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Abstract

Indices of biotic integrity (IBI) have become an established tool to quan-
tify the condition of small non-tidal streams and their watersheds. To
investigate the effects of watershed characteristics on stream biological
condition, we present a new technique for regressing IBIs on watershed-
specific explanatory variables. Since IBIs are typically evaluated on an
ordinal scale, our method is based on the proportional odds model for
ordinal outcomes. To avoid overfitting, we do not use classical maximum
likelihood estimation but a component-wise functional gradient boosting
approach. Because component-wise gradient boosting has an intrinsic
mechanism for variable selection and model choice, determinants of biotic
integrity can be identified. In addition, the method offers a relatively sim-
ple way to account for spatial correlation in ecological data. An analysis
of the Maryland Biological Streams Survey shows that nonlinear effects of
predictor variables on stream condition can be quantified while, in addi-
tion, accurate predictions of biological condition at unsurveyed locations
are obtained.
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1 Introduction

In view of the growing impact of humans on their natural environment, conserv-
ing and managing small streams and their watersheds have become important.
Policy makers and land managers must assess the ecological effects of their
decisions on streams, but also have to investigate the impacts of stream degra-
dation on human health and the quality of life. For these reasons, a detailed
understanding of the relationship between anthropogenic stressors and stream
ecosystems is essential (Cushing and Allan 2001, USEPA 2006, Maloney et al.
2009). To develop that understanding, ecologists and statisticians need to quan-
tify how watershed characteristics affect stream biological condition. Because
small streams are numerous, assessing the biological condition of all streams in a
landscape would be logistically impractical and cost prohibitive. It is therefore
necessary to develop predictive models for site-specific stream condition using
data from a limited number of sample sites. Ideally, those models would both
quantify the effects of anthropogenic stressors on stream condition and accu-
rately predict biological condition at unsurveyed locations (USEPA 2006). In
recent years, a wide range of statistical tools to characterize and to model the
condition of small streams have been developed (see, e.g., Barker et al. 2006,
Collier 2009, Maloney et al. 2009, or Cooper 2009 for recent studies in this field).

The responses of streams to anthropogenic stress are often examined using
biological metrics that describe biological conditions from structural and func-
tional measures of the biological community (Karr 1991, Barbour et al. 1999).
However, single metrics only measure a single feature of the community (e.g.,
number of taxa or diversity) and may not capture the effects of multiple stres-
sors. Therefore, stream assessments usually compile several single metrics that
are selected a priori to relate stream impairment to anthropogenic stress and
then combine those metrics into a single multimetric index of biotic integrity
(“IBI”, Karr et al. 1986, Schleiger 2000, Southerland et al. 2005). These IBI
indicators can then be statistically related to watershed-specific predictor vari-
ables using modeling approaches such as linear or ordinal regression, principal
component analysis, or tree-based methods such as CART and random forests.

In this paper, we address the problem of developing predictive models for
indices of biotic integrity for fish (FIBI) and benthic macroinvertebrates (BIBI).
Both indices have become widely established tools for characterizing stream
biological condition (Karr et al. 1986, Barbour et al. 1999, Southerland et al.
2005). When modeling FIBI and BIBI indicators, the following key issues need
to be addressed:

1. IBI indicators are typically evaluated on an ordinal scale (e.g., using cate-
gories ranging from “poor condition” to “very good condition”). Although
it is possible to use linear regression methods to model ordinal indicators,
ordinal regression models such as the proportional odds model are a more
appropriate choice (McCullagh 1980, Agresti 2002, Bigler et al. 2005).
However, if maximum likelihood estimation is used to fit the model, and
a large number of predictor variables are considered, proportional odds
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models tend to overfit the data. Usually, this leads to a decrease in pre-
diction accuracy. On the other hand, heuristic strategies to control the
number of predictors are often biased and imprecise (Rawlings et al. 1998).

2. Stream condition is affected by many factors that are often highly corre-
lated. Moreover, spatial correlation is usually evident in ecological data
(Peterson and Urquhart 2006, Gelfand 2007). A statistical model must
be able to identify the most important factors and to account for spatial
correlation in the data. In addition, prediction models should be able to
represent nonlinear relationships that often exist between predictors and
indicators of stream biological condition.

3. It is well-known that maximizing prediction accuracy does not necessarily
go hand in hand with finding a statistical model that is easy to interpret.
Common examples are statistical learning techniques such as bagging or
random forests (Breiman 2001, Cutler et al. 2007), which yield “black-box”
predictions that are typically accurate but lack interpretability. This is
not desirable in situations where effects of predictor variables need to be
quantified.

The aim of this paper is to develop a statistical method for modeling IBI
indicators that simultaneously addresses all issues outlined above. Following
Agresti (2002), we use the proportional odds model framework to accomodate
the ordinal structure of IBI indicators (issue 1). To avoid overfitting the data,
however, we do not use classical maximum likelihood estimation to obtain model
estimates but a component-wise gradient boosting approach (for an overview of
boosting methods, see Bühlmann and Hothorn 2007). Because component-wise
gradient boosting has a built-in mechanism for variable selection and shrinkage
of estimates, the method can be used to obtain regularized fits of many types of
statistical models. Consequently, heuristic techniques for variable selection and
model choice are not needed.

In recent years, various authors have shown that gradient boosting can be
modified such that prediction accuracy is optimized while, in addition, a mean-
ingful interpretation of the model estimates is possible (Friedman et al. 2000,
Bühlmann and Yu 2003, Bühlmann and Hothorn 2007, Kneib et al. 2009). Re-
garding issue 3, this is exactly what one wants to achieve: The structure and the
interpretability of the proportional odds model is preserved while, in contrast to
maximum likelihood estimation, prediction accuracy is maximized by fitting the
model in a regularized way. Most notably, by using penalized regression splines
to model effects of covariates, nonlinear relationships and spatial information
can be easily incorporated into the prediction model. This is important with
respect to issue 2, cf. Kneib et al. (2008, 2009).

While component-wise gradient boosting has become an established tool to
fit continuous and binary data, it has not been possible so far to use boosting
methods for fitting proportional odds models. The reason for this is that the
boosting algorithms considered by Bühlmann and Hothorn (2007) do not allow
for the estimation of scale parameters. The proportional odds model, however,
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involves the constrained estimation of an ordered set of threshold parameters
that have to be estimated simultaneously with the other model parameters. To
take this problem into account, we construct a new boosting algorithm that
combines the methods considered by Bühlmann and Hothorn (2007) with an es-
timation approach suggested by Schmid et al. (2010). With the latter approach,
it is possible to adapt boosting algorithms to model families depending on a set
of scale parameters. As will be shown, the method by Schmid et al. (2010)
can be re-formulated such that fitting a proportional odds model via boosting
techniques is feasible.

We will analyze IBI data from the Maryland Biological Streams Survey
(MBSS) to demonstrate that the new algorithm is an efficient modeling tool
for the biological assessment of small streams and their watersheds. Boosting
predictions of FIBI and BIBI indicators are similar to predictions obtained from
other established statistical techniques (see, e.g., Maloney et al. 2009), but spa-
tial covariate patterns are detected and model estimates can be interpreted in a
more meaningful way. This is possible because the structure of the proportional
odds model allows for inspection and visualization of marginal predictor effects.
As a consequence, the model can be used both for extrapolating estimates of
stream biological condition to unsurveyed sites and exploring the determinants
of biotic integrity.

The rest of the paper is organized as follows: In Section 2, the new algorithm
is presented, along with a number of technical details involved in choosing appro-
priate tuning parameters. The characteristics of the algorithm are demonstrated
in Section 3. Here, the new method is benchmarked against other regression
techniques, and an analysis of the MBSS data is carried out. A summary and
discussion of the main findings of the paper is given in Section 4. Additional
figures and technical details are presented in the Appendix of the paper.

2 Methods

Proportional odds model
Let Y be an IBI outcome with K ordered categories and denote the vector

of predictor variables by X = (X1, . . . ,Xp). Let (X1, Y1), . . . , (Xn, Yn) be a
set of independent realizations of (X,Y ). Define X := (X1, . . . , Xn) and Y :=
(Y1, . . . , Yn).

The proportional odds model is given by

P(Y ≤ k) =
1

1 + exp(f(X)− θk)
, k = 1, . . . ,K, (1)

where f = f(X) is a prediction function depending on the predictor variables
and

−∞ < θ1 < . . . < θK−1 < θK =∞ (2)

is a set of threshold values that has to be estimated simultaneously with f . In
many applications, f is restricted to being a linear function of the covariates
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(see Agresti 2002). To take nonlinear predictor effects into account, we will use
a more flexible approach: f will be modeled as the sum of (possibly nonlinear)
marginal prediction functions f1(X1), . . . , fp(Xp), i.e.,

f(X) ≡ f(X1, . . . ,Xp) =

p∑

j=1

fj(Xj) (3)

(cf. Kneib et al. 2009). With this approach, the model has essentially the
same structure as a generalized additive regression model (Hastie and Tibshirani
1990).

From (1) we obtain

P(Y = 1|X) =
1

1 + exp(f − θ1)
,

P(Y = 2|X) =
1

1 + exp(f − θ2)
− 1

1 + exp(f − θ1)
,

...

P(Y = K − 1|X) =
1

1 + exp(f − θK−1)
− 1

1 + exp(f − θK−2)
,

P(Y = K|X) = 1− 1

1 + exp(f − θK−1)
, (4)

which allows for specifying the log-likelihood of the proportional odds model
(see Appendix A). By definition, the probability of observing a large outcome
category increases with the magnitude of the estimates of fj , j = 1, . . . , p. For
two sites with covariate vectors X1 and X2, (4) implies that the log ratio of
cumulative odds does not depend on the category k under consideration:

log

(
P(Y ≤ k|X1)/P(Y > k|X1)

P(Y ≤ k|X2)/P(Y > k|X2)

)
= f(X2)− f(X1) . (5)

Equation (5) is the well-known “proportional odds assumption” which leads to
estimates that are interpretable in terms of cumulative odds ratios.

Component-wise gradient boosting
As stated in the introduction, overfitting of the data can be avoided if

component-wise boosting is used to fit the proportional odds model. In the
following, we will adapt the component-wise gradient boosting algorithm consid-
ered by Bühlmann and Hothorn (2007) to the proportional odds model specified
above.

In the boosting framework, the aim is to estimate the “optimal” prediction
function f∗ and the “optimal” set of threshold values θ∗ := (θ∗1 , . . . , θ

∗
K−1)

defined by

(f∗, θ∗) := argmin
f,θ

EY ,X

[
ρ(Y , f(X), θ)

]
, (6)
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where the loss function ρ is assumed to be differentiable with respect to f . In
case of the proportional odds model, it is a natural choice to set ρ equal to the
negative log-likelihood derived from (4). The full log-likelihood function and its
derivative are given in Appendix A.

Instead of minimizing the theoretical mean given in (6), we consider the
empirical risk R :=

∑n
i=1 ρ(Yi, f(Xi), θ) and use the following new boosting

algorithm to minimize the R over f and θ:

1. Initialize the n-dimensional vector f̂ [0] and the threshold parameter esti-

mates θ̂
[0]
1 , . . . , θ̂

[0]
K−1 with offset values.

2. For each of the predictor variables specify a base-learner, i.e., a regression
estimator with one input variable and one output variable. Set m = 0.

3. Increase m by 1.

4. (a) Compute the negative gradient − ∂ρ
∂f and evaluate at f̂ [m−1](Xi),

θ̂[m−1] =
(
θ̂
[m−1]
1 , . . . , θ̂

[m−1]
K−1

)
, i = 1, . . . , n. This yields the nega-

tive gradient vector

U [m] =
(
U

[m]
i

)
i=1,...,n

:=

(
− ∂

∂f
ρ
(
Yi, f̂

[m−1](Xi), θ̂
[m−1]

))

i=1,...,n

.

(b) Fit the negative gradient vector U [m] to each of the p predictor vari-
ables separately by using the base-learners specified in step 2. This
yields p vectors of predicted values, where each vector is an estimate
of the negative gradient vector U [m].

(c) Select the base-learner that fits U [m] best according to theR2 goodness-
of-fit criterion. Set Û [m] equal to the fitted values of the best model.

(d) Update f̂ [m] ← f̂ [m−1] + ν Û [m], where 0 < ν ≤ 1 is a real-valued
step length factor.

5. Plug f̂ [m] into the empirical risk function
∑n
i=1 ρ(Yi, f, θ) and minimize

the empirical risk over θ. Set θ̂[m] equal to the newly obtained estimate
of θ∗.

6. Iterate Steps 3 to 5 until the stopping iteration mstop is reached (the choice
of mstop will be discussed below).

In the following, we will refer to the boosting algorithm introduced above as
“proportional odds boosting” (P/O boosting). Steps 1 to 4 of the P/O boost-
ing algorithm correspond to the classical gradient boosting approach discussed
in Bühlmann and Hothorn (2007). From step 4 it is seen that the algorithm
descends the gradient of the empirical risk R, which is the main feature of all
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gradient boosting algorithms. In each iteration, an estimate of the true neg-
ative gradient of R is added to the current estimate of f∗. Consequently, R
is minimized in a stagewise fashion, and a structural (regression) relationship
between Y and X is established. Obviously, using P/O boosting corresponds to
replacing classical Fisher scoring algorithms for maximum likelihood estimation
of f∗ (McCullagh 1980) by a gradient descent algorithm in function space. As
seen from steps 4(c) and 4(d), the P/O boosting algorithm additionally carries
out variable selection, as only one base-learner (i.e., one component of X) is se-

lected for updating f̂ [m] in each iteration. Due to the additive update, the final
boosting estimate at iteration mstop can be interpreted as an additive prediction
function, as defined in (3). In step 5, the estimation approach of Schmid et al.
(2010) is used to obtain updates of θ. Here, the empirical risk is minimized
over θ, using the current estimate of f∗ as offset value. Note that step 5 of
the P/O algorithm involves the constrained estimation of an ordered set of pa-
rameters, which has not been considered by Schmid et al. (2010). As shown in
Appendix B, however, the constrained estimation problem can be re-formulated
as an unconstrained problem, so that the method by Schmid et al. (2010) can
be applied.

Specification of base-learners
It is clear from step 4 of the P/O boosting algorithm that the specification

of the base-learners is crucial for interpreting the model fit. Here it is important
to keep in mind that, due to the additive update in step 4(d), the estimate of a
marginal function fj at iterationmstop has the same structure as the base-learner
used in each iteration. For example, fj is linear in Xj if the base-learner used
to model fj in step 4(b) is a simple linear model (cf. Bühlmann and Hothorn
2007, p. 484). Similarly, fj is a smooth function of Xj if the corresponding
base-learner is smooth as well.

Concerning the choice of appropriate base-learners, we follow the approach
used by Kneib et al. (2009): The marginal functions fj corresponding to contin-
uous predictors are either modeled as linear functions or as penalized regression
splines (“P-splines”, cf. Wood 2006, Schmid and Hothorn 2008, Kneib et al.
2009), where selection of the best modeling alternative (smooth vs. linear) is
carried out automatically by the P/O boosting algorithm. To do this, we mod-
ify step 2 of the P/O algorithm as follows: For each covariate, we specify two
competing base-learners, namely a linear base-learner and a smooth P-spline
deviation from the linear base-leaner (cf. Kneib et al. 2009, p. 628). Conse-
quently, due to the base-learner selection carried out in step 4(c), the marginal
functions fj depending on continuous predictors become either linear or smooth.

To account for spatial dependency between neighboring sample sites, we
additionally include a smooth function quantifying marginal spatial effects into
the model. This function depends on the coordinates of the site locations and is
added to the other functions specified in (3), see Kneib et al. (2008, 2009). As
a base-learner for the marginal spatial effect we use a P-spline tensor product
surface depending on the UTM easting and northing coordinates of the site
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locations. Thus, denoting the coordinates by XE and XN, the spatial effect
becomes a smooth marginal surface fsp(XE,XN) depending on the bivariate
“predictor” variable (XE,XN). As noted by Kneib et al. (2008), fsp(XE,XN)
can be interpreted as the realization of a spatially correlated stochastic process,
emphasizing the fact that one needs to account for spatial correlation in the
data.

Finally, we model categorical predictors using dummy coded binary variables
as base-learners. As a consequence, the functions fj correspond to linear cate-
gory effects in these cases. Detailed descriptions of P-splines and P-spline tensor
product surfaces have been given by Fahrmeir et al. (2004), Wood (2006) and
Kneib et al. (2009).

Tuning parameters
In the literature, it has been argued that boosting algorithms should gener-

ally not be run until convergence. Otherwise, overfits resulting in a suboptimal
out-of-sample prediction accuracy are likely (see Bühlmann and Hothorn 2007).
As a consequence of this “early stopping” strategy, the stopping iteration mstop

becomes the main tuning parameter of the P/O algorithm. In the following, we
will use five-fold cross-validation to determine the value ofmstop, i.e., mstop is the
iteration with lowest predictive empirical risk. Alternatively, information crite-
ria such as AIC or BIC could be used to determine the stopping iteration mstop.
For example, in case of Gaussian regression, a corrected AIC criterion could
be calculated in each boosting iteration, and the stopping iteration would be
given by the iteration with smallest AIC (Bühlmann and Hothorn 2007, p. 495).
In this paper, however, we will consider cross-validation instead of information
criteria because the latter have been criticized as being systematically biased
towards stopping boosting algorithms too late (see Hastie 2007). In contrast to
the choice of the optimal stopping iteration, the choice of the step length fac-
tor ν has been shown to be of minor importance for the predictive performance
of a boosting algorithm. The only requirement is that the value of ν is ”small”,
such that a stagewise adaption of the prediction function is possible (see Schmid
and Hothorn 2008). We will set ν = 0.1.

Regularization
A major consequence of the early stopping strategy is that the estimates

of f∗ are shrunken towards zero. In fact, using a small step length ν ensures
that marginal function estimates increase “slowly” in the course of the P/O
boosting algorithm but stop increasing as soon as the optimal stopping itera-
tion mstop is reached. As stated above, the optimal stopping iteration is chosen
such that out-of-sample prediction accuracy is optimized within the propor-
tional odds framework. In other words, stopping the P/O boosting algorithm
at the optimal iteration implies that the amount of shrinkage is chosen such that
the predictive power of the proportional odds model is maximal. Shrinkage is a
well-established strategy to regularize model estimates: Estimates tend to have
a slightly increased bias but a decreased variance, thereby improving prediction
accuracy. On the other hand, the choice of the base-learners specified above en-
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sures that black-box predictions are avoided and marginal effect estimates are
obtained. Although, in contrast to maximum likelihood estimation, estimates
are shrunken towards zero, the main characteristics (and thus the interpretabil-
ity) of the proportional odds model are preserved.

Prediction
For given estimates of f∗ and θ∗, the predicted outcome category (denoted

by k∗) is the category with highest posterior probability, i.e.,

k∗ = max
k

P̂(Y = k|X) , (7)

which can be computed from (4). Thus, misclassification rates and weighted
kappa indices for ordinal data (Fleiss and Cohen 1973) can be used to evaluate
the predictive power of the P/O boosting fit.

Confidence intervals
Since boosting estimates are shrunken towards zero, computation of con-

fidence intervals for marginal functions is infeasible. This problem can also
be found with other shrinkage methods such as ridge regression or the Lasso
(Tibshirani 1996). With the help of bootstrap methods, however, it is possible
to approximate the distribution of the boosting estimates in a non-parametric
fashion (see Section 3). Consequently, the bootstrapped estimates can be used
to assess whether a function estimate is systematically different from zero.

As an alternative to approximating the distribution of effect estimates via
bootstrap sampling, Bayesian methods could be used to fit the proportional
odds model and to calculate posterior distributions of marginal predictor ef-
fects. This approach would require Bayesian methods for shrinkage (such as
the Bayesian Lasso, Park and Casella 2008) and variable selection (O’Hara and
Sillanpää 2009) to be adapted to geoadditive proportional odds models. While
being potentially useful, the Bayesian approach is conceptually different from
the proposed P/O boosting algorithm and will therefore not be considered in
this paper.

3 Analysis of the Maryland Biological Streams
Survey

Data sources and pre-processing
In this section, we apply the P/O boosting algorithm to develop a predic-

tive model for fish (FIBI) and benthic macroinvertebrates (BIBI) indicators of
biological condition. Our study is focused on the 23, 408 km2 part of Maryland,
USA, lying in the Chesapeake Bay watershed (Figure 1). This area includes
six Level III ecoregions: Central Appalachians, Ridge and Valley, Blue Ridge,
Northern Piedmont, Southeastern Plains, and Middle Atlantic Coastal Plains
(see Omernik 1987). Climate types range from cold with hot summers in the
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mountainous western area to temperate with hot summers toward the south-
east; vegetation patterns range from northern hardwood forests in the highlands
to oak, hickory, pine, and southern mixed forests of the Coastal Plains. The
Appalachian, Ridge and Valley, and Blue Ridge ecoregions are underlain largely
by folded and faulted sedimentary rocks. The Piedmont ecoregion is underlain
by crystalline igneous and metamorphic rocks, and the Plains ecoregions are
underlain by unconsolidated sediments.

Our analysis is based on the Maryland Biological Streams Survey (MBSS),
which is an on-going monitoring program designed to describe water quality in
1st- to 4th-order non-tidal streams within the state of Maryland, USA (USEPA
1999). MBSS scientists used a probabilistic sampling design stratified by major
watershed and stream order to sample approximately 2500 sites from 1994 to
2004 (cf. Southerland et al. 2005). An MBSS site is a ∼ 75 m stream seg-
ment where data were collected for stream physical and hydrological attributes
(e.g., flow, width, depth, and embeddedness), streamwater chemistry, location
(latitude and longitude), riparian conditions, and biological communities (i.e.,
benthic macroinvertebrates and fish). For a detailed description of the MBSS,
see http://www.dnr.state.md.us/streams. We considered only the first record
for sites that were sampled more than once. This resulted in a database con-
taining measurements at n = 1573 stream sites (see Figure 1). There were 96
sites that had no fish collected, and these sites were not used to examine FIBI,
leaving n = 1477 sites for the FIBI models. Land cover data was obtained from
the 2001 US National Land Cover Database (Homer et al. 2004). Watershed
predictors were calculated in ARCGIS using watershed boundaries and relevant
environmental coverages.

Individual IBIs were developed by MBSS scientists separately for each subre-
gion of the study area and included individual metrics specific to each subregion
(Appendix C, see Southerland et al. 2005 for IBI developments and for a com-
plete list of metrics in each IBI). Following Maloney et al. (2009), we used
an ordinal scale to quantify BIBI and FIBI indicators (1 = “very poor site”,
2 = “poor site”, 3 = “fair site”, 4 = “good site”). FIBI and BIBI indicators
were regressed on site-specific predictor variables using the P/O boosting algo-
rithm introduced in Section 2. Predictors included UTM easting and northing
coordinates, watershed land use, dominant ecoregion (Omernik 1987), and the
“distance to mainstem” measured from the MBSS sampling site to a mainstem
tributary with > 500 km2 in upslope drainage area. A value of 0 was assigned
to sites that drained into the Chesapeake Bay before reaching a mainstem river.
For a detailed description of the predictor variables, see Appendix D. Predictors
with a highly right-skewed distribution were log transformed before statistical
analysis.
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Figure 1: The Maryland portion of the Chesapeake Bay watershed, its major
ecoregions, and stream assessment sites where data were collected. Inset shows
the study area (dark gray) in relation to the Chesapeake Bay watershed (light
gray).

Benchmark analysis
We first investigated the prediction accuracy of the P/O boosting algorithm,

i.e., the ability of P/O boosting to predict the FIBI and BIBI values at unsur-
veyed sites. To do this, we carried out a benchmark experiment using 100
bootstrap samples drawn from the full data set. The bootstrap samples were
used as training data sets, and the P/O boosting algorithm was applied to these
samples. Five-fold cross-validation was carried out on the training data sets to
determine the values of mstop. In a next step, we applied the 100 prediction
rules obtained from P/O boosting to the respective sets of out-of-bootstrap ob-
servations (“bootstrap cross-validation”, see, e.g., Hothorn et al. 2005). The
predictions and the true outcome values of the 100 out-of-bootstrap data sets
were used to compute classification rates and weighted kappa values.

To benchmark the P/O boosting algorithm against other established tech-
niques, we also considered the random forest method (Breiman 2001), a non-
parametric classification technique based on ensembles of decision trees. Ran-
dom forests have been shown to be one of the most accurate methods for pre-
dicting IBI indicators (Maloney et al. 2009). Because the random forest method
neither requires the proportional odds assumption nor the additivity of the pre-
diction function specified in (3), it is less restrictive than P/O boosting. As
above, we estimated prediction accuracy using the same bootstrap samples to
compute classification rates and weighted kappa values.

Table 1 shows that boosting and the random forest method had similar
classification rates for both indices of biotic integrity. For the FIBI indica-
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tor, mean classification rates were nearly equal (P/O boosting: 51.4%, random
forest method: 51.2%) while in case of the BIBI indicator, classification rates
were slightly lower for P/O boosting (45.4%) than for random forests (46.6%).
Weighted kappa values obtained from P/O boosting were larger on average
than the corresponding weighted kappa values obtained from random forests
(Table 2). This result can be explained by the fact that P/O boosting explic-
itly accounts for the ordinal structure of the BIBI and FIBI indicators: Due to
the structure of the proportional odds model, misclassification of observations
into neighboring categories tends to be more likely than misclassification into
categories that are “far away” from the true category. Note that all weighted
kappa values obtained from P/O boosting were larger than 0.5, i.e., P/O boost-
ing predicted significantly better than chance alone. Table 1 also suggests that
classification rates of outcome categories are considerably higher if site-specific
covariate information is used to obtain predictions than if the unconditional
distribution of the FIBI and BIBI indicators is used. As seen from Table 1,
classification rates are largest for sites with good biological condition. This re-
sult has previously been reported by Maloney et al. (2009).

Analysis of the full data set: FIBI indicator
After demonstrating that the prediction accuracy of P/O boosting is com-

parable to that of the random forest method, we analyzed the full data set to
examine functional relationships between predictors and IBI indicators. We ap-
plied the P/O boosting algorithm to the full data set and visualized marginal
function estimates using partial plots (Figures 2 to 5). Note that partial plots
cannot be obtained from the random forest method because, in contrast to P/O
boosting, random forests yield black-box estimates that are not easily inter-
preted. Although the random forest method can provide estimates of variable
importance (Cutler et al. 2007), functional relationships between predictors and
outcome variables cannot be quantified directly. We therefore did not use this
method to analyze the full data set.

Let us first consider the FIBI indicator of biological condition. Figure 2
shows the most pronounced marginal effects obtained from P/O boosting. Light
grey lines correspond to the function estimates obtained from the 100 bootstrap
samples used in the benchmark experiment. Increases in watershed area and
average watershed elevation have positive effects on the FIBI indicator, sup-
porting previous findings of the importance of these factors on stream fishes
(Angermeier and Schlosser 1989, Oberdorff and Hughes 1992, Matthews and
Robison 1998, Joy and Death 2004). While the effect of watershed area is clearly
nonlinear, a linear marginal prediction function was obtained for average water-
shed elevation. This demonstrates the ability of P/O boosting to incorporate
both linear and smooth (nonlinear) predictor effects into the proportional odds
model. Regarding the magnitude of its marginal function, watershed area is
clearly the most important predictor for FIBI (Figure 2). For example, con-
sider two stream sites with watershed areas WA1 = 1 km2 and WA2 = 10 km2.
We obtain log(WA1) = 0 and log(WA2) ≈ 2.3, which results in marginal func-
tion estimates fWA(WA1) ≈ −2 and fWA(WA1) ≈ 1 (see Figure 2). Assuming
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Table 1: P/O boosting and random forest classification rates, as obtained from
bootstrap cross-validation (uncond. = unconditional distribution of categories
in the full data set).

FIBI classification rates, P/O boosting

Mean Min. 1st Qu. Median 3rd Qu. Max. uncond.

all sites 0.514 0.461 0.500 0.514 0.528 0.563

very poor sites 0.372 0.223 0.317 0.357 0.403 0.610 0.167

poor sites 0.221 0.056 0.183 0.219 0.259 0.361 0.172

fair sites 0.453 0.320 0.416 0.455 0.485 0.557 0.277

good sites 0.728 0.634 0.699 0.731 0.759 0.809 0.383

FIBI classification rates, random forests

Mean Min. 1st Qu. Median 3rd Qu. Max. uncond.

all sites 0.512 0.466 0.500 0.513 0.526 0.561

very poor sites 0.395 0.279 0.341 0.391 0.441 0.596 0.167

poor sites 0.278 0.152 0.241 0.278 0.309 0.405 0.172

fair sites 0.425 0.304 0.394 0.428 0.457 0.529 0.277

good sites 0.711 0.609 0.686 0.708 0.739 0.781 0.383

BIBI classification rates, P/O boosting

Mean Min. 1st Qu. Median 3rd Qu. Max. uncond.

all sites 0.454 0.414 0.442 0.454 0.468 0.500

very poor sites 0.435 0.285 0.399 0.435 0.473 0.568 0.181

poor sites 0.335 0.208 0.297 0.333 0.364 0.503 0.249

fair sites 0.483 0.329 0.453 0.482 0.516 0.590 0.295

good sites 0.546 0.440 0.508 0.552 0.578 0.653 0.275

BIBI classification rates, random forests

Mean Min. 1st Qu. Median 3rd Qu. Max. uncond.

all sites 0.466 0.424 0.455 0.467 0.478 0.504

very poor sites 0.474 0.350 0.443 0.480 0.513 0.579 0.181

poor sites 0.318 0.212 0.283 0.313 0.349 0.441 0.249

fair sites 0.436 0.279 0.408 0.431 0.466 0.519 0.295

good sites 0.629 0.532 0.601 0.632 0.655 0.736 0.275
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Table 2: Weighted kappa values, as obtained from bootstrap cross-validation.
Fleiss-Cohen weights were used to account for the ordinal structure of FIBI and
BIBI indicators (cf. Fleiss and Cohen 1973).

FIBI weighted kappa values, P/O boosting

Mean Min. 1st Qu. Median 3rd Qu. Max.

0.591 0.502 0.577 0.593 0.609 0.657

FIBI weighted kappa values, random forests

Mean Min. 1st Qu. Median 3rd Qu. Max.

0.553 0.473 0.533 0.552 0.576 0.637

BIBI weighted kappa values, P/O boosting

Mean Min. 1st Qu. Median 3rd Qu. Max.

0.586 0.527 0.568 0.583 0.603 0.643

BIBI weighted kappa values, random forests

Mean Min. 1st Qu. Median 3rd Qu. Max.

0.580 0.501 0.565 0.580 0.596 0.634

constant values for the other predictor variables, it follows from equation (5)
that the cumulative odds ratio of site 2 is approximately exp(1 − (−2)) ≈ 20
times larger than the cumulative odds ratio of site 1. The strong positive effect
of watershed area might be due to low natural richness of fishes in headwater
streams (Angermeier and Schlosser 1989, Matthews and Robison 1998), which
may affect individual metrics composing the IBI (Schleiger 2000).

Increases in the percentage of upstream watershed under impervious surface
cover have a negative effect on FIBI scores, which is an often-reported pattern
(e.g., Wang and Lyons 2003, Helms et al. 2009) that results from the numerous
negative effects that impervious surfaces have on stream hydrologic and geomor-
phic factors (Paul and Meyer 2001, Walsh et al. 2005). The marginal function
estimate for the distance from sampling location to the nearest main stem stream
indicates that there is an inverted U-shaped relationship with the FIBI indica-
tor, i.e., FIBI increases with low but increasing distance values but decreases
again for large distance values. Sites with large distances from mainstems are
likely headwaters having low FIBIs as discussed above. The lower FIBI scores
for short distances to mainstem might reflect sites that directly drain into the
Chesapeake Bay (which were given a distance value of 0). Marginal function
estimates corresponding to other continuous predictors are relatively small in
magnitude (relative to the estimates shown in Figure 2), indicating their minor
importance for modeling FIBI. The function estimates corresponding to these
predictor variables are shown in Appendix E.

Marginal effect estimates of the categorical covariate “percentage of bedrock
that is calcareous in a watershed” were small and suggest that FIBI is lower when
calcareous rock is present (percentage of calcareous bedrock > 0%, see Table 3),
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highlighting the importance of geology in structuring fish assemblages (Mont-
gomery 1999, Joy and Death 2004). However, we caution over-interpretation of
these findings because the range of the bootstrapped marginal effect estimates
contains zero and because this covariate was analyzed at a coarse scale (pres-
ence/absence). The categorical effects of dominant ecoregions are also relatively
small (Table 3), indicating that the dominant ecoregion is of minor importance
for modeling FIBI.

A marginal spatial effect was still evident for the FIBI after accounting for
all other covariates (Figure 3). Sites in the Blue Ridge region, the Ridge and
Valley region, and the South-Eastern part of the Middle Atlantic Coastal plain
tended to have lower FIBI scores than other sites. In contrast, the middle region
of the Northern Piedmont region shows a very positive marginal effect on FIBI.
It is important to remember that these effects are marginal and therefore not
caused by variations in other predictors (such as the dominant ecoregion). They
may reflect missing predictors, or, alternatively, problems with the calculation
of FIBI itself. For example, the FIBI for Blue Ridge and Ridge and Valley ecore-
gions was stratified only into warmwater or coldwater streams (see Appendix C,
Southerland et al. 2005). A more refined FIBI, possibly stratified by ecoregions
or sub-ecoregions (Schleiger 2000), might reduce the marginal spatial patterns
in the FIBI.

Analysis of the full data set: BIBI indicator
We next consider the BIBI indicator of biological condition. Figure 4 shows

the most pronounced marginal effects obtained from P/O boosting. Obviously,
increases in watershed area, distance from sampling location to the nearest main
stem stream, and percentage of upstream watershed under tree cover have large
positive effects on the BIBI indicator. In contrast, increases in the percent-
age of upstream watershed under impervious surface cover have a very strong
negative effect on BIBI. Apart from a few sites with a small upstream popu-
lation density (showing large variations in their effects on BIBI), the effect of
population density on BIBI is also negative. The positive effect of the per-
centage of upstream watershed under tree cover and the negative effect of the
percentage of upstream watershed under impervious surface cover on benthic
macroinvertebrates support previous reports (Roy et al. 2003, Walsh et al. 2005,
King et al. 2005, Maloney et al. 2009) and document the sensitivity of benthic
macroinvertebrates to watershed conditions. The upstream population density
was positively correlated with the percentage of upstream watershed under im-
pervious surface cover (r = 0.78), so these covariates are likely to represent
the same anthropogenic stressor (population pressure). The effect of distance
to main stem demonstrates the importance of position within a stream net-
work to the benthic community (Vannote et al. 1980). All functions shown in
Figure 4 are nonlinear, demonstrating the ability of P/O boosting to account
for nonlinear predictor effects. Marginal function estimates for other contin-
uous predictors (Appendix F) are smaller in magnitude than those shown in
Figure 4, indicating their minor importance for modeling BIBI. Marginal effect
estimates of the categorical covariate “percentage of bedrock that is calcareous
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Table 3: Effect of the categorical predictors “percentage of bedrock that is cal-
careous in a watershed” and “dominant ecoregion” on FIBI and BIBI indicators
of stream condition. Values in columns 4 to 6 were obtained from applying P/O
boosting to 100 bootstrap samples drawn from the full data.

FIBI indicator, P/O boosting

Predictor Category Full data set Mean Min. Max.

% of calc. bedrock = 0% 0

> 0% -0.082 -0.144 -0.474 0.102

Ecoregion Blue Ridge 0

Centr. Appalachian -0.023 -0.188 -0.748 -0.001

Mid. Atl. Coastal Plains 0.005 0.032 -0.004 0.141

Northern Piedmont -0.017 -0.082 -0.259 0.031

Ridge & Valley 0.007 0.083 -0.017 0.337

South Eastern Plains 0.004 0.019 -0.055 0.165

BIBI indicator, P/O boosting

Predictor Full data set Mean Min. Max.

% of calc. bedrock = 0% 0

> 0% -0.294 -0.308 -0.760 -0.013

Ecoregion Blue Ridge 0

Centr. Appalachian -0.605 -0.545 -1.017 -0.078

Mid. Atl. Coastal Plains -0.099 -0.086 -0.282 0.069

Northern Piedmont -0.238 -0.220 -0.459 0.031

Ridge & Valley 0.511 0.450 0.041 0.878

South Eastern Plains 0.266 0.254 0.031 0.574
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Figure 2: FIBI model - marginal function estimates obtained from applying
P/O boosting to the full data set.
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Figure 3: FIBI model - marginal spatial effect estimate obtained from applying
P/O boosting to the full data set.

in a watershed” suggest that BIBI is lower when calcareous rock is present. This
effect is much stronger than the effect obtained for the FIBI indicator (Table 3),
reinforcing geology as an important structuring factor on local benthic macroin-
vertebrate assemblages (Montgomery 1999, Pyne et al. 2007). Again we caution
over-interpretation of these results because of the coarse scale of this predictor.
The categorical effects of three dominant ecoregions on BIBI are significantly
different from zero (Table 3). The Central Appalachian ecoregion has the lowest
marginal biotic integrity while the Ridge and Valley ecoregion has the largest
positive effect on the BIBI indicator. Maloney et al. (2009) reported similar
effects of ecoregions on BIBI.

The marginal spatial effect estimates show that sites in the Blue Ridge region
and the eastern part of the Ridge and Valley region tended to have lower BIBI
scores than other sites (Figure 5). These spatial effects may be due to missing
predictors or coarse stratification during BIBI development. For example, the
Ridge and Valley, Blue Ridge, and Central Appalachians ecoregions were lumped
into a single “Combined Highlands” stratum during the BIBI construction (See
Appendix C, Southerland et al. 2005).

4 Summary and conclusion

In recent years, much research has been undertaken to assess the degree of im-
pairment in ecosystem structure and function due to anthropogenic disturbance
in watersheds. As part of this research, biological assessments of stream con-
dition have become an important tool to identify impairments and to develop
appropriate management and conservation strategies. In this paper, we have
considered indicators of biologic condition (Karr et al. 1986, Karr 1991, Bar-
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Figure 4: BIBI model - marginal function estimates obtained from applying
P/O boosting to the full data set.
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Figure 5: BIBI model - marginal spatial effect estimate obtained from applying
P/O boosting to the full data set.

bour et al. 1999), which are indispensable tools for measuring and managing
the health of streams and their watersheds.

We have developed a boosting algorithm for modeling indices of biotic in-
tegrity and applied our method to data collected from small non-tidal streams
in the state of Maryland, USA. Because IBI indicators are often evaluated on an
ordinal scale, the P/O boosting algorithm developed in this paper is based on
the well-established proportional odds model introduced by McCullagh (1980).
To obtain regularized model fits, we combined classical gradient boosting tech-
niques with two recent advances: We used the modeling approach suggested
by Kneib et al. (2009) to obtain prediction models accounting for nonlinear
effects and spatial correlation, and we re-formulated the boosting method by
Schmid et al. (2010) to obtain scale parameter estimates (which are necessary
for adapting classical boosting techniques to the proportional odds model).
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In summary, the boosting algorithm presented in this paper combines the
following advantages:

1. P/O boosting allows for fully automatic variable selection and model
choice. In particular, it does not require scientists to select predictor
variables using heuristic approaches such as stepwise variable selection.

2. Although boosting estimates are typically different from classical max-
imum likelihood estimates, the P/O boosting algorithm preserves the
structure of the proportional odds model. Therefore, boosting estimates
are accessible for interpretation, which is a major advantage over estima-
tion techniques that result in black-box estimates. On the other hand,
of course, black-box predictions are expected to have a higher degree of
flexibility than predictions that are linked to the pre-specified structure of
the additive proportional odds model.

3. P/O boosting accounts for spatial effects. Although there are numerous
methods to model spatial correlation in ecological data (cf. Bigler et al.
2005, Gelfand 2007), the interaction surfaces used in this paper have the
advantage that marginal spatial effects can be visualized and information
contained in unobserved (latent) predictor variables is quantified.

4. Spatial effects and nonlinear effects of predictor variables are estimated
jointly based on penalized spline functions. Both the joint estimation and
the additive structure of the prediction function facilitate a relatively sim-
ple interpretation of the results. For example, the use of P/O boosting led
to clear interpretations of the relationships between watershed attributes
and stream biological condition in the MBSS data, where both linear and
nonlinear marginal predictor effects were present.

5. Due to the early stopping strategy, prediction accuracy of the P/O boost-
ing fit is maximized in the proportional odds model framework. Of course,
it is well known that there is no “uniformly best” prediction method for all
types of data. Therefore, we do not claim that P/O boosting is generally
superior to other methods for ordinal data. For the MBSS data, however,
predictions obtained from P/O boosting turned out to be very similar to
predictions obtained from the random forest method. This is remarkable
because the random forest method is a completely non-parametric tech-
nique that is generally considered to be one of the most powerful statistical
prediction methods (see Hastie et al. 2009, Chapter 15).

Although, for the sake of interpretation, we restricted ourselves to considering
main-effects models in this paper, the gradient boosting framework can be ex-
tended to include interaction terms between predictor variables in the model
formula. As demonstrated by Kneib et al. (2009), this can be accomplished by
specifying additional sets of linear and smooth base-learners depending on the
products of predictor variables.
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When interpreting marginal function estimates, however, one should be
aware of the fact that P/O boosting is based on two important assumptions:
First, we assumed the proportional odds property to hold. Second, we assumed
predictor effects to be additive. If these assumptions are not met, estimates
might show a bias caused by model misspecification. Usually, this bias cannot
be fully compensated by the high flexibility of the P/O boosting algorithm.
Because the early stopping strategy results in regularized boosting estimates
that are shrunken towards zero, it is generally difficult to derive tests on the
appropriateness of model assumptions in the boosting framework. Therefore,
assessing the robustness of boosting estimates against model misspecification
constitutes an important issue of future research.

Instead of regularizing effect estimates via gradient boosting (in combina-
tion with early stopping), it would alternatively be possible to optimize out-of-
sample prediction accuracy using penalized regression techniques. For example,
the Lasso method (Tibshirani 1996), which is based on L1-penalized likelihood
estimation, would be a natural approach to incorporate shrinkage and variable
selection into a proportional odds model. However, the original Lasso method
has mainly been designed for regression models with a linear prediction func-
tion. Combining penalized estimation with sparse nonlinear additive modeling
has only recently been accomplished (Meier et al. 2009). To date, there is no
extension of the method developed by Meier et al. (2009) to geoadditive pro-
portional odds models. On the other hand, gradient boosting and the Lasso are
closely related, as both algorithms can be embedded into the LARS framework
(Efron et al. 2004). Also, in case of Gaussian regression, there is evidence that
the properties of gradient boosting are similar to those of the Lasso (Hastie et al.
2009, Chapter 16). These results suggest that the role of the boosting stopping
iteration is similar to the role of the (inverse of the) shrinkage parameter used
for the L1 penalty of the Lasso method.

Finally, the boosting algorithm presented in this paper is not restricted to
ecological applications but can be used to analyze very general types of ordinal
data. Although developing a prediction method for stream biological condition
was the primary goal of this paper, both the proportional odds model and
the boosting framework are essentially independent of the application context
in which they are used. It is therefore possible to apply the P/O boosting
algorithm in many fields, for example in clinical or biomedical research.
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Software

All computations were carried out with the R System for Statistical Computing
(version 2.10.1, R Development Core Team 2009). The gamboost function of R
package mboost (Hothorn et al. 2010) was used to calculate boosting estimates.
Base-learners were made comparable by centering predictors at the beginning
of the algorithm and by using the same degrees of freedom for each base-learner
(see Kneib et al. 2009 for details). For example, in case of the FIBI model, the
R code for specifying the model formula was given by

> library(mboost)

> FIBI.formula <- FIBI ~ bols(EASTING, intercept = FALSE) +

+ bols(NORTHING, intercept = FALSE) +

+ bspatial(EASTING, NORTHING, knots = 20, df = 1,

+ differences = 1) +

+ bols(DrainageDensity, intercept = FALSE) +

+ bbs(DrainageDensity, center = TRUE, df = 1) +

...

+ bols(PerWet, intercept = FALSE) +

+ bbs(PerWet, center = TRUE, df = 1) +

+ bols(Ecoregion, intercept = FALSE, df = 1) +

+ bols(INT, intercept = FALSE, df = 1)

where FIBI denotes the FIBI outcome, EASTING and NORTHING denote the
UTM easting and northing coordinates of the site locations, respectively, and
DrainageDensity, PerWet and Ecoregion are examples of predictor variables.
The bols() and bbs() functions in R package mboost (using the intercept

= FALSE and center = TRUE options) correspond to linear base-learners and
smooth P-spline deviations from the linear base-learners, respectively (see Kneib
et al. 2009 for details). Specifying the base-learners as shown above ensures
that selection of the best modeling alternative (smooth vs. linear) is carried out
automatically by the P/O boosting algorithm. Similarly, the bspatial() func-
tion in R package mboost (using the center = TRUE option) corresponds to
a smooth P-spline tensor product deviation from a spatial linear surface. Note
that specifying a bbs() base-learner for Ecoregion was not necessary because
this predictor variable is categorical.

Using the model formula specified above, the proportional odds model was
fitted with the help of the PropOdds() family in R package mboost. The
corresponding R code was given by

> ctrl <- boost_control(mstop = 20000, nu = 0.1)

> FIBI.model <- gamboost(FIBI.formula, data = MBSS.training, family =

+ PropOdds(), control = ctrl)

where MBSS.training is the name of the training data set containing the vari-
ables specified in FIBI.formula and where the step length ν and the initial
number of boosting iterations were specified using the boost control() func-
tion of R package mboost. Internal five-fold bootstrap cross-validation for
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determining the optimal stopping iteration was carried out using the cvrisk()

function of R package mboost:

> ntrain <- nrow(MBSS.training)

> bs5 <- rmultinom(5, ntrain, rep(1, ntrain) / ntrain)

> cvm <- cvrisk(FIBI.model, folds = bs5)

> st <- mstop(cvm)

After having determined the optimal stopping iteration (denoted by st), the
“optimal” boosting fit at iteration st was calculated as follows:

> FIBI.optimal <- FIBI.model[st]

Afterwards, the predict() function of R package mboost was used to calculate
predictions:

> pred <- predict(FIBI.optimal, newdata = MBSS.test, type = "response")

where MBSS.test denotes the test set of out-of-bootstrap observations (cf. Sec-
tion 3). The pred object is a matrix containing the posterior class probabilities
corresponding to the out-of-bootstrap observations. Using this object, the pre-
dicted outcome categories were calculated as described in Section 2. For a
detailed description of the mboost package we refer to Hothorn et al. (2010).

Random forest analysis was carried out using the R package randomFor-
est (Liaw and Wiener 2002, 2009). The random forest algorithm of R package
randomForest has two main tuning parameters: (a) ntree, which is the number
of trees used for the forest, and (b) mtry, which is the number of variables ran-
domly selected at each node. To achieve sufficiently stable results, the number
of trees was set to 2000 (see Cutler et al. 2007). The hyper-parameter mtry was
tuned using additional internal 10-fold cross-validation.

Topographic surface plots were created using the R package sp (Pebesma
and Bivand 2009). The Kappa function of R package vcd (Meyer et al. 2009)
was used to compute weighted kappa indices.
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Appendix

A Log-likelihood of the proportional odds model

The system of equations (4) implies that the log-likelihood of the proportional
odds model is given by

l(f, θ) = − I(Y = 1) · log(1 + exp(f − θ1))

+

K−1∑

k=2

I(Y = k) ·
[
log
(
(1 + exp(f − θk))−1 − (1 + exp(f − θk−1))−1

)]

+ I(Y = K) · log
(
1− (1 + exp(f − θK−1))−1

)
.

Thus, the loss function used for the P/O boosting algorithm becomes ρ = −l.
The negative derivative of ρ w.r.t. f is given by

− ∂ρ
∂f

=
∂l

∂f
= − I(Y = 1) · (1 + exp(θ1 − f))−1

+
K−1∑

k=2

I(Y = k) · 1− exp(2f − θk−1 − θk)

1 + exp(f − θk−1) + exp(f − θk) + exp(2f − θk−1 − θk)

+ I(Y = K) · (1 + exp(f − θK−1))−1 .

B Unconstrained estimation of θ

In step 5 of the P/O boosting, we need to minimize the empirical risk R over θ
subject to the constraint

−∞ < θ1 < · · · < θK−1 < θK =∞ .

This optimization problem can be re-formulated as follows: We introduce a
vector δ = (δ1, . . . , δK−1)′ defined by

θ1 = δ1 ,

θ2 = δ1 + exp(δ2) ,

θ3 = δ1 + exp(δ2) + exp(δ3) ,

...

θK−1 = δ1 +
K−1∑

m=2

exp(δm) .

Obviously, by using the system of equations presented above, the unconstrained
minimization of R over δ is possible. Estimates of θ can subsequently be com-
puted from the estimates of δ.
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C Individual metrics used for IBI construction

Individual metrics used for construction of indices of biotic integrity (IBI) for fish
and benthic macroinvertebrates. Modified from Southerland et al. (2005). Com-
bined Highlands region comprises the Ridge and Valley, Blue Ridge, and Central
Appalachians ecoregions. EPT = Ephemeroptera, Plecoptera, Trichoptera.
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D Predictor variables used for the analysis of
the MBSS data

We included the following predictor variables in our analysis of the MBSS data:

• UTM easting and northing coordinates provided by MBSS (from Mary-
land State Plane Coordinate System). These predictors were used to take
the spatial dependence structure of sample sites into account (predictor
variables XE and XN, see Section 2).

• Watershed Area, i.e., area of drainage upstream of sampling point (in
km2).

• Population density (#/km2) of upstream watershed.

• Average upstream watershed elevation (in m).

• Average annual precipitation for upstream watershed elevation (in cm
y−1).

• Percentage of upstream watershed under tree cover.

• Percentage of upstream watershed under impervious surface cover.

• Percentage of upstream watershed under pasture cover.

• Percentage of upstream watershed under row crop cover.

• Percentage of upstream watershed under wetland cover.

• Percentage of upstream watershed under barren cover.

• Drainage density, defined as total stream length (in km) / watershed area
(in km2).

• Distance from sampling location to the nearest main stem stream (in km).
Values of this predictor variable were set to zero for sites that drained
directly into Chesapeake Bay.

• Average percentage of sand content in soil.

• Percentage of bedrock that is calcareous in a watershed.

• Dominant ecoregion (categorical predictor with six categories, see Sec-
tion 3 and Omernik 1987).

A preliminary analysis of the data showed that the distributions of watershed
area, population density, drainage density, upstream watershed elevation, and
the percentages of upstream watershed under impervious surface, wetland, and
barren cover were highly right-skewed. We therefore applied a log transforma-
tion to these predictor variables before fitting the proportional odds models.
Since we observed a large number of zero percentages in calcareous bedrock, we
transformed this predictor into a binary variable with categories “percentage of
calcareous bedrock = 0%” and “percentage of calcareous bedrock > 0%”.
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E Marginal function estimates of predictor vari-
ables (FIBI model)

Figure 6: FIBI model - marginal function estimates corresponding to predictors
“avg. percentage of sand content in soil”, “percentage of upstream watershed
under pasture cover”, “percentage of upstream watershed under tree cover” and
“population density of upstream watershed”. These functions are relatively
small in magnitude (compared to the functions shown in Figure 2 of the article)
and are therefore not presented in Section 3 of the article.
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Figure 7: FIBI model - marginal function estimates corresponding to predictors
“drainage density”, “percentage of upstream watershed under barren cover”,
“percentage of upstream watershed under wetland cover”, “percentage of up-
stream watershed under row crop cover” and “avg. annual precipitation for
upstream watershed elevation”. These functions are relatively small in mag-
nitude (compared to the functions shown in Figure 2 of the article) and are
therefore not presented in Section 3 of the article.
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F Marginal function estimates of predictor vari-
ables (BIBI model)

Figure 8: BIBI model - marginal function estimates corresponding to predictors
“avg. percentage of sand content in soil”, “percentage of upstream watershed
under pasture cover”, “avg. upstream watershed elevation” and “avg. annual
precipitation for upstream watershed elevation”. These functions are relatively
small in magnitude (compared to the functions shown in Figure 4 of the article)
and are therefore not presented in Section 3 of the article.
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Figure 9: BIBI model - marginal function estimates corresponding to predictors
“drainage density”, “percentage of upstream watershed under barren cover”,
“percentage of upstream watershed under wetland cover” and “percentage of
upstream watershed under row crop cover”. These functions are relatively small
in magnitude (compared to the functions shown in Figure 4 of the article) and
are therefore not presented in Section 3 of the article.
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