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Abstract

Nonparametric methods for the estimation of the link function in general-
ized linear models are able to avoid bias in the regression parameters. But
for the estimation of the link typically the full model, which includes all
predictors, has been used. When the number of predictors is large these
methods fail since the full model can not be estimated. In the present
article a boosting type method is proposed that simultaneously selects
predictors and estimates the link function. The method performs quite
well in simulations and real data examples.

Keywords: Single-Index Models, P-splines, Choice of Link Function, Variable
Selection, Nonparametric Estimation of Link Function.

1 Introduction

In generalized linear models (GLMs), for given data (yi, xi), i = 1, . . . , n, the
conditional expectation of yi|xi, µi = E(yi|xi), is modeled by

g(µi) = ηi or µi = h(ηi),

where ηi = β0 + xT
i β is the linear predictor, g(.) is the link function and h(.) =

g−1(.) is the response function.
Usually it is assumed that the response function h(.) is fixed and known, for

example h(.) = exp(.) yields the loglinear model which represents the canonical
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link model if responses follow a Poisson distribution. In applications typically the
link function is unknown and frequently the canonical link function is used. But
it is well known that misspecification of the link function can lead to substantial
bias in the regression parameters (see Czado and Santner (1992) for binomial
responses). That may be avoided by flexible modelling of the link.

When responses are metrically scaled a flexible generalization of classical ap-
proaches is the so-called single-index model. It assumes that h(.) is unknown and
has to be estimated by nonparametric techniques. The model may be seen as
a special case of projection pursuit regression, which assumes that µi has addi-
tive form h1(x

T
i β1)+ · · ·+hm(xT

i βm) with unknown functions h1, . . . , hm, which
transform the indices xT

i βj, see Friedman and Stützle (1981). In single index
models only one index, xT

i β, is assumed. The main difference between a single
index model and a GLM is that in the former the transformation function h(.) is
not restricted whereas in GLMs it is assumed that h(.) is strictly monotone and
hence invertible. Although single index models are useful in dimension reduction,
strict monotonicity, as assumed in GLMs, is very helpful when parameters are to
be interpreted. Therefore we will focus on monotonic response functions. Then
nonparametric estimation of the function h(.) may be seen as estimation of the
unknown link function in a GLM.

Estimation of the unknown link function when the underlying distribution
is from a simple exponential family was considered for example by Weisberg
and Welsh (1994), Ruckstuhl and Welsh (1999) and Muggeo and Ferrara (2008).
Weisberg and Welsh (1994) proposed to estimate regression coefficients using the
canonical link and then estimate the link via kernel smoothers given the estimated
parameters. Then parameters are reestimated. Alternating between estimation
of link and parameters yields consistent estimates. But all these approaches do
not select predictors.

The main advantage of the presented approach is that it combines estimation
of the link function with variable selection. In the last decade the traditional
forward/backward procedures for the selection of variables have been widely re-
placed by regularized estimation methods that implicitly select predictors, among
them the Lasso (Tibshirani (1996)), which was adapted to GLMs by Park and
Hastie (2006), the Dantzig selector (James and Radchenko (2008)), SCAD (Fan
and Li (2001)) and boosting approaches (Bühlmann and Hothorn (2007), Tutz
and Binder (2006)). However, in all of these procedures selection is always based
on a known response function. If the assumed response function is wrong the per-
formance of these selection procedures can be strongly affected. For illustration
let us consider a small simulation study.

We fitted a Poisson model with the true response function having sigmoidal
form hT (η) = 10/(1 + exp(−5 · η)), see Fig. 2. The parameter vector of length
p = 20 was βT = (0.2, 0.4, −0.4, 0.8, 0, . . . , 0) and covariates were drawn from
a normal distribution X ∼ N(0p, Σ) with Σ = {σij}i, j∈{1, ..., p} where σij = 0.5,
i ̸= j, σii = 1. We generated N = 50 data sets with n = 200 observations and
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fitted the model by using the usual maximum likelihood (ML) procedure based
on the canonical log-link (without variable selection). In addition, we applied
three alternative fitting methods that include variable selection: the nonpara-
metric flexible link procedure derived in Section 2.2, the lasso for generalized
linear models (Lokhorst, Venables, Turlach, and Maechler (2007)) and a boost-
ing procedure (Hothorn, Bühlmann, Kneib, Schmid, and Hofner (2009)). The
latter procedure is based on componentwise boosting, which is also the selection
procedure used in the flexible link procedure. While the flexible link procedure
selects a link function, ML estimates as well as lasso and boosting use the canoni-
cal link. It is seen in the upper four panels from Figure 1 that lasso and boosting,
which include variable selection perform distinctly better than classical maximum
likelihood fitting. But the best results are obtained if the link function is esti-
mated nonparametrically. In particular the parameters of predictors that are
not influential are estimated more stable and closer to zero. The dominance of
the flexible procedure is also seen in the two lower panels from Figure 1, which
shows the mean squared error for the estimation of the parameter vector and the
predictive deviance on an independently drawn test data set with n = 1000. In
Figure 2 the estimated response functions and the true response function hT(.)
are shown. For more details see Section 3.

For normally distributed responses various estimation methods for single-
index models have been proposed. One popular technique is based on aver-
age derivative estimation (see Stoker (1986), Powell, Stock, and Stoker (1989),
Hristache, Juditsky, and Spokoiny (2001)). Alternatively M -estimation has been
applied, which considers the unknown link function as an infinite dimensional nui-
sance parameter (see e.g. Klein and Spady (1993)). Other authors focus more on
the estimation of h(.). Based on kernel regression techniques, Härdle, Hall, and
Ichimura (1993) investigated the optimal amount of smoothing in single-index
models when simultaneous estimating βββ and the bandwidth. Yu and Ruppert
(2002) suggested to use penalized regression splines. They also allow for partially
linear terms in the model and report more stable estimates compared to ear-
lier approaches based on local regression (e.g. Carroll, Fan, Gijbels, and Wand
(1997)). Tutz and Leitenstorfer (2009) proposed a boosted version of the penal-
ized regression splines approach, but without variable selection. More recently,
Gaiffas and Lecue (2007) proposed an aggregation algorithm with local polyno-
mial fits and investigated optimal convergence rates. Bayesian approaches were
proposed by Antoniadis, Gregoire, and McKeague (2004). More general distribu-
tion models have been considered by Weisberg and Welsh (1994) who proposed
an algorithm that alternates between the estimation of βββ and h(.).

In the following we will extend the penalized regression splines approach used
by Yu and Ruppert (2002) and Tutz and Leitenstorfer (2009) for netric response
to the more general case of GLMs and in particular incorporate variable selec-
tion. In Section 2 the estimation procedure is given, in Section 3 the method is
compared to competitors. In Section 4 a modified version that allows to reduce
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Figure 1: Estimates of coefficient vector in simulation study for flexible link,

boosting, lasso and ML and the mean squared error for parameter vector and

predictive deviance for simulation setting.

the false positives is introduced. Applications are given in Section 5.
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Figure 2: True (black) and the estimated (grey) response functions for simula-

tion setting.

2 Estimation

2.1 Data Generating and Approximating Model

In the following it is assumed that the data generating model is

E(yi|xi) = µi = hT (ηi),

where hT (.) is the unknown true transformation function and ηi = xT
i βββ is the

linear predictor. Given xi the yi are (conditionally) independent observations
from a simple exponential family

f(yi|θi, ϕ) = exp

{
yiθi − b(θi)

ϕ
+ c(yi, ϕ)

}
, (1)

where θi is the natural parameter of the family, ϕ is a scale or dispersion parameter
and b(.), c(.) are specific functions corresponding to the type of the family. For
uniqueness we will assume that for the true parameter ||β|| = 1 holds and that
the linear predictor ηi contains no intercept. Thus, the magnitude of ||β|| and
the intercept are absorbed into hT .

The approximating model that is fitted has the form

µi = h0(h(ηi)),

where h0(.) is a fixed transformation function, which has to be chosen. The func-
tion h(.) is considered as unknown and has to be estimated. Typically, the choice
of h0(.) depends on the distribution of the response. When the response is binary
a canonical choice is the logistic distribution function. The main advantage of
specifying a fixed link function is that it may be selected such that the predictor

5



is automatically mapped into the admissible range of the mean response. For
example, the logistic distribution function has values from [0, 1], which is ap-
propriate for binary responses. Thus, in contrast to existing procedures, which
estimate hT (.) directly, we estimate the inner function h(.).

The function h(.) will be approximated by expansion in basis functions

h(ηi) =
k∑

s=1

αsϕs(ηi) = ΦT
i α, (2)

where ϕ1, . . . , ϕk denote the basis functions. As basis functions we use natu-
ral B-splines of degree 3 (compare Dierckx (1993)), which are provided by the
fda package in R. One problem with basis functions is that a sequence of knots
{τj}k

1 has to be placed in a certain domain [ηmin, ηmax] where the response func-
tion is to be estimated. Since the parameter vector is normalized by setting
||β|| = 1, one can infer from the Cauchy-Schwarz-inequality that the range of
ηi = xT

i β, i ∈ {1, ..., n} is restricted to [−u, u] where u = maxi=1, ..., n{||xi||2}.
We will use equidistant knots on [−u, u]. As in P-spline regression Eilers and
Marx (1996), a high number of knots is used and the smoothness of the func-
tion estimate is controlled by appropriate penalization. As penalty term for the
estimation of α we use the integral of the squared second derivation of the ap-

proximated response function h(.) given by (2),
∫ u

−u

(
d2

dη2 h(η)
)2

dη, which can

be given in matrix form as Ph = αTKα with symmetric matrix K = (kij),

kij =
∫ u

−u

(
d2

dη2 ϕi(η)
)(

d2

dη2 ϕj(η)
)

dη.

2.2 Estimation of Parameters Including Variable Selection

Componentwise boosting techniques have been successfully used to select relevant
predictors in classical linear and generalized linear models (see for example the
overview given by Bühlmann and Hothorn (2007)). The basic principle is to
update within one step only one single component, in our case one coefficient
of the predictor. With the link function being unknown also the coefficients of
basis functions have to be estimated. In contrast to the selection procedure for
the components of β the estimation of the coefficients of basis functions includes
no selection step. Since the underlying link function is assumed to be smooth
estimates are updated by using penalized estimation.

We will use likelihood-based boosting techniques, which aim at the maximiza-
tion of the log-likelihood l(ααα,βββ). As usual in boosting no explicit penalty on the
log-likelihood is specified. Regularization is obtained implicitly by stopping the
iteration procedure. The specific advantages of boosting techniques concerning
the tradeoff between bias and variance have been derived by Bühlmann and Yu
(2003). Moreover, it has been shown that in special cases boosting is very sim-
ilar to lasso regularized estimates (see Efron, Hastie, Johnstone, and Tibshirani
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(2004)). The penalization techniques that are used here follow the same principles
as likelihood-based boosting outlined in Tutz and Binder (2006).

Computation of estimates uses boosting techniques in two stages, once for the
estimation of the parameter vector βββ and once for the estimation of the vector of
basis coefficients ααα. Before giving the algorithm we will consider the two stages
(and initialization) separately. For simplicity we will use matrix notation with

X denoting the design matrix of predictors, and β̂
(l)

, η̂(l) = Xβ̂
(l)

denoting the
parameter estimate and the fitted predictor in the lth step. Moreover, Φ(l) =
(Φ

(l)
1 , . . . , Φ(l)

n )T with Φ
(l)
i = (ϕ1(η̂

(l)
i ), . . . , ϕk(η̂

(l)
i ))T is the current design matrix

for the basis functions.

Initialization

We need two initialization values, β(0) and α(0). For β(0) we choose β(0) = 0p.
The initialization value for the coefficient vector of the basis functions α(0) is
generated by approximating h by a linear function, s · η + t, where t = h−1

0 (ȳ)
and the slope is chosen as a small value (s = 0.0001).

Boosting for Fixed Predictor

For fixed predictor η̂(l−1) = Xβ̂
(l−1)

the estimation of the response function
corresponds to fitting the model µ = h0((Φ

(l−1))T α̂(l−1) + (Φ(l−1))T â(l)) where

Φ(l−1))T α̂(l−1) is a fixed offset that represents the previously fitted value. One
step of penalized Fisher scoring has the form

â(l) = νh

(
(Φ(l−1))T D̂(l−1)(Σ̂

(l−1)
)−1D̂(l−1)Φ(l−1) + λhPh

)−1

·
·
(
Φ(l−1)

)T
D̂(l−1)(Σ̂

(l−1)
)−1(y − µ̂(l−1))

(3)

where

D̂(l−1) = diag

{
∂h0(ĥ

(l−1)(η̂
(l−1)
i )

∂h(l−1)(η)

}n

i=1

(4)

is the estimate of the derivative matrix evaluated at the estimate of the previous
step h0(ĥ

(l−1)(η) and

(Σ̂
(l−1)

) = diag
{

σ2(ĥ(l−1)(η̂
(l−1)
i ))

}n

i=1
(5)

is the matrix of variances evaluated at h0(ĥ
(l−1)(η)). Ph is the penalty matrix

which penalizes the second derivation of the estimated (approximated) response
function. The shrinkage parameter, which makes the procedure a weak learner,
is fixed by νh = 0.1.
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Componentwise Boosting for Fixed Response Function

Let h(.) be fixed and the design matrix have the form X = (x1|...|xp) with
corresponding response vector y = (y1, ..., yn)T . Componentwise boosting means
to update one parameter within one boosting step. Therefore one fits the model

µ = h0(h(Xβ̂
(l−1)

+ xjβj)), where Xβ̂
(l−1)

is a fixed offset and only the variable
xj is included in the model. Then penalized Fisher scoring for parameter βj has
the form

β̂
(l)
j = νp

(
xT

j D̂η

(l−1)
(Σ̂

(l−1)
)−1D̂η

(l−1)
xj

)−1

xT
j D̂η

(l−1)
(Σ̂

(l−1)
)−1(y−µ̂(l−1)), (6)

where νp = 0.1 and

D̂η

(l−1)
= diag

{
∂h0(ĥ(l−1)(η̂

(l−1)
i ))

∂η

}n

i=1

= diag

{
∂h0(ĥ(l−1)(η̂

(l−1)
i ))

∂h(l−1)(η)
· ∂ĥ(l−1)(η̂

(l−1)
i )

∂η

}n

i=1

(7)

is the matrix of derivatives evaluated at the values of the previous iteration and

Σ̂
(l−1)

= diag
{

σ2(h0(ĥ(η
(l−1)
i )))

}n

i=1
(8)

is the variance from the previous step.
The basic algorithm given in the following computes updates of the parameter

vector and the coefficients of the basic functions. In each step it is decided which
update is best and only one is executed. Thus in each step either the parameter
vector or the coefficients of the basic functions are refitted.

Algorithm: FlexLink

Step 1 (Initialization)

Set β̂ββ
(0)

= 0, η̂ηη(0) = 0. Compute D̂(0) = diag
{

h0(η̂
(0)
i )

}n

i=1
, (Σ̂

(0)
) =

diag
{

σ2(η̂i
(0))

}n

i=1
and determine α(0) as described previously.

Step 2 (Iteration)

For l = 1, 2, . . . , M

1. Predictor update
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• Compute for every j ∈ {1, . . . , p} the penalized estimate b̂j

(l)
=

(0, . . . , b̂
(l)
j , . . . , 0) based on one-step Fisher scoring (6) and deter-

mine the candidate update

β
(l)
j = β̂

(l−1)
+ b̂

(l)
j .

• Compute β̂
(l)

j = β
(l)
j /||β(l)

j || and the corresponding negative log-

likelihood function −l(y, h0(ĥ
(l−1)(Xβ̂

(l)

j ))).

• Choose the parameter vector β̂
(l)

opt which minimizes the negative

log-likelihood function and set β̂
(l)

= β̂
(l)

opt

2. Response function update

• Compute â(l) as described in (3) and set α̂(l) = α̂(l−1) + â(l)

• Compute ĥ(l)(η(l−1)) = Φα̂(l) and lα = −l(y, h0(ĥ
(l)(η(l−1)))).

3. Update choice

• If lα < lβ then α(l) is updated and β̂ remains unchanged, β̂
(l)

=

β̂
(l−1)

.

• If lα ≥ lβ then β̂
(l)

is updated and α̂ remains unchanged, α̂(l) =

α(l−1).

Further Details

If the transformation hT (.) in the generating model is considered as response
function it has to be monotone. The approximating transformation is given by
h0(ĥ(.)) where the outer function h0(.) is already a monotonically increasing link
function. In order to obtain a monotonically increasing response function h0(ĥ(.))
we have to restrict the estimation of ĥ(.) by a monotonicity constraint.

A sufficient condition for the B-Spline basis expansion to be monotonically
increasing is that the components of the coefficient vector α are ordered such
that αi ≤ αi+1 holds. In boosting methods this inequation must hold after every

update step, α
(l−1)
i + a

(l)
i ≤ α

(l−1)
i+1 + a

(l)
i+1. Therefore we constrain every update

step â to be from

A = {â(l) : â
(l)
2 − â

(l)
1 ≥ α̂

(l−1)
1 − α̂

(l−1)
2 , ..., â

(l)
k − â

(l)
k−1 ≥ α̂

(l−1)
k−1 − α̂

(l−1)
k }. (9)

Monotone functions can be obtained in several ways. After computing α̂(l) in
the lth step one can monotonize the components by use of isotone regression,
provided for example by the R-routine isoreg. Alternatively, one can solve the
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optimization problem that is behind the Fisher step in (3) with the additional
restriction that â is from ATherefore one minimizes

aT ΦTŴΦa − 2ΦTŴ
(
D̂(l−1)

)−1

(y − µ̂(l−1)), s.t. A

where Ŵ = D̂(l−1)(Σ̂
(l−1)

)−1D̂(l−1). Solutions can be obtained by use of the
R-package quadprog (see Turlach (2009)) which is able to solve a quadratic op-
timization problem with linear constraints. Results are very similar. In our ap-
plications we use quadprog. For the use of similar constraints see also Gertheiss
et al. (2009).

In step 3 of the algorithm a selection step is included in which it is determined
if the coefficients of parameters or the link function is updated. We tried several
alternatives but updating one of the sets of coefficients turned out to be most
efficient.

Choice of Tuning Parameter

There are two tuning parameter in the model: the number of boosting iterations
m which mainly steers variable selection and λh which controls the smoothness
of the response function and the number of response function updates. For de-
termining the appropriate tuple of tuning parameters π = (m, λh) we use K-fold
cross validation (CV). There are several reasons to use this procedure and not
to work with information-based criteria as used for example by Tutz and Leit-
enstorfer (2009). On the one hand Hastie (2007) suggests to use CV in boosting
procedures because the effective degrees of freedom can be underestimated by
using the trace of the hat-matrix. On the other hand the trace of the hat ma-
trix does not capture the complexity of a SIM because the complexity must be
measured on two stages, first the complexity of the predictor, i.e. the number of
influential covariables, and second the rawness of the estimated response function,
i.e. the trace of its hat-matrix. In addition, the two restrictions (monotonicity
of the response function and normalization of β) make the problem of finding
appropriate hat matrices more difficult.

In K-fold cross validation the data set is splitted K-times into a test data set
of size n/K and a training data set of size n − n/K. For every tuple of tuning
parameters π the model is fitted on the κ-th training data set obtaining γ̂π

κ =

(α̂π
κ , β̂

π
κ ). Then the deviance on the κ-th test set Dev(yκ

test, µ̂(γ̂π
κ |Xtest, π)) is

computed. The final πopt is determined by

πopt = argminπ∈M×Λ

{
K∑

κ=1

Dev(yκ
test, µ̂(γ̂π

m |Xκ
test, π)

}
(10)

In the following we choose m ∈ M := {1, ..., 1000} and λh ∈ Λ :=
{0.01, 0.1, 1, 10, 100}.
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3 Simulation Studies

Measures of Model Assessment

Some care should be taken when estimates are compared. We assume µi =
hT (xT

i βββ) where hT (.) is the unknown true transformation function and for the
true parameter (without intercept) ||β|| = 1 holds and the magnitude of ||β|| as
well as the intercept are absorbed into hT (.). Let the generating model without
restrictions be given by µi = hG(β0 + xT

i β0) with unrestricted parameter vector
β0, where hG is any monotone function. Then the model can always be rewritten
in the corresponding standardized true response function hT (.) by

µi = hG(β0 + xT
i β0) = hG(β0 + ||β0||(xT

i β0/||β0||)) = hT (η),

with η = β0 + ||β0||η, η = xT
i β, β = β0/||β0||. In particular when a given link

function like the canonical link is used, estimates cannot be compared directly to
the parameters ||β0|| for some generating link function hG(.). Therefore estimated
parameters are also standardized and one considers β̂ = β̂can/||β̂can||, where βcan

is the estimate resulting from the canonical link model.
Comparisons in this article always refer to corresponding standardized esti-

mates β̂. Therefore the difference between β and β̂ is measured by

MSEβ = ||β − β̂||2,

where ||β|| = 1 and ||β̂|| = 1. In addition, the accuracy of prediction is investi-
gated by use of the predictive deviances on an independent test set

Dev(test) = Dev(ytest, µ̂(γ̂πopt |Xtest, πopt).

The number of observations in the test data set is chosen by ntest = 5 · ntrain.

Procedures and Results

We compare our procedure with three procedures:

• The boosting procedure mboost with canonical link function (see Hothorn,
Bühlmann, Kneib, Schmid, and Hofner (2009)).

• L1 penalized GLM lasso with canonical link function (see Lokhorst, Ven-
ables, Turlach, and Maechler (2007) for Poisson and Friedman, Hastie, and
Tibshirani (2008) for the binary case).

• The ML-estimator with canonical link function for the full model.

Further we present a modified version of FlexLink which truncates small coeffi-
cients to zero. This modification of the FlexLink is explained in Section 4.
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The predictor matrix was generated as a N(0p, Σ)-distribution with Σ =
{σij}i, j∈{1, ..., p} where σij = 0.5, i ̸= j, σii = 1. We use two parameter vectors
with p = 20,

βa = (0.2, 0.4, −0.4, 0.8, 0, ..., 0)T ,
βb = (0.5, 0.5, −0.5, −0.5, 0, ..., 0)T ,

to generate η = Xβ. As distributions of the response we consider normal,
Poisson and binomial distribution. Further we consider two different response
functions for every distribution. So 12 different simulations settings were investi-
gated. They are denoted in the following way, ⟨dis⟩ ⟨resp⟩ ⟨beta⟩. For example,
the setting Bin2b has binomial distributed response, uses the second response
function and βb is the true parameter vector. The true response functions that
are used in the following, a approximation by the canonical link of it and the
50 estimated response fundtion are shown in Figure 3. The estimated response
function are for the case βa.

(1) Normal Distribution
In the Normal case we use the response functions

1. hT (η) = 3 · η3

2. hT (η) = sgn(η)5 · 3
√

η

which are shown in the first row of Figure 3. In addition an approximation of
hT (.) to the canonical response function, which in this case is linear, is shown
Therefore, hcan(η) = a + b · η is computed where a and b are chosen to minimize∫ 2

−2
(h(η) − hcan(η))2dη. The approximation is shown by the grey line. For the

first first response function the error term is ε ∼ N(0, 9I) and for the second
ε ∼ N(0, I). The results of the simulations are shown in Figure 4 and summarized
in Table 1. We included a modified version of Flex Link, called Flex Link (cut)
which will be introduced in the next section. Performance in terms of MSE and
predictive deviance is about the same as for Flex Link. Comparison to the other
procedures favours Flex Link which distinctly outperforms LASSO and mboost
in all settings.

(2)Poisson Distribution
In the Poisson case we consider the response functions:

1. hT (η) =
10

1 + exp(−5 · η)

2. hT (η) =
10

1 + exp(−10 · η − 10)
+

10

1 + exp(−10 · η + 10)

They are shown in the second row from Figure 3. Also the approximation of hT (.)
by the canonical response function is given. The results of the simulations are
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Figure 3: True response functions (black lines), approximating canonical re-

sponse functions (dashed lines) and estimated response functions (grey) of simu-

lation study.

shown in Figure 5 and summarized in Table 1. Flex Link outperforms LASSO
and mboost even more distinctly than in the normal distribution case.

(3)Binomial Distribution
For binomial responses the true response functions are

1. hT (η) = exp(− exp(−2 · η − 0.5)),
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Figure 4: Boxplots of model assessment measurements MSEβ (left) and Devtest

(right) in the normal case.

2. hT (η) =
0.25

1 + exp(−15 · η − 10)
+

0.75

1 + exp(−15 · η + 10)
.
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Figure 5: Boxplots of model assessment measurements MSEβ (left) and Devtest

(right) in the Poisson case.

Figure 3 shows the response function and the approximating canonical response
function. The second response function corresponds to the Gumbel-link and can

15



be approximated by the canonical logit-link quite well. The binomial case is a
challenge for the estimation of the unknown link function because the information
in 0-1 observations is weak and the true link function does not differ so much
from the canonical link. It is seen that there is not so much difference among
the selection procedures but all yield better results than MLE. We found that
increasing the number of boosting iterations beyond the optimal number mopt

yields quite good approximation of the link function but selection of relevant
predictors suffers.

FlexLink FlexLink (cut) mboost LASSO MLE

Normal distribution

Norm1a
MSEβ 0.0072 0.0046 0.0620 0.2705 0.1224
Dev(test) 0.7493 0.7778 3.4226 4.3310 3.5184

Norm2a
MSEβ 0.0044 0.0018 0.0163 0.0159 0.0419
Dev(test) 2.8895 2.8265 9.1622 9.0386 9.5827

Norm1b
MSEβ 0.0439 0.0401 0.0604 0.0446 0.1431
Dev(test) 19.3224 19.4391 27.5937 28.0246 28.3730

Norm2b
MSEβ 0.0032 0.0011 0.0065 0.0080 0.0224
Dev(test) 4.5385 4.3072 12.0554 12.0587 12.5424

Poisson distribution

Pois1a
MSEβ 0.0092 0.0063 0.0664 0.0615 0.1619
Dev(test) 979.60 966.41 2711.83 2696.37 2995.60

Pois2a
MSEβ 0.0123 0.0088 0.0708 0.0539 0.1246
Dev(test) 1262.12 1218.33 2354.94 2320.07 2445.86

Pois1b
MSEβ 0.0105 0.0065 0.0266 0.0232 0.0803
Dev(test) 1067.16 1063.71 2265.70 2226.17 2384.33

Pois2b
MSEβ 0.0253 0.0208 0.0896 0.0691 0.1395
Dev(test) 1256.51 1229.08 1806.42 1780.39 1846.76

Binomial distribution

Bin1a
MSEβ 0.0761 0.0804 0.0797 0.0843 0.1798
Dev(test) 813.30 809.57 802.25 796.64 886.73

Bin2a
MSEβ 0.0732 0.0734 0.0905 0.0800 0.2197
Dev(test) 760.35 761.97 818.05 789.27 1336.62

Bin1b
MSEβ 0.0836 0.0788 0.0610 0.0719 0.1515
Dev(test) 981.58 982.99 967.42 979.92 1070.33

Bin2b
MSEβ 0.0904 0.0948 0.0939 0.0930 0.1938
Dev(test) 988.73 998.56 1029.98 986.38 1411.32

Table 1: Medians of the model assessment measures for the settings of the

simulation study.
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Figure 6: Boxplots of model assessment measurements MSEβ (left) and Devtest

(right) in the binomial case.

4 Modified Estimator and Selection of Predictors

MSE and predictive deviance are important criteria in the comparison of fitting
procedures. However, in selection procedures the performance should also refer
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to the precision of the selection. Criteria by which selection can be measured are
in particular hit rate (proportion of correctly identified influential variables) and
false positives (proportion of non-influential variables dubbed influential).

One problem with simple boosting procedures is that some predictors are
selected just once or twice. The corresponding estimated parameters are very
small but are unequal zero. Performance of selection can be easily improved by
cutting off these small values. In the procedure called Flex Link (cut) we use
a truncated version of β̂. The components of estimate β̂ are compared to 1/p,
where p is the number of predictors, and components that are smaller than 1/p
are set to zero. Then the new estimate is re-standardized to have Euclidian norm
1. When used in the cross-validation procedure (10) one obtains the new optimal
tuning parameter π̃opt.

As is seen from Table 2, which gives the means of hits and false positive
rates for all settings, that the truncated version of Flex Link shows distinct
improvement. False positive rates are much smaller, hit rates are in most cases
the same as in simple FlexLink, or slightly smaller. Comparison to mboost and
LASSO are strongly in favour of FlexLink. The effect is illustrated in Figure 7
where hits and false positive rates for one setting are plotted in a ROC-type way.
The best performance would be the point (false positive rate, hit rate)=(0,1).
Among the considered procedures FlexLink (cut) shows the best approximation
to the optimal point.

18



0 5 10 15

0
1

2
3

4

FlexLink

false positive

hi
ts

0 5 10 15

0
1

2
3

4

FlexLink (cut)

false positive

hi
ts

0 5 10 15

0
1

2
3

4

mboost

false positive

hi
ts

0 5 10 15

0
1

2
3

4

LASSO

false positive

hi
ts

0 5 10 15

0
1

2
3

4

Means

false positive

hi
ts
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Last panel shows the means over simulations.
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FlexLink FlexLink mboost LASSO
(cut)

hits
false

hits
false

hits
false

hits
false

pos. pos. pos. pos.

Normal case

Norm1a 1.000 0.504 1.000 0.015 0.980 0.355 0.530 0.004
Norm2a 1.000 0.445 1.000 0.006 1.000 0.369 1.000 0.406
Norm1b 1.000 0.575 1.000 0.158 1.000 0.376 1.000 0.165
Norm2b 1.000 0.504 1.000 0.000 1.000 0.355 1.000 0.431

Poisson case

Pois1a 0.995 0.370 0.990 0.038 0.965 0.265 0.980 0.326
Pois2a 1.000 0.449 1.000 0.045 0.920 0.158 0.990 0.408
Pois1b 1.000 0.439 1.000 0.025 1.000 0.283 1.000 0.309
Pois2b 1.000 0.665 1.000 0.104 1.000 0.223 1.000 0.456

Binomial case

Bin1a 0.915 0.244 0.870 0.100 0.960 0.366 0.975 0.409
Bin2a 0.980 0.306 0.955 0.133 0.975 0.390 0.985 0.430
Bin1b 1.000 0.304 1.000 0.128 1.000 0.401 1.000 0.451
Bin2b 1.000 0.394 1.000 0.160 1.000 0.405 0.446 1.000

Table 2: Means of the hits and false positive rates.

5 Applications

5.1 Medical Care Data

In this section we consider the health care data from Dep and Trivedi (1997).
The original data is from the US National Medical Expenditure Survey and
is available from the data archive of the Journal of Applied Econometrics
(http://www.econ.queensu.ca/jae/1997-v12.3/deb-trevidi/). We use the
data.frame from Zeileis (2006). The response variable that is considered is the
number of physician office visits (ofp), which potentially depends on the variables
given in Table (3). In our investigation we use only male patients, which reduces
the sample size to n = 1778 from the total available sample of 4406 individuals.

We compare the same estimating procedures as in Section 3. For measuring
the prediction performance 25 splits into a training data set of ntrain = 1185 and a
test data set of ntest = 593 were used. The tuning parameter λh of the FlexLink is
determined by 5-fold cross validation to λh = 100. Figure 8 shows the predictive
deviances in the test data and the fitted link functions. For illustration we give
the the estimated response functions in Figure 10 (for male patients which visit
physician office maximum 30 times). It is seen that the link function for the
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flexible model differs from the canonical link in particular for large values of the
linear predictor. While the canonical link still increases distinctly the flexible
link is very flat. The estimated link functions are very stable across splits. It is
seen from Figure 8 that prediction for the flexible model with variable selection
distinctly outperforms the competitors. From Table 4 it is seen that the flexible
link procedure reduces the number of coefficients.

Label Explanation

exclhlth = 1 if self-perceived health is excellent
poorhlth = 1 if self-perceived health is poor
numchron number of chronic conditions

(cancer, heart attack, gall bladder problems, emphysema
, arthritis, diabetes, other heart disease)

adldiff = 1 if the person has a condition that limits activities
of daily living

noreast = 1 if the person lives in northeastern US
midwest = 1 if the person lives in the midwestern US
west = 1 if the person lives in the western US
age age in years divided by 10
black = 1 if the person is African American
married = 1 if the person is married
school number of years of education
faminc family income in $10 000
employed = 1 if the person is employed
privins = 1 if the person is covered by private health insurance
medicaid = 1 if the person is covered by Medicaid

Table 3: Variable description for health care data

The estimated parameters are given in Table 4. Since data are strongly
overdispersed (Φ̂ = 7.736) we give quasi-likelihood estimates (QLE) instead of
the maximumlikelihood estimates. It is seen that all covariates with p-values
smaller than 0.05 for QLE were selected by FlexLink an FlexLink (cut). The
latter procedures select two mare covariates, covariate 7 and 10. In Figure 9 we
show the error bars across 300 bootstrap samples. The circles mark the parameter
estimate from Table 4 and the whiskers are the 0.975- and 0.025-quantiles deter-
mined by bootstrapping. We used simple pairwise boostrap. The data contains
n = 1778 pairs (yi, xi), i = 1, ..., n, where yi is the response value and xi is the
corresponding vector of covariables. We sample b = 300 bootstrap samples. Each
boostrap sample is sampled by drawing n pairs (yi, xi) with replacement. We
achieve (y∗

b , X∗
b), b = 1, ..., 300, bootstrap samples with n observations whereby

some observations are equal. Then we fit models on (y∗
b , X∗

b), b = 1, ..., 300, and
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Figure 8: Left panel: Boxplots of predictive deviance on test data sets across

50 random splits. Right panel: Estimated response function for health care data

across 50 random splits.

Number Variable FlexLink FlexLink(cut) mboost LASSO QLE (p-value)

1 exclhlth 0.0000 0.0000 -0.2023 -0.0382 -0.1979 (0.050)
2 poorhlth 0.2083 0.3614 0.3203 0.2546 0.3134 (0.000) *
3 numchron 0.9492 0.8849 0.7042 0.7971 0.6854 (0.000) *
4 adldiff 0.0000 0.0000 0.0250 0.0000 0.0258 (0.766)
5 noreast 0.0000 0.0000 -0.1623 -0.0916 -0.1318 (0.177)
6 midwest 0.0000 0.0000 0.0451 0.0000 0.0636 (0.483)
7 west 0.0419 0.0866 0.0725 0.0062 0.0840 (0.359)
8 age 0.0000 0.0000 -0.0592 0.0000 -0.0142 (0.875)
9 black 0.0000 0.0000 -0.1693 0.0000 -0.1276 (0.208)
10 married 0.0364 0.0878 0.1166 0.0734 0.1420 (0.119)
11 school 0.1725 0.1965 0.3949 0.4817 0.4224 (0.000)*
12 faminc 0.0000 0.0000 0.0000 0.0000 -0.0064 (0.939)
13 employed 0.0000 0.0000 0.0138 0.0000 0.0254 (0.772)
14 privins 0.1508 0.1801 0.3318 0.2292 0.3555 (0.001)*
15 medicaid 0.0000 0.0000 0.1196 0.0000 0.1462 (0.124)

Table 4: Parameter estimates for medical care data set.

achieve the corresponding estimates β̂
∗
b . Finally we computed the quantils of the

distribution of the components of estimates β̂
∗
b , b = 1, ..., 300.
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Figure 9: The error bar plot across 300 bootstrap samples.

It is remarkable that mboost selects nearly all variables. The LASSO and
the FlexLink select a similar set of variables. Further by estimating the response
function flexibly there is a tendency that the smaller values of yi are accumulate
on the left side what seems to be reasonable for an increasing response function.
This effect can not be find for the other procedures.

5.2 Noisy Miner Data

In this section we consider the noisy miner data from Maron (2007),
which are available at http://www.sci.usq.edu.au/staff/dunn/
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Figure 10: Response function of the four procedures with optimal tuning pa-

rameter determined by 5-fold cross validation and the QLE . Grey circles mark

the observed response values yi at the estimated value η̂i.

Datasets/tech-glms.html. The data set has an biological background.
Three 20 minutes surveys were conducted in each of 31 2ha belt transects
in buloke woodland patches within the Wimmera Plains of western Victoria,
Australia. The considered response is the number of species from a list of birds
(number of declining species, in short declinerab). It is of particular interest
how the number of species is determined by the presence of the noisy miner,
which is an aggressive competitor. The collected explanatory variables are given
in Table (5). Figure 11 shows the fitted response function together with the
approximated canonical link function. It is seen that in particular for large
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Number Label Explanation

1 eucs number of eucalypts in each 2ha transect
2 area area [ha] of remnant patch vegetation

in which the transect was located
3 grazed whether the area was grazed (= 1) or not (= 0)
4 shrubs whether shrubs were present (= 1) or not (= 0)
5 buloke number of buloke trees in each transect
6 timber number of pieces of fallen timber
7 finelitt percentage of fallen litter on the ground
8 minerab number of observed noisy miners

Table 5: Variable description of the noisy miner data.

values of the linear predictor the two link functions differ strongly; in that
area the flexible response function is much steeper than the canonical response
function. The prediction performance is measured by using 50 splits into a
training data set of ntrain = 21 and a test data set of ntest = 10. The tuning
parameter λh of the FlexLink was determined by 5-fold cross validation. Figure
11 shows the predictive deviances in the test data. It is seen that prediction for
the flexible model with variable selection distinctly outperforms the competitors.
Table 6 shows parameter estimates for the various models. It turned out that
Flex Link selects one variable, namely the number of noise miners, which seems
to be responsible for the deacrease in species. In contrast mboost selects five
predictors and lasso three. Since the data are strongly overdispersed (Φ̂ = 4.647)
we used the quasi-likelihood estimator (QLE) instead of the MLE. QLE also
suggests that only one variable in the linear predictor is relevant. Figure 12
shows the estimates for the 50 random splits by boxplots. It illustrates that the
estimates are very stable for the flixble link procedure.

Number Variable FlexLink FlexLink mboost LASSO QLE (p-value)
(cut)

1 eucs 0.0000 0.0000 0.0000 0.0000 0.0557 (0.264)
2 area 0.0000 0.0000 -0.0494 -0.0726 -0.0249 (0.168)
3 grazed 0.0000 0.0000 0.0000 0.0000 -0.5010 (0.430)
4 shrubs 0.0000 0.0000 0.1074 0.0000 -0.2569 (0.717)
5 buloke 0.0000 0.0000 0.0938 0.0505 0.0032 (0.345)
6 timber 0.0000 0.0000 0.0720 0.0000 0.0024 (0.896)
7 finelitt 0.0000 0.0000 0.0000 0.0000 0.0023 (0.910)
8 minerab -1.0000 -1.0000 -0.9859 -0.9961 -0.8242 (0.001)*

Table 6: Standardized parameter estimates for the whole noisy miner data set

normed to length equal to 1.
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Figure 12: The error bar plot across 300 bootstrap samples.
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6 Concluding Remarks

A flexible estimation of the response function combined with variable selection is
proposed. It has been demonstrated that the method improves parameter estima-
tion and prediction in the presence of irrelevant variables. The method works for
generalized linear models, improvement is usually strong but less impressive for
binary responses where information is weak. The modified version FlexLink (cut)
shows much better variable selection performance without suffering in accuracy
concerning estimation and prediction.

We focussed on the estimation of link functions for generalized linear models
and therefore included a monotonicity restriction for the response function. In
future work the monotonicity restriction shall be dropped resulting in generalized
single-index models (compare Cui, Härdle, and Zhu (2009). Then information-
based criteria like AIC can be used since the hat matrix of boosting can be
derived (for AIC in single-index models compare Naik and Tsai (2001)). The use
of information-based criteria is attractive because it could reduce computational
costs.
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