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Abstract

Multinomial logit models which are most commonly used for the modeling of unordered multi-category responses
are typically restricted to the use of few predictors. In the high-dimensional case maximum likelihood estimates
frequently do not exist. In this paper we are developing a boosting technique called multinomBoost that performs
variable selection and fits the multinomial logit model also when predictors are high-dimensional. Since in multi-
category models the effect of one predictor variable is represented by several parameters one has to distinguish between
variable selection and parameter selection. A special feature of the approach is that, in contrast to existing approaches,
it selects variables not parameters. The method can distinguish between mandatory predictors and optional predictors.
Moreover, it adapts to metric, binary, nominal and ordinal predictors. Regularization within the algorithm allows
to include nominal and ordinal variables which have many categories. In the case of ordinal predictors the order
information is used. The performance of boosting technique with respect to mean squared error, prediction error and
the identification of relevant variables is investigated in a simulation study. For two real life data sets the results are
also compared with the Lasso approach which selects parameters.

Key words: Logistic regression, Multinomial logit, Variable selection, Side constraints, Likelihood-based boosting,

Penalization, Hit rate, False alarm rate.

1. Introduction

The multinomial logit model is the most frequently used model in regression analysis with categorical response.
Typically, the maximum likelihood method is used for estimating the parameters. However, the use of maximum
likelihood estimation severely limits the number of predictors in the multinomial logit models. As the number of
covariates increases relative to the sample size, problems with the convergence of parameter estimates arise and the

usual ML estimates will not exist for p > n. To overcome the problem, one alternative is to rely on penalization
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techniques. One of the oldest penalization techniques is ridge regression which was extended to generalized linear
models (GLM) by Nyquist (1991), Segerstedt (1992). In contrast to ridge regression which shrinks the parameter
estimates towards zero but does not enforce subset selection, Lasso (Tibshirani (1996)) does not only shrink the
parameter estimates but also enforces subset selection by setting some of the parameter estimates exactly equal to zero.
An extension to GLMs was proposed by Park and Hastie (2007). However, for multicategory responses, not much
literature is available. Multinomial logistic regression with Lasso type estimates was considered by Krishnapuram
et al. (2005). Friedman et al. (2010) considered L1 (Lasso), L2 (ridge) penalties and the elastic net (mixture of the L1
and L2 penalty). Zahid and Tutz (2009) used ridge regression with symmetric side constraints, which makes the ridge
estimates invariant to the choice of a reference category. A general alternative to maximum likelihood estimation
is likelihood-based boosting. Boosting was originally developed in the machine learning community to improve
classification (e.g., Schapire (1990) and Freund and Schapire (1996)). Friedman et al. (2000) showed that boosting
can also be viewed as an approximation to additive modeling using the appropriate likelihood function. Biihlmann
and Yu (2003) used the L, loss function instead of the LogitBoost cost function within the context of linear models.
Biihlmann (2006) showed the relation to Lasso which also does variable selection and shrinkage without making any
assumptions about the correlation structure of the predictors. For an overview on boosting see Biithimann and Hothorn
(2007). Likelihood-based boosting based on one step of Fisher scoring for variable selection in generalized additive

models (GAM) was proposed by Tutz and Binder (2006).

In this article we are using the likelihood based boosting technique with one step of Fisher scoring for variable
selection in multinomial logit models. For the weak learners we are using the ridge penalty. When seeking for a
parsimonious model, one frequently considers some of the covariates as an essential part of the model. For example,
in a treatment study one is interested in particular in the treatment effect, which is considered a mandatory covariate.
The other covariates which might be of relevance are considered as optional. Similar to Tutz and Binder (2007) our

method distinguishes between mandatory and optional predictors.

When working with categorical covariates it is essential that selection does not refer to parameters but to covariates
(comprising the group of parameters associated with the categorical covariate). Consequently, our approach performs
variable selection in terms of covariates rather than parameters. For this purpose our approach differentiates among the
categorical predictors that contain a group of parameters (for each logit) in the parameter space and those predictors
having only one parameter for each logit of the multinomial logit model e.g., binary or metric predictors. Moreover, in
the case of ordinal covariate(s), rather than penalizing the parameters, our approach penalizes the differences between

the paramters of the adjacent categories.

In Section 2 the side constraints for the multinomial logit model and the regularization for different types of covariates
are discussed . Boosting is discussed in Section 3, Section 4 gives empirical results of a simulation study. The
algorithm is applied to real life data set and the results are compared with those obtained from the Lasso approach in

Section 5.



2. Predictor Space, Side Constraints and Regularization

In this section we describe the different types of candidate predictors (candidates to become part of a parsimonious
logit model) which will be used in Section 3, and how they are incorporated into the boosting algorithm for subset
selection. For simplicity, we assume in this section that the multinomial logit model has only one predictor with K
parameters to be estimated for each of the k categories of the response variable. If the predictor is metric or binary
then K = 1, and K > 1 if the predictor is a multicategory variable with the K + 1 categories labeled as 1,..., K, K + 1.

Although the intercept is part of the model, for simplicity in the following the intercept is omitted.

2.1. Side Constraints for the Multinomial Logit Model

Let the response variable Y € {1,..., k} have k possible categories. The generic form of the multinomial logit model
is
P(Y =y = —SPXBD)___exp) (1)
Y1 exp(xTBy) Xy exp(y)
where ﬂrT = (Br1,- - -,Brk)- Since parameters ﬁT, e, ﬂ,{ are not identifiable, for the identifiability of parameters one

has to specify additional constraints. One most commonly used side constraint is to choose one of the response

categories as reference category. If category & is chosen as reference, then one sets
Bl =(0,....,00  yielding 1 =0.

Of course, any category can be chosen as a reference category. With category k as the reference category, the model is

exp(x’B;)
1+ 37 exp(x’By)

with ¢ = k — 1. Alternatively one can work with the symmetric side constraint. With 8; denoting the parameter vector

P(Y = rlx) =

for r=1,...,q. 2

for category s, it is given by
B;=0. (3)
Then the multinomial logit model has the form

exp(xIBr) _ exp(n;)
i expTBy) X, exp(n)

With symmetric side constraint, the median response defined by the geometric mean can be viewed as the refer-

P(Y = rlx) = for r=1,...,q “4)

ence category. The parameters 8* have a different interpretation than B obtained with a reference category con-

straint. Here B; reflects the effects of x on the logits when P(Y = r|x) is compared to the median response GM(X) =

JTTE, PEY = six).
T

In the following, let ﬁT =B, g, 0) and B*T = ’I‘T, o, ,’;T) represent the parameter vectors for the multinomial
logit model under the reference category side constraint (8; = 0) and symmetric side constraint (Zﬁzl B; = 0), respec-

tively. There is a one-to-one correspondence between the parameters 8 and 8. One way of giving the transformation
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is by consideringﬂ_rj = (Bij>.-->Pk-1,;), and ,Bf‘jT = (ﬂjj, ... ,,Bz_l’j), j =1,...,K, which denote parameter vectors

for a particular variable with reference category k or symmetric side constraints respectively, then
B, =18, for j=1,...,K, 5)

where T is a ¢ x ¢ matrix (q=k-1) with diagonal elements % and off-diagonal elements as —%. The matrix T~!, then,
has the diagonal enteries as 2 and all off-diagonal elements are 1. For likelihood (or penalized likelihood) estimation,
the complete design matrix X of order g(n X K) is given by X7 = [X; X, ... X,]. The matrix X; is a ¢ X K design

matrix composed of x; and is given by

T
X;

Since the parameters 8* is a reparameterization of the parameters 8, the computation of maximum likelihood estimates
of " needs a transformation of the design matrix X as X* = XT", for a g(K X K) matrix T* given by T* = T;X'q ®Ikxk,

where ® is the Kronecker matrix product. If not mentioned otherwise we will use the symmetric side constraint.

2.2. Regularization and Type of Predictors

In the version of componentwise boosting used in Section 3, the effect of one predictor variable, that is all the pa-
rameters linked to that variable, will be updated within one step of the algorithm. Updating of the predictor will be

performed by regularized estimates with the regularization depending on the type of predictor.

Nominal Predictors

Let the predictor X take values 1,...,K, K + 1 and X be the only variable in the predictor. The parameter values for

5
rl> -

response category r have length K and are given by 8:7 = (8 .,B)- Regularization will be based on ridge type
estimates. For the multinomial logit model it is advisable to use the symmetric side constraint, otherwise shrinkage is
determined by the choice of the reference category (see Zahid and Tutz (2009)). The corresponding ridge estimators
can be motivated by maximization of the penalized log-likelihood

k

T RN By
i=1

r=1

M=

2
i

~.
I

where /;(B) is the log-likelihood contribution of the ith observation, A is a tuning parameter and Z’jzl B; ;= 0. The
underlying penalty can also be given by

k K
LAEDIPWAED

r=1 j=1 Jj
4

K
BT '8, (6)
=1



with shortened vector /3_*J.T = (ﬁ’l‘j, e, ,BZJ.). It should be noted that the use of matrix T~! in place of an identity matrix
I, implicitly penalizes the size of parameters for all k response categories while working with the ¢ = k — 1 logits.
In matrix notation, one obtains the ridge penalty with symmetric side constraint, for a complete design matrix for the
multinomial logit model in the form

1) =BT B
where B* is a gK x 1 vector given by 87 = (B;,...,B;") and the matrix T* = T}, ® Ixxk, is same as discussed in

Section 2.1.

Ordinal Predictors

In regression analysis, ordinal predictors are often part of the predictor space but proper treatment is found rarely. If
the multinomial logit model has some ordinal predictors, penalization should account for the order of the categories.
With ordinal predictors, it is advantageous to penalize the differences between the coeflicients of adjacent categories
rather than penalizing the size of the parameters themselves. By penalizing such differences, one gets a smoother
coefficient vector and avoid the high jumps among the parameter estimates corresponding to the ordinal covariate
(see Gertheiss and Tutz (2009)). Let again the ordinal predictor take K + 1 categories 1,..., K, K + 1 and let the first
category serve as reference category such that 5 = 0. Then for ordinal predictor with K + 1 categories an appropriate
penalty with symmetric side constraint is

k K+l

JBY= > BB ™)
=1 j=2

If one works with a reference category constraint then the penalty is simply given as J(B) = Zlle Zf:zl Brj = Brj-1 )2,

or in matrix notation J(B) = Zf:zl ,BTJ QB ;, where Q = U"U with U, a K X K matrix, given by

(1 o ... ... 0]

But we are proceeding with symmetric side constraint where we have to penalize the differences between the param-
eters of adjacent categories for all k categories of the response variable, while working with g logits. In such case the

penalty term for the complete design matrix is given as

JB) =BTQ B, ®)



where B* is a gK x 1 vector given by 8 = (8;",...,B;") and the matrix Q" = T}, ® Qkxk. The matrix Q" will
handle implicitly the penalization of differences between the adjacent categories for k categories while working with
the g logits.

In the next section where we are using the ridge type penalties to obtain weak learners in the boosting algorithm. Two
types of penalty matrices are used for the expression J(B8*). If the candidate predictor is ordinal, the penalty matrix Q"
is used to penalize the differences among the coefficients of adjacent predictor categories for k response categories and
if the candidate predictor is nominal, the penalty matrix T* is used to penalize the size of the parameters. Although

we are working with g logits both penalty matrices implicity perform the penalization for the k logits under symmetric

side constraint.

3. Boosting

The method proposed in this section is based on likelihood-based boosting with quadratic penalties for regularization
to obtain weak learners. Let us consider the multinomial logit model with side constraint given by (3) and the penalty

term given by (6) or (8) according to the nature of predictors. Then the penalized log-likelihood is
- A . A
*\ (R¥ _ *\ (RY — ZpTpx p*
lpm—;l,(ﬂ) sz)—;lzm SBTPB

with penalty matrix P* which will be replaced by T* or Q* depending on the nature of the predictors. The correspond-

ing penalized score function s,(8") is given by

sp(ﬂ*)

D X TDiBOE By - hg))] - AP
i=1
XTDBHZ By — h(n)] - APB",

where B* is a vector of parameters of length ¢ X (p + 1) and X* is the transformation of the actual design matrix as
Oh(n

discussed in Section 2.2. The matrix D;(8%) = T‘) is the derivative of h(n*) evaluated at 77 = XiB* and X(B") =
cov(y;) is the covariance matrix of ith observation of y given parameter vector 8*. For the full design matrix, in matrix
notation y and h(n*) are given by y' = (yl,...,y0) and h(n*)" = (h@p})", ..., h(q;)") respectively. The matrices have
block diagonal form Z(8*) = diag(Zlfl(ﬂ*)), W@ = diag():i’l(ﬁ*)), and D(B*) = diag(D;(B8")).

For the boosting algorithm, let the the whole predictor space be dichotomized into two non-overlapping groups.
One group contains the mandatory/obligatory covariates (including the intercept) which are the essential part of the
model and are necessarily re-estimated in each of m boosting iterations. The second group consists of the candidate
predictors each of which is a candidate to become a part of the final parsimonious model decided after m boosting
iterations. Let the predictor variable indices V = {1,..., p} be partitioned into disjoint sets as V = V, UV, U... U V,,

where V,, represents the obligatory predictors (each predictor may have one or more parameters associated with it)

and Vi,...,V, are g predictors, among which we want to make a subset selection. Let K; denote the number of
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parameters/dummies for one logit associated with the predictor V;, (j = 1,...,2). So the total predictor space is

partitioned into two disjoint sets of obligatory and candidate predictors i.e., V = V, U V., where V. = V; U ... U V,,

T
o

and the split of complete parameter vector is then given as 87 = (B:7 B:7). For the re-fitting process a combination
of mandatory and some candidate predictor is considered i.e., V, U V;, j € {1,..., g}, will be considered in a re-
fitting process in a particular boosting iteration. If among the candidate predictors, V; is considered for re-fitting in a
boosting iteration then for likelihood/penalized-likelihood estimation we use the g(n X K ;) design matrix X; from the
full design matrix of order g(n X (25.7:1 K; +1)). The design matrix X is based on the parameters/columns associated
with V; and is given as

Xiij

T
Xi(j)

XT = [Xl(j) X2(j) X”(j)] with X,‘(j) = (9)

T
Xic
The multinomBoost algorithm can be described as follows:

Algorithm: mulinomBoost

Step 1: (Initialization)
Fit the intercept model pj, = h(17;,) by maximizing the likelihood fucnction to obtain #j and h(#;).
Step 2: Boosting iterations

Form=1,2,...

Step 2A: For obligatory/mandatory predictors

(i) Fit the model u = (@}, _, + X} ﬂ:F 1), where f,_, is treated as an offset and X is the design matrix based on the

parameters/columns corresponding to V,. B:! is computed with one-step Fisher scoring as

= XWX X Wy, DT (v - )

(i) setdy, =@ _, +X; B,
(i) setBy,, =By1) + B!
Step 2B: For candidate predictors
(i) For j=1,...,g, fit the model u = h(f;, + X’ ﬂjF 1, with offset #*, and X’ is the design matrix corresponding to
V;. With one-step Fisher scoring by maximizing penalized log-likelihood, ,B;F I'is computed as
B = TW@,)X; +v A X Wai,) D (v - ).
where v = \/W ;A with ridge penalty A. The penalty matrix A is given as:
Q* if V;is ordinal

T*  otherwise.



(ii) From the candidate predictors Vi, ..., Vg, select the predictor say Vies, Which improves the fit maximally and

set
F1 e
“Fl _ ﬂj if JE Vbest

B ,
0 if ]¢ Vbest-
(i) setd;, — A7, + X: BF1.

: % * «F'1
(iv) set ﬂc(m) = ﬁc(m—l) + B

In the above algorithm, for regularization, multiplying the ridge penalty A with \/d_ ;j accounts for the number of
parameters, d f;, involved in the candidate predictor. The parameter A is chosen large in order to obtain a weak learner.
If it is chosen large enough, as usually in boosting, the performance does not depend on the choice of the value of 4,
it only influences the needed number of iterations. In step 2B of the algorithm, the deviance can be used for selecting
a candidate predictor for refit. In the mth boosting iteration, that candidate predictor will be considered for the refit
which has minimum deviance i.e., Dev(#),). As the candidate predictors may have a varying number of parameters, an
alternative criterion for predictor selection is Akaike’s information criterion (AIC) or Bayesian information criterion
(BIC) because both of these measures also take the the number of parameters into account. The AIC criterion is given
by
AIC = Dev(i,) + 2 dfn

whereas the BIC criterion is given by

BIC = Dev(#;,) + log(gn) df,

where df;, is the effective degrees of freedom given by the trace of the hat matrix. But if the deviance as a criterion for
the selection of a covariate makes the fitting procedure much faster, especially for large samples that is an advantage.
The stopping criteria can be based on deviance based cross-validation, which we are using. Alternative but more

time-consuming options are AIC or BIC.

One possible drawback of boosting is that the parameters corresponding to some predictors may be updated only once

or twice within the boosting iterations. It is recommended to select only those variables whose estimates are not too

small compared to the other estimates. The multinomBoost algorithm sets all the parameter estimates corresponding
to the ith predictor equal to zero, if

p Dyt X Bl 1 10

ZL kLK ZfQ Zlf:l Wijl| p’

after m boosting iterations. For boosting, by using approximate hat matrix H,, at the end of mth boosting iteration,

AIC and BIC criteria are given as AIC = Dev(i};,) + 2 tr(H,,) and BIC = Dev(#,,) + log(gn) tr(H,,) respectively. The

approximate hat matrix used in the mth boosting iteration is discussed in the following proposition.



Proposition: In the mth boosting iteration, an approximate hat matrix for which f;, ~ H,,y is given by

m

i—1
H, = Z M; ﬁ(l - M),
Jj=0 i=0

where for the multinomial logit models with W,, = D,, (for W,, = W(#@;,) and D,, = D(#@;,)), M,,, = Wm(X,{,Wme +
vA) X,

Proof: At the end of mth boosting iteration, let V; = Vi is selected. For multinomial logit models with W, = D,,,,
where W,, = W(®;,) and D,, = D(,), we have j,, — f],,_; = (XjTWmX;‘. +vA)! Xj.T (y — f;,_,). By using the first
order Taylor approximation of first order i.e., A(f) ~ h(n)+(8h(m)/on" YA —n), we obtain fi;, ~ i’ + W@, —A5_,) =
R + WX BT = i+ WL XX WX+ v A XT (y - 2, ). So we have i, ~ &, +M,,(y — fIf,_,) with
M, = WmX;(X;TWmX; +yA)! X;T. We can write fI, as Iy, ~ fI;, | + M, (y — i} _,) = H,_1y + M,,(I - H,,_))y.
Expanding in the same way, for mth boosting iteration, the general form of the approximate hat matrix is H,, =

Z?’ZO M; H{:_OI (I - My), with 1, ~ H,,y and the starting value f1; = Moy.

4. Simulation Study

The performance of multinomBoost algorithm is evaluated using simulated data. For a response variable with three
categories (unordered), the covariates are drawn from a p—dimensional multivariate normal distribution with mean 0
and the covariance among the covariates (among the columns of covariate matrix) x; and x; is /™. Two values of p,
0.3 and 0.7 are considered in the study. For each value of p we draw a samples of sizes 50 and 100 for a design space
of 20 covariates (16 continuous and four binary covariates). Among the 20 covariates, six covariates (five continuous
and one binary covariate) are informative i.e., we have six covariates with non-zero parameters and the rest having

Pinfo

zero value. For the true parameter values B the total g. ) K ; values (where pint, is the total number of informative

covariates) are obtained by the formula (—1)jexp(—2( j—1D/20)for j=1,...,q f:; K;, and are randomly allotted
to the parameters corresponding to the informative covariates. The true parameter vector, then, is 87 = ¢y, (81 Bo),
where the constant cg,, is chosen so that the signal-to-noise ratio is 3.0. The performance of the multinomBoost with
respect to the variable selection in high dimensional data sets, where the categorical covariates are also involved is
also evaluated. For this purpose, we use four additional settings, for which the total number of predictors used with

their type and the number of informative predictors (within the brackets) is as follows:



Type of predictor Setting 5  Setting 6  Setting 7  Setting 8

Metric (with p = 0.3 & p = 0.7 for setting 1 & 2 respectively): 90 (5) 90 (5) - -
Binary: 10 (1) 10 (1) 10 (2) 20 (4)
Categorical (with three unordered categories): - - 2(1) 8(2)
Categorical (with four unordered categories): - - 2(1) 8(2)
Categorical (with three ordered categories): - - 2(1D) 8(2)
Categorical (with four ordered categories): - - 2(1) 8(2)

For the first four settings we performed S = 50 simulations per setting and S = 30 simulations per setting for the last
four high dimensional settings. For the subset selection in boosting we use three criteria, deviance, AIC and BIC. For
each criterion, in each setting, a fixed value of the rigde penalty A is used for all § simulations. We chose that value for
which the optimal number of boosting iterations was between 50 and 200. The optimal number of iterations in each
case are decided on the basis of 10—fold cross-validation. The results obtained with these three criteria are compared
to the MLE(oracle), which refers to the usual ML estimate for the model that contains the informative covariates only.
Therefore MLE(oracle) has the big advantage of using the variables that carry information. In addition we consider
ridge estimation (ssc-Ridge) with symmetric side constraint obtained for the model that contains all covariates. The
performance of multinomBoost algorithm is evaluated in terms of mean squared error of the parameter estimates ﬁ
mean deviance of the fit, i.e. deviance(#), prediction error and the identification of influential observations. The MSE

of B is computed using the estimates of all k logits as:
A R TP
MSEB) = 5 1B Bl

Prediction performance is evaluated by drawing a new sample (test data) of 1000 observations. In generalized linear
models, the mean deviance is an appropriate measure than mean squared prediction error. For the test data set the

Mean Prediction Error (MPE) based on the deviance measure is given as:

te St

MPE = < ZD =5 Z Zznf“’log(m,)

N i=1 j=1

The deviance for the fit is computed as )", Z/ 1y,,log( L ) with y,jlog( ) 0 fory;; = 0.

JT

4.1. MSE and Prediction Performance

Figure 1 shows the results for the low dimensional settings in terms of MSE. Figure 2 shows the corresponding results
for the high-dimensional settings where the model involves categorical covariates also. For setting 8, which involves
only categorical covariates, the results of MLE(oracle) are not given because of its non-existence. The solid circles

within the boxes represent the mean over observations for which the box-plots were drawn. It is seen that boosting
10



strongly outperforms ridge (exception setting 8 for MSE). More surprisingly mean and median values are smaller than
the corresponding values of the oracle. The oracle shows much larger variation, for some data sets its performance is
very bad for some rather good. But given that it uses information that is not available in practice the performance is

weak.

In setting 8 which contains only categorical covariates, the results of boosting regarding MSE(B) and the fit are
disturbed but still give better prediction performance. It should be noted that the results for boosting procedure in this
case (with all covariates categorical) could be improved by using smaller value of signal-to-noise ratio. Table 1 shows
the mean of log(MSE(B)), mean deviance of the fit i.e., deviance(7) and the mean prediction error (MPE). The values
appearing in boldface indicate the best results among all considered methods. In summary, Table 1 shows that boosting
is a much better technique than its competitors not only when there is small correlation but also with high correlation
among the covariates. We are not comparing the results of multinomBoost with estimates of Lasso or elastic net
such as given by Friedman et al. (2010), because our algorithm is working in a different way and performs predictor

selection (selecting a group of parameters at a time associated with a predictor) rather than parameter selection.

4 2. ldentification of Informative Predictors

In addition to small prediction error (MPE) a selection procedure should yield a parsimonious model that includes all
informative covariates. To identify whether the correct informative covariates are part of the final parsimonious model
or not, we are using “hit rate” and false alarm rate” as criteria. The hit rate is defined as the proportion of correctly
identified informative predictors, given as
» R
Zj:] I(ﬂtrue,j * O)I(ﬁj * 0)
P
Zj:l I(ﬂtrue,j # 0)
The false alarm rate is defined as the proportion of non-informative predictors dubbed as informative, and is given as
Zi‘):] I(Btrue,j = 0)'I(Bj # 0)
P —
ijl I(ﬂtme,j - 0)

Here Birue,j» j = 1,...,p is a vector that comprises the true parameter values for the k logits associated with the

hit rate =

false alarm rate =

Jjth predictor and ﬁ ; are the corresponding estimates. The indicator function /(expression) assumes the value 1, if
“expression” is true and O otherwise. To evaluate the performance of multinomBoost algorithm concerning selection
hit rates and false alarm rates are given in Table 2 for all settings considered in the simulation study. It is seen that the
procedure performs very well. Even is setting 8, which contains only categorical variables, hit rate is high and false

alarm rate low.

The last four columns of Table 2 give a relative comparison of each method with MLE(oracle). For comparing the
relative efficiency in terms of MPE we computed + ¥, (MPET*"¢/MPE}"), where MPE*"* represents the MPE

for a boosting approach or ridge regression and MPEE‘,/[L is the MPE of MLE(oracle) for the sth sample. For setting 8
11



with all categorical predictors, these values are missing because MLE(oracle) estimates do not exist for any sample.
The values with boldface represent the best result among the competitors in a particular setting. The deviance as a
variable selection criterion is performing best for selecting the relevant covariates in almost all settings even when we
have a small sample size relative to the number of covariates and with high correlations. AIC is a strong competitor of
deviance than BIC and giving almost the same level of accuracy regarding the selection of the relevant predictors. In
high dimensional setting when the model contains only binary or categorical predictors, hit rate with BIC as selection
criteria is not so much appealing because it is ignoring most of the relevant predictors. But as for as the inclusion
of non-relevant predictors is concerned, BIC is giving the best “’false alarm rate” in all situations. From the result of
Table 2, AIC seems to be a good choice as criterion for variable selection when the both measures i.e., hit rate and

false alarm rate for identification of the influential predictors are taken into account.
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FiGure 1: Illustration of the simulation study for first four settings without categorical covariates: Box plots for comparing
Boosting (using the criteria deviance, AIC and BIC) with MLE(oracle) and ssc-Ridge in terms of log(MSE(ﬁ)) (top panel)
and in terms of Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean
of the data for which box plot is drawn.
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Ficure 2: Illustration of the simulation study for high dimensional settings: Box plots for comparing Boosting (using the
criteria deviance, AIC and BIC) with MLE(oracle) and ssc-Ridge in terms of Iog(MSE(ﬁ)) (top panel) and in terms of
Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean of the data for
which box plot is drawn.
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TasLe 1: Comparison of Boosting approach with MLE(oracle) and ridge regression with symmetric side constraint (ssc-Ridge) in terms of log(MSE(B)), deviance of

the fit i.e., deviance(®) and Mean Prediction Error (MPE). The values with boldface represent the best result with a particular method among all competitors.

log(MSE(B)) deviance(#) MPE
Boosting Boosting Boosting
MLE  deviance AIC BIC ssc-Ridge MLE deviance AIC BIC  ssc-Ridge MLE deviance AIC BIC ssc-Ridge

Setting 1~ 4.2276 42186  3.0089  2.9797 3.0325 28.9138 12.0440 11.7320 13.3471 39.1327 1022.3555 286.2253 278.3627 302.9525 Emm._ﬁa‘m
Setting 2 5.6426 5.2404 52310 5.2795 5.0777 23.2785 12.5991 12.8019 16.0280 35.9622 612.9043 439.2145 472.5820 554.9007 1492.8805
Setting 3 2.8980 2.6479 25798 25915 5.6423 26.0146 15.7188 16.0922 18.0862 103.0675 229.9102 83.3936 80.6702 89.6679 1466.4339
Setting4  4.5806 37675  3.5734  3.6326 5.3012 36.4438 25.1230 26.4086 28.9922 49.6566 378.0500 112.3644 90.5228 98.3068 821.2240
Setting 5 3.6859 3.8458 31852  2.6561 4.4734 33.1327 17.2544 13.3362 11.0415 119.1908 303.9448 231.7965 141.2749 104.9711 2544.0830
Setting 6  4.0363 3.8262 33816 2.9946 4.3078 53.9725 39.5517 30.7109 29.5848 184.2309 527.4985 525.9714 340.9851 258.2625 3433.4700
Setting 7 4.7309 5.5441 55521  5.5289 6.8844 159.6963  152.8985 154.5399  130.9688 552.0475 398.8496 314.6842 275.1543 352.9394 2495.1473
Setting 8 - 7.2015 72136  7.1781 6.9634 — 2169942 2353204  244.9447 96.7519 - 10732970  1043.7080  1348.9930  2462.4450




TaBLE 2: Hit rates (HR) and false alarm rates (FAR) for identifying the informative predictors when deviance, AIC and
BIC are used as criteria for selecting a predictor in a boosting iteration. Deviance is used as stopping criterion with
10—fold cross-validation. Last four columns represent the relative efficiency (R.E.) of different approaches with respect
to MLE(oracle) in terms of Mean Prediction Error (MPE). A value less than one means that a particular approach is
performing better than MLE(oracle). The boldface figures represent the best result among all competitor methods.

Deviance AIC BIC Relative Efficiency

HR FAR HR FAR HR FAR RE(ridge) RE(dev) RE(AIC) RE(BIC)
Setting I~ 0.7733  0.0943 0.7267  0.0486 0.6067  0.0100 3.6742 0.6474 0.6191 0.6750
Setting2  0.6840  0.1339 0.5694  0.1205 0.4583  0.0892 4.2538 1.2758 1.3823 1.5941
Setting 3 0.9900  0.0171 0.9900 0.0143 0.9633  0.0000 14.8751 0.7153 0.6936 0.7463
Setting4 ~ 0.9700  0.0386 09733  0.0171 0.9267  0.0057 5.9219 0.7030 0.5470 0.5936
Setting 5 09111  0.1486 0.8722  0.0482 0.8111  0.0096 23.1847 2.1491 1.3049 0.9094
Setting6 09944  0.1333 0.9944  0.0447 0.9611 0.0085 13.9645 2.1677 1.3102 0.9011
Setting7  0.9611  0.1111 0.9389  0.0611 0.8278  0.0167 9.3696 1.1523 1.0146 1.3058
Setting 8 0.8083  0.1333 0.7444  0.0717 02944 0.0492 - - - -

5. Application

In this section two data sets are used to illustrate variable selection by use of the multinomBoost algorithm and to show
how it differs from the Lasso approach which focuses on parameter selection rather than variable selection. Both of

the data sets are taken from the UCI machine learning repository.

5.1. Glass ldentification Data

The first data set concerns the identification of type of glass (Blake et al. (1998)). The data comprises 214 observa-
tions. The response variable is the type of glass with six response categories given as: BFP (building windows float
processed), BFNP (building windows non float processed), VFP (vehicle windows float processed), Con (containers),
TW (tableware) and HL. (headlamps). The nine continuously valued covariates are RI (refractive index), Na (Sodium),
Mg (Magnesium), Al (Aluminum), Si (Silicon), K (potassium), Ca (calcium), Ba (Barium) and Fe (iron). The unit of

measurement for all covariates other than refractive index is the weight percent in corresponding oxide.

For the identification of influential covariates, the multinomBoost algorithm is used. Three measures i.e., deviance,
AIC and BIC are used to select a variable for updating in a boosting iteration. With all these three criteria, while
using 10—fold cross-validation for deciding the optimal number of boosting iterations, only three covariates i.e., Na,
Mg and Al are identified as potential covariates whereas the rest of the covariates are found non-informative with zero
parameter estimates for all six response categories. The same data set is also analyzed by using the lasso approach.

For this purpose the gimnet package of R (Friedman et al. (2010)) is used. The optimal value of L1-penalty decided on
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TaBLE 3: Parameter estimates for six categories of "Type of Glass” with Lasso approach and the multinomBoost. For
the boosting estimates AIC is used for variable selection and deviance is used as stopping criterion based on 10—fold
cross-validation.

Lasso Boosting
Predictor BFP BNFP VFP Con ™ HL BFP BNFP VFP Con ™ HL
RI 0 0 -299.4145 0 0 0 0 0 0 0 0 0
Na 0 ~0.0216 0 -00798 19375 13650 ~0.5331 ~0.6059 01177 -0.7570 10011 07773
Mg 10135 0.0700 00949  -04171  -0.0700  -0.6507 14192 0.2458 08044  -09832  -05732  -09130
Al -3.0152 0 —2.6973 2.7338 0 1.2600 —1.4020 0.0541 -0.7351 1.2081 —-0.0279 0.9028
Si 0 ~0.4491 ~1.4466 0 02272 0.4268 0 0 0 0 0 0
K 0 0 0 03329  -2.0816 0 0 0 0 0 0 0
Ca 0 0 0 0.3050 0 01285 0 0 0 0 0 0
Ba 0 0 0 0 -0.1092 19513 0 0 0 0 0 0
Fe 0 2.5488 0 0 -08011 0 0 0 0 0 0 0

the basis of 10—fold cross validation was 0.009993293. The parameter estimates for lasso approach using this penalty
term along with those from the boosting approach with AIC as variable selection criterion and deviance based on
10—fold cross-validation as stopping criterion are given in Table 3. The results in Table 3 show that the lasso approach
does parameter selection but not variable selection. With lasso, all predictors are found relevant because at least
one estimate for some response category is non-zero for each predictor. The boosting approach suggests only three
predictors as relevant and the rest of the predictors as non-informative. In contrast to lasso, the boosting approach is
selecting (or ignoring) the whole block of category-specific parameter estimates for each predictor with non-zero (or
zero) values of the parameter estimates for all response categories. The coefficients build-up for relevant predictors for
each response category resulting from boosting are plotted in Figure 3. The names of all non-informative predictors
are overlapped against zero value on the right side of each plot. Figure 3 is showing the coefficients build-up only
for the informative covariates because the multinomBoost algorithm sets parameter estimates to zero for all those

predictors which fulfill the criteria given in (10) at final boosting iteration.

5.2. Contraceptive Method Choice Data

The second data set considered provided by Lim et al. (2000) is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. The sample, 1473 married women who were either not pregnant or did not know if they were at the
time of interview. The problem is to analyse the current contraceptive method choice (no use, long-term methods, or
short-term methods) of a woman based on 10 demographic and socio-economic characteristics as: Wife’s age , Wife’s
education (wife.edu; 1 =low, 2, 3, 4 =high), Husband’s education (husband.edu; 1 =low, 2, 3, 4 =high), Number of
children ever born, Wife’s religion (0 =Non-Islam, 1 =Islam), Wife’s now working? (0 =Yes, 1 =No), Husband’s
occupation (categorical: 1,2, 3, 4), standard of living (sol.index; 1 =low, 2, 3, 4 =high) and media exposure (0 =Good,
1 =Not good).

For this data set, we used the deviance for variable selection among the candidate predictors. For large samples using
16
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Ficure 3: Coefficient build-up in boosting for “Type of glass” data. The vertical dotted line represents the optimal boosting
iteration number decided on the basis of 10—fold cross-validation when deviance is used as a stopping criterion. AIC is
used for predictor selection. The names of all non-informative predictors are overlapped against zero value on the right
side of each plot.

AIC or BIC as variable selection criterion increases the computational burden and can slow the algorithm because
of computation of hat matrix at each boosting iteration for each of the candidate predictors. The optimal number of
boosting iterations was decided by deviance with 10—fold cross-validation. For computation of lasso estimates again
the glmnet package (Friedman et al. (2010)) of R was used. The optimal value of penalty term decided with 10—fold
cross-validation was 0.001016358. The lasso estimates with this penalty are given in Table 4 along with corresponding
boosting estimates. As in Section 5.1, again the difference between parameter selection (by lasso approach) and
variable selection (boosting approach) becomes obvious from Table 4. Here the process is one step more complex in
the sense that categorical covariates are included. So with variable selection all parameters associated with dummies
of the categorical covariate for all response categories should be selected or rejected at the same time. From the
results of Table 4 it is clear that the boosting approach is following that rule but lasso is not. Once again with the lasso
approach all the variables are found relevant when at least one predictor (or dummy associated with the categorical
predictor) had non-zero estimate(s) for at least one response category. In contrast boosting is recommending just four
informative predictors by selecting all of the parameters associated with the predictors for all response categories. The
informative covariates include two continuous predictors i.e., wife’s age and number of children ever born, and two

categorical predictors (with all of their categories) i.e., wife’s education and husband’s education. The coefficients
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TaBLE 4: Parameter estimates for three categories of the contraceptive methods used (i.e., No-use, Long-term and Short-
term) with Lasso approach and the multinomBoost. For the boosting estimates deviance is used as stopping criterion with
10—fold cross-validation. Deviance is also used for predictor selection.

Lasso Boosting
Predictor No-use  Long-term  Short-term No-use  Long-term  Short-term
wife.age 0.0468 0 —-0.0593 0.3683 0.0715 —-0.4397
wife.edu2 —-0.0371 0.6058 0 —-0.1072 0.1303 —-0.0231
wife.edu3 —-0.3581 1.0610 0 -0.2872 0.3390 -0.0518
wife.edu4 —-0.9607 1.3694 0 —0.5445 0.5760 —-0.0315
husband.edu2 0 —0.7669 1.0697 —-0.0397 —-0.2146 0.2543
husband.edu3 0 —0.5997 1.2333 —-0.0872 —-0.2770 0.3642
husband.edu4 0 —0.5686 1.0176 —-0.0764 —-0.2628 0.3392
children —-0.3449 0 0 -0.4979 0.2407 0.2572
wife.religion 0.3522 —-0.1795 0 0 0 0
wife.working ~ —0.0130 0 0.1527 0 0 0
husband.job2 0 -0.4072 0.0162 0 0 0
husband.job3 0 —-0.2178 0.2897 0 0 0
husband.job4 ~ —0.4590 0 0.0312 0 0 0
sol.index2 —-0.3402 0.0219 0 0 0 0
sol.index3 —0.4528 0.2433 0 0 0 0
sol.index4 —0.6841 0.2440 0 0 0 0
media 0.5316 0 0 0 0 0

build-up for boosting is shown in Figure 4. The names of all non-informative predictors/dummies are overlapped
against zero value on the right side of each plot. Although some of the predictors appearing in Table 4 or Figure
4 with zero parameter estimates, were considered for updating at some boosting iteration but at the final (optimal)

boosting iteration multinomBoost algorithm set all those estimates to zero which fulfilled the criteria given in (10).

6. Concluding Remarks

In multinomial logit models, where the response variable has k un-ordered categories, there are k — 1 parameters (
or (k — 1)(K — 1) parameters in the case of a categorical predictor with K categories) that are associated with one
predictor variable. Subset selection means that the selection should not refer to the parameters but to the block/group
associated with one predictor. When the predictor is categorical, the complexity goes one step farther and selection
refer to the blocks/groups of all parameters associated with all dummies of the predictor for all response categories.
Unfortunately existing techniques such as lasso do not work in that way but focus on individual parameters rather
than predictors. One more issue with subset selection is that sometimes the experimenter wants to include particular

variables in the model in such a way that they must be a part of the selected model. The lasso approach can discard
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Ficure 4: Coeflicient build-up in boosting for “contraceptive method choice” data. The vertical dotted line represents the
optimal boosting iteration number decided on the basis of 10—fold cross-validation when deviance is used as a stopping
criterion as well as for predictor selection. The names of all non-informative predictors/dummies are overlapped against
zero value on the right side of each plot.

such variable during the subset selection process suggesting them as non-informative. The multinomBoost algorithm
considered addresses both issues. It allows mandatory covariates to be a necessary part of the sparse model. Also, in
contrast to lasso, predictors (not parameters) which form a group of parameters are considered candidates for updating
in the next boosting iteration. As a result, in the final estimates either the complete block of parameters comprising
a predictor is part of the sparse model or not. In addition our algorithm treats ordinal predictors properly. Instead of
penalizing the parameters associated with dummies of the ordinal predictors, the difference between the parameters
of adjacent categories is penalized. The effect is that also ordered predictors that contain many categories can be

included in the model while simple maximum likelihood frequently fails when many categories are involved.
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