosting step, is a direct consequence of the convenient specification
of the loss function. We choose that γ̂[m] which produces h(zt; γ̂

[m]) most parallel to the negative
gradient. This is done by a simple regression on the negative gradient by the weak learner, i.e.,

γ̂[m] = arg min
γ

T∑
t=1

(−g[m](zt)− h(zt; γ))2. (2.7)

Note that (2.4) can be rewritten as

F ( · ; β̂[m]
) = F ( · ; β̂[m−1]

) + νh( · ; γ̂[m]). (2.8)

In machine learning a strategy such as the sequence (2.7)-(2.8) is termed boosting. Therefore,
the estimation F̂ is continuously improved by the little boosts νh( · ; γ̂[m]). Following this general
pattern there are various modifications of the boosting strategy differing most notably in the weak
learner specification. We will examine two of them in the following sections.

The shrinkage parameter ν is mainly used to prevent overfitting. It can be regarded as controlling
the learning rate of the boosting procedure and that the learner is “weak” enough and seeks for an
optimal solution in “small steps”.

On the other hand, as boosting evolves, the estimation model includes more terms. This suggests
the “natural” way of overfit prevention by restricting the number of iterations M . The two param-
eters do not operate independently and therefore mutually affect the performance. Decreasing the
values of ν increases M , so there is a tradeoff between them. The performance of ν is examined
rather empirically and Friedman (2001) was the first to show that small values (ν = 0.3) are good
in terms of low sensitivity of the boosting procedure. Bühlmann and Yu (2003) also advocate for
using a small value of ν, thus leaving only one parameter that should be taken care of, the optimal
number of boosts M .

2.2 Componentwise Boosting

By now, we have boosted all predictors simultaneously. When many predictors are available a more
fruitful strategy is componentwise boosting. Originally proposed by Bühlmann and Yu (2003) and
further developed by Bühlmann (2006), the essential boosting technique for regression problems
with rapidly growing number of predictor variables is called L2Boosting. The key idea of this
method is to exercise the weak learner upon one variable at a time and to pick out only this
component with the largest contribution to the fit. This is another way of keeping the learner
“weak” enough by simply restraining of a complex structure with many parameters.
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2.2.1 Componenwise Linear Weak Learner

The simplest learner is linear. For this learner γ̂[m] = (0, . . . , γ̂ŝm , . . . , 0)> is a (q+ 1)p-dimensional
vector with zeros for all but the ŝmth component, where ŝm ∈ {1, 2, . . . , (q + 1)p} denotes the
respective component at the mth boosting step. The modification of the weak learner is summarized
as follows:

Componentwise Linear Weak Learner

h(zt; γ̂
[m]) = z>t γ̂[m], where γ̂[m] = (0, . . . , γ̂ŝm

, . . . , 0)> ∈ R(q+1)p, γ̂ŝm
∈ R

γ̂j = OLS(γj), ∀j ∈ J := {1, 2, . . . , (q + 1)p} (2.9)

ŝm = arg min
j∈J

T∑
t=1

(−g[m](zt)− h(zt; γ̂
[j]))2, (2.10)

where OLS(γj) is the Ordinary Least Squares Estimator of γj with the negative gradient being used
as a pseudo-response. Thus, the base procedure fits a simple linear regression (q + 1)p times as
shown in (2.10), and the chosen component ŝm is the one which fits to this pseudo-response best.
We refer to this procedure as GLMBoost later on.

2.2.2 Componentwise P-Splines Weak Learner

We now refer to the flexible structure defined in (NAARX) and employ P-Splines with evenly spaced
knots as weak learners. That means that the weak learner is represented by a Generalized Additive
Model with P-Splines (Eilers and Marx, 1996). Note that the term additive expansion can be used
in two different contexts. Here we suggest an initial additive expansion of the covariates, which
should be clearly distinguished from the interpretation of boosting as an additive expansion itself.
Thus, the f ’s in (NAARX) are represented by the sum of B known basis functions bl, l = 1, . . . , B.

In the previous section we defined a componentwise selection of linear predictors, in the current
section, likewise, we do the same with more flexible learners. The essential modifications concern
γ̂[m] = (0>, . . . , γ̂>ŝm

, . . . ,0>)> ∈ R(q+1)pB having qpB zeros, γ̂ ŝm
= (γ1, . . . , γB)> ∈ RB and

0 = (0, . . . , 0)> ∈ RB and the weak learner being a P-Spline instead of a straight line. Subsequently,
the estimations γ̂ ŝm

are obtained through the penalized least squares estimator and not through
the OLS-Estimator. The base procedure is as follows:

Componentwise P-Spline Weak Learner

h(zt; γ̂
[m]) = Z>t γ̂[m]

γ̂j = PLSE(γj), ∀j ∈ J := {1, 2, . . . , (q + 1)p} (2.11)

ŝm = arg min
j∈J

T∑
t=1

(−g[m](zt)− h(zt; γ̂
[j]))2 (2.12)

where Zt ∈ R(q+1)pB is the basis expansion of zt, PLSE(γj) is the Penalized Least Squares Estimator
of γj with the negative gradient being used as a pseudo response. This procedure is referred to as
GAMBoost.

Essentially, we estimate two components at each stage: all candidate parameters for the update
(2.11), and the index of the “best” candidate (2.12). Since the negative gradient indicates the
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3 SIMULATION STUDY

Model Function

NLAR1U1 yt = −0.4(3− y2
t−1)/(1 + y2

t−1) + 0.1εt
NLAR1U2 yt = 0.6(3− (yt−2 − 0.5)3)/(1 + (yt−2 − 0.5)4) + 0.1εt
NLAR2b yt = (0.4− 2 exp(−50y2

t−6))yt−6 + (0.5− 0.5 exp(−50y2
t−10))yt−10 + 0.1εt

NLAR2c yt = 0.8 log(1 + 3y2
t−1)− 0.6 log(1 + 3y2

t−3) + 0.1εt
NLAR2d yt = (0.4− 2 cos(40yt−6) exp(−30y2

t−6))yt−6 +
(0.55− 0.55 sin(40yt−10) sin(40yt−10)) exp(−10y2

t−10) + 0.1εt
NLAR4 yt = 0.9((π/8)yt−4)− 0.75 sin((π/8)yt−5) + 0.52 sin((π/8)yt−6)+

0.38 sin((π/8)yt−7) + 0.1εt

Table 1: Dynamics of six artificial time series.

direction of the locally greatest decrease in loss the most “valuable” covariate has the highest
correlation with the negative gradient and is therefore chosen for fitting. The final model fit typically
depends on a subset of the original (q + 1)p covariates.

The inevitable price to pay for increased flexibility are the additional parameters. One has to
choose not only an appropriate shrinkage factor ν and stopping value M , but also a smoothing
parameter λ and a number of evenly spaced knots. Schmid and Hothorn (2008) carried out an
analysis of the effect of tuning parameters on the boosting performance. It is worth emphasizing
the effect of λ for determining the degrees of freedom (df) of the weak learner. High values of λ
lead to low degrees of freedom which is preferable in order to keep the learner highly biased but
with a low variance. Schmid and Hothorn (2008) proposed df ∈ [3, 4] as a suitable amount for the
degrees of freedom. We follow these prescriptions and remind that the reasonable altering of this
parameter reflects solely in the computational time.

Unlike the common practice of using cross validation as a stopping criterion for boosting, M
could be determined by computationally more efficient modification of the Akaike Information
Criterion (AICs, Hurvich et al. 1998). This is also our choice, see Bühlmann and Hothorn (2007)
for further details.

3 Simulation Study

In this section we investigate the performance of boosting an additive model in Monte Carlo sim-
ulations with six artificial, nonlinear, autoregressive time series. We compare the outcomes of
boosting to the outcomes obtained through alternative nonparametric methods. Their performance
is considered in two categories: in terms of lag-selection and goodness-of-fit. The dynamics of the
simulated processes are shown in Table 1. NLAR1U1 and NLAR1U2 have one lag and were used
by Huang and Yang (2004). Besides, there are three models with two lags: NLAR2b-NLAR2d. All
but NLAR2c two-lag-models were originally used by Tschernig and Yang (2000), NLAR2c was used
by Chen and Tsay (1993). The last model NLAR4 has four lags and was used by Shafik and Tutz
(2009).

It this section we will juxtapose componentwise boosting of an additive model (GAMBoost),
the method by Huang and Yang (2004), referred to with the acronym HaY, BRUTO and MARS.
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3.1 Lag Selection 3 SIMULATION STUDY

All models from Table 1 have been simulated 100 times with sizes 400 + N , the first 400
values discarded and N = p + T , with p = 10 pre-sample values and T = 50, 100, 200 in-sample
observations. Such partitioning of the time series values is convenient in order to ensure same
sample size of T for each covariate at a given period and to simplify the notation. As p suggests,
the maximal lag-length has been limited to ten. In the next section we compare the performance
of the different procedures in terms of lag selection.

3.1 Lag Selection

The exposition in this section is inspired by Huang and Yang (2004). For each process we have an
index set s, consisting of the numbers of the lags that have an effect, e.g., for NLAR2b, s = {6, 10}.
Let ŝ be a particular model estimation of s. The accuracy of the estimation is quantified by the
following rule: ŝ is said to be correct if ŝ = s; ŝ is an overfit if ŝ ⊃ s; and ŝ is an underfit if
(ŝ ∩ s) ⊂ s. Note that ŝ can be larger than s and still underfitting. In other words, underfit
indicates that some significant variables have been erroneously omitted by the model, while overfit
means inclusion of redundant variables in addition to the significant ones.

Table 2 gives a summary of the Monte Carlo simulations for all four fitting procedures. The
first, second and third columns present the numbers of underfit, correct and overfit outcomes over
100 simulation runs. For example, MARS at NLAR2b with T = 100 has identified the index set 64
times correctly, has neglected at least one of the significant lags 18 times and has added more lags
in 18 cases.

As Table 2 suggests, boosting an additive model is likely to overfit most of the time. This
tendency is especially noticeable with fewer lags. Such performance of GAMBoost is in some sense
expected. If in a single boosting step, some variable has been erroneously considered, that would be
sufficient to add it to the estimated set ŝ. Although being a redundant variable, the corresponding
function estimate can still be close to zero and therefore being interpreted as a random error. In
the next section we explore whether such an influence is really considered as minimal or has a
substantial counterproductive impact.

The non-boosting methods are more likely to underfit larger models. This is evident for NLAR2b
and NLAR2c, and becomes especially noticeable for NLAR4. The last process is repeatedly un-
derfitted by BRUTO, MARS and HaY, while GAMBoost encourages inclusion of more lags. We
should, however, keep in mind that the mathematical properties for variable selection of boosting
are still under construction (see Meinshausen and Bühlmann, 2010).

The performances of BRUTO, MARS and HaY for NLAR1U1, NLAR1U2 and NLAR2d pro-
cesses are consistent with the results provided by Huang and Yang (2004). It should be noted that,
in contrast to the cited paper, we have examined small to moderate sample sizes. Under these
conditions, the auspicious approach HaY still demonstrates very good detection of true variables
and steadily increases the frequency of correct fitting with increasing sample size. As reported in
the Huang and Yang (2004), however, the cubic spline fitting faces some difficulties with NLAR2b.
It performed poorly in our simulations too. In addition, HaY is the single model which underfitted
100% of the NLAR4 realizations.

One concern with the HaY method is that in high-dimensional models computations become
prohibitive. Combining both forward and backward stages with maximum number of d lags and
number of candidate variables Smax, the forward stage requires

∑Smax
i=1 (d − i + 1) computations

and the backward stage
∑Smax

j=1 j computations. Particularly, when Smax = p, where p denotes the
number of covariates, the number of the required computations is p (p+ 1) which means that every
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3.2 Estimation of Dynamics 3 SIMULATION STUDY

Model Length GAMBoost BRUTO MARS HaY
NLAR1U1 50 0 3 97 0 29 71 0 73 27 0 98 2

100 0 1 99 0 22 78 0 70 30 0 99 1
200 0 1 99 0 26 74 0 79 21 0 100 0

NLAR1U2 50 0 0 100 0 0 100 0 73 27 0 1 99
100 0 1 99 0 0 100 0 81 19 0 31 69
200 0 0 100 0 0 100 0 72 28 0 71 29

NLAR2b 50 8 0 92 99 1 0 64 29 7 100 0 0
100 0 1 99 73 26 1 18 64 18 97 3 0
200 0 0 100 5 95 0 0 80 20 98 2 0

NLAR2c 50 42 2 56 100 0 0 86 11 3 99 1 0
100 15 1 84 98 2 0 69 24 7 90 10 0
200 3 1 96 83 17 0 32 46 22 67 33 0

NLAR2d 50 6 0 94 39 51 10 42 30 28 67 33 0
100 0 0 100 12 76 12 5 60 35 28 72 0
200 0 0 100 0 93 7 0 75 25 0 100 0

NLAR4 50 86 0 14 100 0 0 100 0 0 100 0 0
100 56 0 44 100 0 0 98 2 0 100 0 0
200 16 0 84 91 9 0 84 11 5 100 0 0

Table 2: Simulation results for lag selection. The first, second and third columns in each setup
show the number of underfit, correct and overfit outcomes over 100 simulation runs.

covariate contributes quadratically to the computational burden. For high dimensions that would
be an essential issue.

MARS showed an overall good performance. It had the highest rate of significant hits with
NLAR4 amongst the non-boosting methods. On the other hand, BRUTO showed a rather erratic
behaviour by favouring processes like NLAR2b, NLAR2d and performing very poorly with the
others.

3.2 Estimation of Dynamics

In simulations we can measure how precisely a fitting procedure reflects the true dynamics of a
simulated process. In case of linear time series, a convenient measure is the Euclidian distance
between the true parameter vector and the estimated one. When dealing with nonparametric
models we need a more sophisticated accuracy measure for the discrepancy between functions. We
consider the squared residuals between the true partial functions (or lag functions) centered to
mean zero and the estimated functions.

Let f̃k denote the kth true lag function after centering it to mean zero, i.e., subtracting its mean

9



3.2 Estimation of Dynamics 3 SIMULATION STUDY

Model T GAMBoost BRUTO MARS HaY

NLAR1U1 50 0.0228 0.0895 0.0093 0.0027
100 0.0141 0.0508 0.0039 0.0020
200 0.0080 0.0278 0.0016 0.0014

NLAR1U2 50 0.4035 2.5098 0.4288 0.7184
100 0.2380 1.6916 0.3381 0.7289
200 0.1789 0.9420 0.3049 0.1622

NLAR2b 50 0.0201 0.0443 0.0393 0.0470
100 0.0123 0.0349 0.0140 0.0455
200 0.0074 0.0084 0.0078 0.0358

NLAR2c 50 0.0065 0.0077 0.0120 0.0072
100 0.0049 0.0074 0.0084 0.0067
200 0.0028 0.0054 0.0058 0.0042

NLAR2d 50 0.1154 0.0886 0.1375 0.1260
100 0.0925 0.0786 0.0877 0.0766
200 0.0788 0.0704 0.0672 0.0699

NLAR4 50 0.0181 0.0247 0.0278 0.0301
100 0.0133 0.0176 0.0197 0.0278
200 0.0077 0.0085 0.0104 0.0147

Table 3: Simulation results of the median MSPE of 100 simulation runs multiplied by 100. Boldface
numbers indicate the best model performance for each setup.

value. Then the mean squared prediction error is

MSPEk =
1

200

200∑
i=1

[f̃k(zi)− ˆ̃
fk(zi)]2 (3.1)

where ˆ̃
fk is the estimated counterpart of f̃k. We choose the zi’s being evenly spaced between the

5th and 95th quantile of the empirical distribution of yt−k. The accuracy measure is the average
of the individual MSPE’s

MSPE =
p∑

k=1

MSPEk. (3.2)

The results of the median MSPE across all 100 simulation runs are summarized in Table 3, where
the rows give the simulated series and the columns represent the different modelling techniques.
NLAR1U and NLAR1U2 yield the most parsimonious models. Their dynamics seems to be ex-
plained very well by MARS, HaY and GAMBoost, while BRUTO performed very poorly. For

10



3.2 Estimation of Dynamics 3 SIMULATION STUDY
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Figure 1: Boosting estimations of the lag functions of NLAR1U2. True lag is 2 (circled line),
estimated lags are depicted as solid lines. The functions are mean zero centered.

NLAR1U2, we notice that despite overfitting in sense of selected lags, boosting estimated the rel-
evant function quite precisely, e.g., T = 50, 100. This suggests that the redundant functions were
considered close to zero. It is reassuring to see the seemingly zero redundant lag estimations of
NLAR1U2 in Figure 1.

The literature on nonparametric regression for dependent data is relatively sparse, especially
when related to boosting. Strong serial dependence might mislead the fitting procedure to produce
erroneous transformations. For instance, this is evident for boosting of NLAR2c, shown Figure 2,
where the second and the seventh lag were overfitted rather strongly.

With an increasing number of significant covariates both BRUTO and GAMBoost improved
their performance. The boxplots shown in Figure 3 propose a visual confirmation of the last state-
ment. They represent MSPE of each modelling strategy amongst the simulations repetitions. The
exclusion of significant covariates by the non-boosting methods was, on balance, more counter-
productive than the inclusion of redundant ones by boosting. GAMBoost showed, overall, strong
estimation properties. Boosting was superior to its rivals in the larger model specifications and was
evidently competitive even in the small ones. It is worth mentioning that boosting distinguished for
the small sample sizes by larger margins. It showed good prediction quality when the information
content of the data decreased, i.e., there was low signal-to-noise ratio.
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Figure 2: Boosting estimations of the lag functions of NLAR2c. True lags are 1 and 3 (dashed
lines), estimated lags are depicted as solid lines. The functions are mean zero centered.

4 Economic Forecasting with Boosting

In this section boosting, along with other parametric and nonparametric models, are applied to
real data. The target variable is the German industrial production (IP) with 176 observations
for the time period 1992:01 – 2006:08. In order to circumvent any structural breaks due to the
reunification, the data before 1991 was omitted. Data from 1991 is not included either, because
some of the exogenous variables used later, such as ZEW Economic Sentiment, FAZ Indicator,
have only been available after 1992. The series was obtained from Deutsche Bundesbank1 and is
seasonally and workday adjusted. Along with the leading indicators in Section 4.3, the data was also
used by Robinzonov and Wohlrabe (2010). The exact monthly growth rates are taken to eliminate
non-stationarity which is

∆(IPt) =
IPt − IPt−1

IPt−1
.

Forecasting of IP is frequently performed in practice. Contributions to the forecasting of German
industrial production include Hüfner and Schröder (2002), Benner and Meier (2004), Dreger and
Schumacher (2005) among others.

Historically, the focus in forecasting has been on low-dimensional univariate or multivariate
models, all sharing the common linearity in the parameters. Recently additional studies exist that
investigate the forecasting performance of nonlinear time series models, e.g., Clements, Franses

1Series USNA01.
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and Swanson (2004), Teräsvirta, van Dijk and Medeiros (2005), Claveria, Pons and Ramos (2007),
Elliot and Timmermann (2008). The application of boosting by means of economic forecasting is
the major novelty in the present work.

4.1 Forecasting Principles

When a specific time series model is assumed and a set of observations is given, we want to predict.
The given set of observations is called a training set or an information set. The intention is to use
the information in zt to predict the real outputs yt+h.

We use a direct forecasting strategy (e.g. Marcellino et al., 2006, Chevillon and Hendry, 2005).
The idea is to use a horizon-specific estimation model, where response is the multiperiod ahead
value. The approach differs from iterated forecasting. The question which method is preferable is
an empirical one. The direct forecasting approach is surely a good choice under the presence of
exogenous variables.

To evaluate accuracy of prediction we need to specify a cost function. The choice of an accuracy
measure is a major topic by itself. Hyndman and Koehler (2006) widely discussed and compared
different measures of accuracy of times series forecasts. The references therein point the reader to
different studies with often controversial conclusions about the “best” forecasting measure. Still,
the literature being inconsistent, the MSE withstands the time proof and remains one of the most
popular out-of-sample measures. Therefore, minimizing the quadratic expected cost or loss

MSE = E (yt+h − ŷt+h|zt)2 (4.1)

is set as an objective. Expression (4.1) is known as the mean squared error, associated with the
forecast ŷt+h.

Further we are interested in obtaining estimations of multiple forecasting horizons. Therefore,
we alter the information set consistently. One option is to fix the starting point of the information
set and consecutively enlarge its size with new observations. This method is called recursive scheme
for forecasting. We apply the direct type of forecasting with the above mentioned recursive scheme
to all models in the remaining part of this paper.

4.2 Univariate Forecasting of Industrial Production

We apply GAMBoost, BRUTO, MARS and boosting with linear componentwise learner (referred to
as GLMBoost, (2.10)) on the German industrial production. The univariate autoregressive model
(AR) offers one of the simplest and most commonly used techniques for forecasting. It is easily
applicable and therefore is often used as a benchmark model. The underlying assumption is that

Horizon AR GLMBoost GAMBoost BRUTO MARS
1 .0668 .0648 .0698 .0704 .0916
6 .1052 .0808 .0848 .1037 .0892
12 .1214 .1220 .1093 .1161 .1014

Table 4: Average squared forecast errors, multiplied by 103, of IP for 1, 6 and 12-periods ahead
forecasts of the monthly industrial production growth rates in Germany. The results are based on
20 forecasts.
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Figure 4: Boxplots of the average squared forecast errors (multiplied by 103) for 1, 6 and 12-periods
ahead forecasts of the univariate IP, based on 20 forecasts.

every alternative method should be at least as good as the autoregressive model in order to justify
an increase in the model’s complexity.

The promising technique by Huang and Yang (2004) is omitted because Section 4.3 extends the
available data set with exogenous variables, the so called leading indicators, and determines how the
additional information affects the performance of the models. The inclusion of exogenous variables
and their lags rapidly increases the number of covariates, forming a classical high-dimensional
modelling problem. In this context, the method of Huang and Yang (2004) is no longer applicable.

For IP we have a total length of 176 observations. The initial information set is defined from the
beginning 1992:01 until 2003:12, thus consisting of 144 observations. The maximal number of lags
is limited to 12. At the first stage twelve forecasts are calculated, i.e., prognoses for 2004:1-2004:12.
At the consecutive stage, the information set is enlarged with one observation and the corresponding
horizon is re-estimated. We continue in this fashion until 2005:8 where the information set reaches
its maximum. Thus, we compute twenty stages in total.

Table 4 gives a summary of the average squared forecast errors for IP, delivered by the differ-
ent methods. Apparently, in short term forecasting, the standard autoregressive model is quite
a hard one to overcome. This simple, yet powerful, model is superior to BRUTO, MARS and
GAMBoost for short-term forecasting. On the other hand, GLMBoost seems to be precise in short
term forecasting. With increasing forecasting horizon, all alternative models provide better fore-

AR GLMBoost GAMBoost BRUTO MARS
Selected lags 1,2 1,2,3,6,7,8,11 1,2,3,5,6,7,9,10,11,12 1 1

Table 5: Selected variables when information set reached its maximum.
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Indicator Provider Label
Ifo Business Climate Ifo Institute ifo
ZEW Economic Sentiment ZEW Institute zew
OECD Composite leading indicator for Germany OECD oecd
Early Bird Indicator Commerzbank com
FAZ Indicator FAZ Institute faz
Interest Rate: overnight IMF rovnght
Interest Rate: spread IMF rspread
Employment Growth Bundesbank emp
Factor Bundesbank factor

Table 6: Leading Indicators.

casts for the monthly German industrial production growth rates, compared to AR. Both boosting
methods prove to be efficient in forecasting, especially the linear boosting in short and middle-term
forecasting, where it offers the smallest prediction error in average. For the longest horizon GLM-
Boost remains at least as good as AR, but performs relatively poorly in comparison to GAMBoost,
BRUTO and MARS. Figure 4 depicts the differences between the models of the prediction squared
errors.

In addition, Table 5 is considered to give an impression of the selected lags, chosen by the models.
Selected lags may differ at the different stages, therefore we review the outcome at the stage where
the information set reached its maximum (2005:08), being in this way the most representative.
Both boosting techniques estimated quite large models, which is consistent with the results of the
simulation study.

Based on the averaged errors in Table 4 and the given boxplots in Figure 4, it is rather challenging
to announce a winning modelling strategy. It seems that the models assimilate the information,
based solely on IP, efficiently. Therefore, in order to improve the models prediction quality we
supply them with additional information in the following section.

4.3 Forecasting Industrial Production with Exogenous Variables

Forecasting of industrial production is based on the assumption that different leading indicators
should relate significantly with the response, and therefore positively influence its prediction. There
are many leading indicators, however, that “claim” such an appealing property. Usually, one indica-
tor is taken and its forecasting potential is judged by a bivariate autoregressive model, e.g., Dreger
and Schumacher (2005) compared four indicators. The additional dimension does not necessarily
improve the forecasting quality. On the contrary, in case of an “inappropriate” extra variable, it
deteriorates the forecasting.

We collect the nine most commonly used indicators and investigate how they affect the forecast-
ing. The aim is to investigate if it is still possible to obtain good forecasts, despite the presence of
probably redundant variables. Table 6 contains a list of the nine frequently used leading indicators
on forecasting German IP (see Appendix A for a detailed description of the indicators).

Since vector autoregressive analysis has evolved as a standard instrument in econometrics for
analysing multivariate times series, we will consider nine bivariate models, each consisting of the
IP and one leading indicator from Table 6 in its restricted (VARr) and unrestricted (VAR) form.
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Indicator H VAR VARr GLMBoost GAMBoost BRUTO MARS

ifo 1 0.1101O 0.0914O 0.0647N 0.0675N 0.0845O 0.0892N
6 0.1191O 0.1291O 0.0808N 0.0826N 0.1029N 0.0899O

12 0.0947N 0.1215O 0.1220N 0.1093N 0.1168O 0.1169O

zew 1 0.0742O 0.0724O 0.0643N 0.0754O 0.0766O 0.0826N
6 0.1116O 0.1058O 0.0808N 0.0855O 0.1157O 0.0893O

12 0.0984N 0.1151N 0.1220N 0.1076N 0.1155N 0.1164O

oecd 1 0.0697O 0.0697O 0.0650O 0.0727O 0.0557N 0.1041O
6 0.1055O 0.1058O 0.0808N 0.0852O 0.1245O 0.0829N

12 0.1588O 0.1141N 0.1220N 0.1100O 0.1117N 0.1188O

com 1 0.0862O 0.0840O 0.0704O 0.0751O 0.0789O 0.0764N
6 0.0981N 0.0813N 0.0803N 0.0850O 0.1093O 0.0909O

12 0.1546O 0.1163N 0.1226N 0.1093N 0.1064N 0.1069O

faz 1 0.0698O 0.0655N 0.0648N 0.0737O 0.0830O 0.0916N
6 0.3062O 0.3203O 0.0808N 0.0848N 0.1642O 0.0895O

12 0.2156O 0.1218O 0.1220N 0.1093N 0.1389O 0.1047O

rovnght 1 0.0604N 0.0605N 0.0648N 0.0731O 0.0717O 0.0910N
6 0.0958O 0.1054O 0.0808N 0.0853O 0.1111O 0.0895O

12 0.1015N 0.1151N 0.1220N 0.1093N 0.1163O 0.1017O

rspread 1 0.0648N 0.0581N 0.0634N 0.0701O 0.0742O 0.0927O
6 0.1010O 0.1058O 0.0808N 0.0848O 0.1005N 0.0890N

12 0.1049N 0.115N 0.1219N 0.1093N 0.1038N 0.1052O

emp 1 0.0671O 0.0792O 0.0632N 0.0696N 0.0704N 0.0916N
6 0.0976N 0.1004N 0.1036O 0.0946O 0.1396O 0.0919O

12 0.1090N 0.1250O 0.1356O 0.1190O 0.1361O 0.1082O

factor 1 0.0514N 0.0519N 0.0550N 0.0684N 0.0558N 0.0948O
6 0.0988N 0.1004N 0.0861O 0.0823N 0.0990O 0.0914O

12 0.1088N 0.1077N 0.1209O 0.1161O 0.1034N 0.1147O

Table 7: Average squared forecast errors of the monthly industrial production growth rates in
Germany, with one leading indicator as an exogenous variable. The results are based on 20 forecasts,
multiplied by 103. The symbol Nindicates forecast improve with respect to Table 4 and Oindicates
decreased forecasting quality.

The restrictions are obtained via standard statistical t-tests.
The inclusion of one exogenous variable means that we fit a model with 24 covariates, i.e., twelve

for the IP and twelve for the exogenous variable. The forecasting outcome is documented in Table
7. Every triplet shows the average performance of the corresponding models, respectively for 1, 6
and 12-periods ahead forecasts. In addition, it is indicated whether the forecast quality increased
or decreased with respect to the univariate forecasts in Table 5. Change of the forecasting quality
for both VAR and VARr is compared to AR.

Figure 5 depicts the results from Table 7 together with the AR model in a more compact form in
order to put an emphasize on the comparison. In the following a summary of the empirical results
is given:

(a) The out-of-sample forecasting results from Table 7 suggest that both boosting techniques
remain robust to the impact of the exogenous variables.

GLMBoost remains almost immune to redundant variables. Apparently, in five cases of middle
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to long-term forecasting (ifo, zew, oecd, faz and rovnght) GLMBoost did not consider the
exogenous variable at all. This explains why these forecasts are identical to the univariate
case in Table 4. Transferred to the indicators, this interpretation suggests that they have
only a short term effect on IP. In one-period ahead forecasting the exogenous variable exerted
negative impact on GLMBoost in two cases only (zew, com) and outperformed AR in all cases
except for com. In general, substantial changes of GLMBoost, compared to the univariate
forecasting, were not found. That implies that linear boosting considered IP with its own lags
to a larger extent than the remaining covariates. As a result, it showed a very strong overall
performance and outperformed most of the models for one and six-periods ahead forecasting.

(b) The addition of exogenous variables changed the prediction power of GAMBoost, BRUTO
and MARS with varying success. Most notably GAMBoost and MARS show good and stable
performance for six and twelve-periods ahead forecasting. This is best seen by the illustration
in Figure 5. BRUTO improved its short term forecasting performance with almost every
variable (except for faz), but in general remained worse than AR. For longer horizons it
showed a rather erratic behaviour.

(c) There are four leading indicators, which proved to have good forecasting quality in terms of
bivariate linear autoregression. These are zew, faz, rspread and factor, which increased the
forecasting precision of IP, compared to AR. Moreover, the restricted bivariate autoregressive
model with factor and faz provided the best short-term forecasts, but was easily outperformed
for longer horizons. It is evident also that the restricted model is superior to the unrestricted
one in most of the cases.

(d) From a computational point of view, MARS and GLMBoost were the fastest procedures.
Closely followed by BRUTO, VAR and VARr, they all perform comparably fast. Boosting
with P-Spline weak learners was more computationally demanding.

In Table 8 lags are collected that were selected by boosting, BRUTO and MARS. The bivariate
autoregressive models selected in most cases lag length of one (the results are not shown) which
explains to some extent their relatively bad performance for longer forecasting horizons. It should
be clearly stated that the selected lags by each method in Table 8 have resulted from a single,
one-period ahead model with maximal information set. Therefore, they do not reflect the whole
forecasting process and thus are not strictly related to the results, presented in Table 7. The
intention is to gain a rather general impression of the selecting process.

It is reassuring to find support that GLMBoost considered IP with its own lags more heavily
than the exogenous variables. In accordance with intuition this seems to be the most plausible
forecasting strategy, since we forecast IP. In accordance to the forecasting results this was definitely
the most successful one. Boosting with P-Spline weak learners seems to be very consistent in the
selection of endogenous lags - the same subset of IP lags is almost always present. At the same
time, it estimates the largest models. BRUTO is the single modelling strategy, which repeatedly
considered more exogenous than endogenous lags. This partially explains its erratic forecasting
behaviour, each time conducted by the new indicator.

In conclusion, for the monthly growth rates of the industrial production in Germany, we found
evidence that boosting can be very competitive to the standard techniques. Particularly, least
squares boosting predicts better than linear autoregressive models. The increased flexibility of the
nonparametric models does not seem to pay-off in short term foreacasting, but manages to improve
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Figure 5: Average squared forecast errors of the monthly industrial production growth rates in
Germany, with one leading indicator as an exogenous variable. Dashed red-line shows the value of
the univariate autoregressive model. The results are based on 20 forecasts, multiplied by 103.

the prediction quality when the information content of the data decreases, i.e., low signal-to-noise
ratio, which is observed in long-period ahead forecasting.

5 Concluding Remarks

In this paper several parametric and nonparametric modelling techniques for autoregressive time
series are compared, with particular focus on boosting methods. By letting the covariates be lagged
values of a time series, we have applied various strategies to identify relevant lags, estimates and
forecasts. In Section 3 we proposed componentwise boosting of additive autoregressive model with
P-Spline weak learners. Alternative modelling strategies were also applied on several nonlinear
autoregressive time series. It is evidenced that boosting of high-order autoregressive time series
can be very competitive in terms of dynamics estimation. Unlike regression analysis, however, the
serial dependence in time series data might mislead the fitting procedure to produce erroneous
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Variable GLMBoost GAMBoost BRUTO MARS
IP 1,2,3,6,7,8 1,2,3,5,6,7,9,11,12 1,2 1
ifo 1 1,7,11 1,2,3,4,5,8,11,12 -

IP 1,2,6,7,8 1,2,3,5,6,7,9,11,12 1,2 1
zew 1 1 1,2,3,5,6 1

IP 1,2,6,11,12 1,2,3,5,6,7,9,11,12 1,2 1
oecd 1 1,2,12 1,3,4,5,6,7,8,9,10 -

IP 1,2,6,7,8,11,12 1,2,3,5,6,7,9,10,12 1,2 1
com 1,2,3 1,7,10 3,4,6,8 1

IP 1,2,3,6,7,8,11 1,2,3,6,7,9,10,11,12 1 1
faz - 7 1,2,3,4,5,6,7,8,9,10,11,12 -

IP 1,2,3,6,7,8,11 1,2,3,6,7,9,10,11,12 1 1
rovnght - 7,10 2,3,4,5,6,7,8,9,10,11,12 -

IP 1,2,3,6,7,8,11,12 1,2,3,6,7,9,10,11,12 1 1,3
rspread 1 1,4 1,2,3,4,7,10,11,12 1,4,7

IP 1,2,3,6,7,8,11,12 1,2,3,6,7,9,10,11,12 1 1
emp 1,4,6,9,12 1,8,9,11,12 - -

IP 1,2,6,7,8,12 1,3,6,7,9,10,12 1,2,3,7 1,2
factor 3,4,11 1,2,3,5,7,8,11,12 3,7 1,7

Table 8: Selected lags of IP and of the exogenenous variable when the information set reached its
maximum (horizon h = 1).

transformations. Care must be taken in using boosting algorithms in time series with strong serial
correlation of the data. Further study on the use of boosting in time series context is needed to
justify the general use of this procedure.

Another boosting strategy with parametric weak learners (GLMBoost) was included in order to
perform a forecasting comparison, based on real world data in Section 4. The forecasting comparison
was conducted over the monthly growth rates of the German industrial production (IP). Both
boosting strategies managed to outperform the benchmark in macroeconomic forecasting, namely
the linear autoregressive model. Moreover, it became clear that GLMBoost was the most successful
strategy in terms of short and middle-term forecasting.

Additionally, the model was extended with different exogenous variables (leading indicators).
We had nine indicators available and we included each of them separately, in addition to the target
variable – the industrial production. Our intention was to investigate whether these variables do
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indeed improve the forecasting quality of the industrial production and how boosting handles these
high-dimensional models. Thus, having formed nine high-dimensional models, we forecasted again
the monthly growth rates of IP. Linear bivariate autoregressive models were also considered as
standard tools for forecasting. Our approach using componentwise linear and additive models in a
function gradient descent algorithm improves upon likelihood based boosting applied to nonlinear
autoregressive times series models (Shafik and Tutz, 2009) in two respects. First, more flexible
regression functions can be estimated using our approach (linear effects, decompositions of linear
and smooth effects or interaction effects (Kneib et al., 2009)). Second, further research established
alternative characteristics of the response to be regressed on lags or exogenous variables, most
importantly quantile regression approaches implemented via componentwise functional gradient
descent (Fenske et al., 2009).

The variables’ impact on the forecasting quality had debatable success, since in many of the cases
their inclusion worsened the forecasting performance, compared to the univariate case. GLMBoost,
on the other hand, was almost immune to redundant variables by performing at least as good as
in the univariate case. In one-period ahead forecasting, GAMBoost was affected by the additional
variables rather strongly, which was counterproductive for its overall performance, when compared
to the univariate case. The increased flexibility of GAMBoost was useful, however, in middle
and long term forecasting, where the information content of the data is very low, i.e. it has low
signal-to-noise ratio.

Another crucial topic for further development addresses the multivariate generalization of boost-
ing. The first steps toward high dimensionality in the response were made by Lutz et al. (2007), who
provided theoretical grounds and empirical evidence for its usability. Applying this approach would
open new perspective for forecasting with boosting, based on iterative forecasts of multivariate
models.

Computational Details

All data analyses presented in this paper have been carried out using the R system for statistical
computation (Team, 2009), version 2.9.2. There are several implementations of boosting techniques,
available as add-on packages for R. Package mboost (Hothorn et al., 2009) provides an implemen-
tation for fitting generalized linear models, as well as additive gradient based boosting.

Our simulations were carried out with mboost. As weak learner we use P-Splines, provided by
the function bbs() and subsequently fitted by the gamboost() function.

We use 20 knots (knots = 20), we set M = 500 (mstop = 500) as an upper bound for boosting
and set the degrees of freedom to 3.5, i.e. degree = 3.5. The optimal number of steps is evaluated
via the corrected AIC criterion provided by the AIC() function. For all other options we use the
default values.

Further on, we consider the method proposed by Huang and Yang (2004), which uses spline
fitting with BIC. Their novel approach was manually implemented since it is currently not available
as an extension package for R or in any other statistical software.

The implementation was carried out by the package mgcv (Wood, 2006, 2009) with unpenalized
cubic splines. The maximum number of candidate variables was equalled to the maximal number
of lags.

An implementation of BRUTO can be found in package mda (Hastie, Tibshirani, Leisch, Hornik
and Ripley., 2009). The corresponding function bruto() has a tuning parameter cost which spec-
ifies the cost per degree-of-freedom change. It was empirically investigated by Huang and Yang
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(2004) that a value of log(n) provides much better results than the default value of two, where n
indicates the sample size. Therefore, in our application cost was set to log(n) too.

An implementation of MARS is available in package mda and the corresponding function is
mars(). It has a tuning parameter which charges a cost per basis function, denoted by penalty.
This tuning parameter was also set to log(n).

The estimation of AR is carried out via the ar() function in package stats with AIC criterion.
The package vars (Pfaff, 2008) offers “standard” tools in the context of purely vector autoregressive
models. We use a modified version of its function VAR in order to consider direct forecasting. The
corresponding information criterion is AIC.
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A THE CHOICE OF LEADING INDICATORS

APPENDIX

A The Choice of Leading Indicators

In Section 4 nine leading indicators were chosen. These are summarized as follows.
The Ifo Business Climate Index is based on about 7,000 monthly survey responses of firms in

manufacturing, construction, wholesaling and retailing. The firms are asked to give their assess-
ments of the current business situation and their expectations for the next six months. The balance
value of the current business situation is the difference of the percentages of the ”good” and respec-
tively ”poor” responses, the balance value of the expectations is the difference of the percentages of
the ”more favourable” and ”more unfavourable” responses. The business climate is a transformed
mean of the balances of the business situation and the expectations. For further information see
Goldrian (2007).

The ZEW Indicator of Economic Sentiment is published monthly. Up to 350 financial experts
take part in the survey. The indicator reflects the difference between the share of analysts that
are optimistic and the share of analysts that are pessimistic with regard to the expected economic
development in Germany within six months (see Hüfner and Schröder, 2002).

The FAZ indicator (Frankfurter Allgemeine Zeitung) pools survey data and macroeconomic time
series. It consists of the Ifo index (0.13), new orders in manufacturing industries (0.56), the real
effective exchange rate of the Euro (0.06), the interest rate spread (0.08), the stock market index
DAX (0.01), the number of job vacancies (0.05) and lagged industrial production (0.11). The Ifo
index, orders in manufacturing and the number of job vacancies enter the indicator equation in
levels, while the other variables are measured in first differences.

The Early Bird indicator, compiled by Commerzbank, also pools different time series and stresses
the importance of international business cycles for the German economy. Its components are the
real effective exchange rate of the Euro (0.35), the short-term real interest rate (0.4), defined as
the difference between the short-term nominal rate and core inflation, and the purchasing manager
index of U.S. manufactures (0.25).

The OECD composite leading indicator is delivered by using a modified version of the Phase-
Average Trend method (PAT) developed by the US National Bureau of Economic Research (NBER).
The indicator is compiled by combining de-trended component series in either their seasonally
adjusted or raw form. The component series are selected based on various criteria such as economic
significance, cyclical behaviour, data quality, timeliness and availability. For Germany the following
time series are compiled: Orders inflow or demand: tendency (manufacturing) (% balance), Ifo
Business climate indicator (manufacturing) (% balance), Spread of interest rates (% annual rate),
Total new orders (manufacturing), Finished goods stocks: level (manufacturing) (% balance) and
Export order books: level (manufacturing) (% balance).

Financial indicators, such as overnight interbank interest rate an interest spread, are used as
possible predictors as well. Stock and Watson (2003) have conducted a thorough case study for
different OECD countries by forecasting Gross Domestic Product (GDP), Inflation and Industrial
production. The information on the growth of the employment in Germany has been taken from
their paper.

Finally, a factor indicator obtained from a large data set from Germany, is included. The data
set contains the German quarterly GDP and 111 monthly indicators from 1992 to 2006.2

2The estimated factor was provided by Christian Schumacher and is based on Marcellino and Schumacher (2007).
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