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Abstract

We present a nonnegative Elastic Net approach for the analysis of Dynamic
Contrast-Enhanced Magnetic Resonance Imaging data. A multi-compartment
approach is considered, which is translated into a (restricted) least square model
selection problem. This is done by using a set of basis functions for a given set
of candidate rate constants. The form of the basis functions is derived from a
kinetic model and thus describes the contribution of some compartment. Us-
ing the Elastic Net estimator, we chose clusters of basis functions, and hence,
rate constants of compartments. As further challenge, the estimator has to be
restricted to positive regression parameters, which correspond to transfer rates
of the compartments. The proposed estimation method is applied to an in-vivo
data set.

Keywords: Compartment Model, DCE-MRI, Elastic Net, Regularized Esti-
mation

1 Introduction
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) provides
an imaging series of contrast agent concentration in some tissue of interest.
The dynamic behavior of contrast agent uptake is important for the specifica-
tion of malignancy, type and grading of tumors (Parker and Padhani, 2003).
Pharmacokinetic models describe the exchange of contrast agent between differ-
ent, well-mixed compartments. Those compartment models provide quantitative
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physiological parameters characterizing the amount and rate of capillary leakage
(Padhani et al., 2005).

A common modeling approach is the so-called extended Tofts-Kermode model,
assuming a plasma compartment and an interstitial space compartment (Tofts
and Kermode, 1991). In many situations, however, this model cannot adequately
describe the measured concentration (Schmid et al., 2009), which indicates that
more complex models are needed. This is the case when the imaged tissue is
heterogeneous as often observed in cancerous tissue. Port et al. (1999) have
suggested, that a kinetic model should allow for more than one interstitial space
compartment in order to adequately describe the uptake dynamics on a region
of interest level. Tissue heterogeneity can, however, even be observed on a voxel
level. In Kärcher and Schmid (2010), a two-compartment model has been applied
to DCE-MRI data to account for heterogeneity within voxel, and parameters have
been estimated using Bayesian methods.

In this paper, a multi-compartment model is fitted using likelihood based reg-
ularization techniques. We use a bundle of exponential functions as basis, each
of which is derived from the differential equation describing the tracer uptake of
a tissue compartment. The corresponding coefficients are sparsely selected and
estimated while penalizing for an increasing number of parameters. By selecting
clusters of nonzero coefficients, the number of used compartments is implicitly
selected as well. A similar approach of sparse basis selection has been proposed
for compartment models used in positron emission tomography (PET) (Gunn
et al., 2002). The basis pursuit approach proposed there corresponds to unre-
stricted Lasso (Tibshirani, 1996) estimation. The Lasso, however, tends to be
unstable in case of highly correlated covariates. In addition, in applications of
such type, Ridge regression (Hoerl and Kennard, 1970) has often been shown
to produce better results in terms of prediction accuracy. Therefore, we use a
restricted Elastic Net, combining the advantages of Ridge and Lasso estimation.
The estimates of an Elastic Net are known to be stable even for highly correlated
predictors. In our case, however, estimated parameters need to be nonnegative
to ensure the positiveness of the physiological parameters. Hence our approach
is called nonnegative Elastic Net.

The advantage of this approach is that the number of compartments (corre-
sponding to the number of nonzero coefficient clusters) is estimated from the data
and no model choice has to be done a priori. In addition, the plasma volume
fraction will be estimated as zero when there is no considerable contribution.
Moreover, the number of compartments is not fixed, but may be varying over
a field of voxel. Briefly, this approach combines the advantages of model-driven
methods (parameter estimates correspond to compartmental structure and are
interpretable) and data-driven methods (no a priori compartment-structure has
to be defined).

The paper is organized as follows. In the following section, DCE-MRI data
and the standard compartment model are described. Subsection 2.2 describes
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the multi-compartment model and in Subsection 2.3 the proposed estimation
technique – the nonnegative Elastic Net – is introduced. Finally, the proposed
method is applied to the data and results are discussed in Section 3.

2 Methods

2.1 DCE-MRI Data and Compartment Models
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Figure 1: Color coded concentration curves CT (t) at 41 × 41 voxel for different time points;
voxel at coordinates {33, 23} is indicated by crosslines.

To evaluate the clinical use of our approach we use a subset of a previously
analyzed DCE-MRI study on breast cancer (Schmid et al., 2006). The dataset
consists of six patients with breast tumors, scanned once at the beginning of
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treatment and again after six weeks. The scans were acquired with a 1.5 T
Siemens MAGNETOM Symphony scanner, TR = 11 ms and TE = 4.7 ms.
Each scan consists of three slices of 230×256 voxel. A dose of D = 0.1 mmol/kg
body weight Gd-DTPA was injected at the start of the fifth acquisition using
a power injector. Regions of interest cover the tumor and surrounding normal
tissue. The contrast agent concentration at time t is computed from the MR
signal on each voxel (Buckley and Parker, 2005).

In Figure 1, color coded concentration maps for a 41 × 41 voxel region of
interest for a mid tumor slice of one scan are shown for different time points.
This is a pre-treatment scan, where the treatment has shutdown most of the
angiogenic property, i.e., the enhanced blood flow towards the tumor. Over all,
concentrations (for each voxel) are reported for 46 nearly equally spaced time
points from 0 to 9.1 minutes; more generally, at time points t = 0, . . . , T . The
idea is to model these concentration time curves CT (t) separately for each voxel
(as e.g. done by Schmid et al., 2006). For illustration, the voxel at coordinates
{33, 23} is indicated by crosslines in Figure 1.

A common modeling approach for DCE-MRI data is the (extended) Tofts-
Kermode model (Tofts and Kermode, 1991) with one interstitial space compart-
ment,

CT (t) = vpCp(t) + Cp(t) ⊗Ktrans exp(−kept), (1)

where ⊗ denotes the convolution operator and thus

Cp(t) ⊗ exp(−kept) =

∫ t

0

Cp(t− τ) exp(−kepτ)dτ. (2)

The arterial input function (AIF) Cp(t) is assumed as fixed and parametersKtrans,
kep and the plasma volume fraction vp need to be estimated. The parameters do
have a biological meaning: kep is the rate constant at which the interstitial space
compartment exchanges with the blood plasma and Ktrans is the corresponding
volume transfer constant.

2.2 Multi Tissue Compartment Model

As a generalization of the one-compartment model (1), the multi-compartment
model with q compartments can be defined by

CT (t) = vpCp(t) +

q∑

j=1

Cp(t) ⊗Ktrans
j exp(−kepj

t). (3)

The volume fraction of the plasma compartment is denoted by vp. As arterial
input function (AIF) we use a bi-exponential function of the form proposed by
Tofts and Kermode (1991)

Cp(t) = D(a1 exp(−m1t) + a2 exp(−m2t)), (4)
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with a1 = 2.4 kg/l, a2 = 0.62 kg/l, m1 = 3.01 min−1, m2 = 0.016 min−1, as
suggested by Fritz-Hansen et al. (1996). The constant D is the actual dosage of
tracer in mol/kg.

Due to measurement error, the concentration Ci
T (t) at time points t = 0, . . . , T

in voxel i = 1, . . . , N is modeled as:

Ci
T (t) = vp,iCp(t) +

q∑

j=1

Cp(t) ⊗Ktrans
j,i exp(−kepj

t) + ϵi,t, (5)

where ϵi,t ∼ N(0, σ2
i ) is a Gaussian noise term. That means

Ci
T (t) = vp,iCp(t) +

q∑

j=1

Ktrans
j,i Ψj(t) + ϵi,t, (6)

with basis functions

ψj(t) = DCp(t) ⊗ exp(−kepj
t) (7)

=
Da1(exp(−kepj

t) − exp(−m1t))

m1 − kepj

+
Da2(exp(−kepj

t) − exp(−m2t))

m2 − kepj

.

Each compartment j is characterized by how fast it exchanges with the plasma
compartment, expressed by its rate constant kepj

. As candidate values we consider
log(kepj

) ∈ {−2,−1.99,−1.98, . . . , 1.99, 2}, and the adequate values need to be
selected. Moreover, each compartment is characterized by its transfer constant
Ktrans

j . The transfer constant is obtained by the product of the volume fraction
vj and the constant rate of the compartment and is hence nonnegative: Ktrans

j =
kepj

· vj ≥ 0. Thus, the vector θi = (vp,i, K
trans
1,i , . . . , Ktrans

q,i )T is unknown and to
be estimated. Wherever the estimated transfer constant is positive (K̂trans

j,i > 0),
the corresponding compartment, resp. kepj

value, is selected. From (6) it can be
seen that a regression problem with predictors Cp(t),Ψj(t), j = 1, . . . , q, is to be
solved. Figure 2 depicts the subset {Cp(t),Ψj(t)} of predictors with log(kepj

) ∈
{−2,−1.9,−1.8, . . . , 1.9, 2}, shown together with the observed response Ci

T (t) at
voxel i with coordinates {33, 23} (blue line).

When estimating the parameter vector θi with simple maximum likelihood
inference, under the assumption of independent Gaussian distributed observation
errors ϵi,t, the residual sum of squares

∑
t(C

i
T (t) − Ĉi

T (t))2 has to be minimized.
However, here the θi with θ = Ktrans

i for i ≥ 1 and θ0 = vp need to be nonnegative,
and, hence, the pure ML-estimate is

θ̂ML
i = argminθ≥0

{∑

t

(
Ci

T (t) − z(t)T θ
)2

}
, (8)
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Figure 2: Subset of predictors {Cp(t), Ψj(t)} (black lines), together with the observed response
Ci

T (t) at voxel i with coordinates {33, 23} (blue line).

with
z(t) = D(Cp(t),Ψ1(t), . . . ,Ψq(t))

T , t = 1, . . . , T.

Since, however, we have a large number of θ parameters and adjacent entries
of z(t) are highly correlated (due to construction), pure maximum likelihood
estimates are unstable or even not unique. Therefore we use a penalized approach
as described in the following.

2.3 Regularized Estimation

In order to stabilize the estimation of parameter vector θ, the log-likelihood which
is to be maximized is additively corrected by a penalty term J(θ). More precisely,
for a fixed voxel i, we use the estimator

θ̂i = argminθ≥0

{∑

t

(
Ci

T (t) − z(t)T θ
)2

+ λJ(θ)

}
, (9)

with z(t) as given in (8). The strength of penalization is controlled by λ. The
crucial point, however, is to choose an appropriate penalty J(θ). Vega-Hernandez
et al. (2008), for example, discussed the use of different penalties for solving the
so-called inverse problem of the electroencephalography (EEG) in neuroscience.
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A well established regularization technique which in particular was constructed
for high-dimensional problems with highly correlated explanatory variables (as
found in z) is the so-called Elastic Net (Zou and Hastie, 2005), with penalty

J(θ) = α

q∑

j=1

θ2
j + (1 − α)

q∑

j=1

|θj|. (10)

Alternatively, the corresponding estimate can be written as

θ̂i = argminθ≥0

{∑

t

(
Ci

T (t) − z(t)T θ
)2

+ λ

q∑

j=1

θ2
j + γ

q∑

j=1

|θj|
}
,

or

θ̂i = argminθ≥0

{∑

t

(
Ci

T (t) − z(t)T θ
)2

+ λ

q∑

j=1

θ2
j

}
,

subject to
q∑

j=1

|θj| ≤ s. (11)

Due to the L1-type penalty term in (11), coefficients from {θ̂i1, . . . , θ̂iq} = {K̂trans
1,i ,

. . . , K̂trans
q,i } may be set to zero (see e.g. Zou and Hastie, 2005), which means that

corresponding kepj
are excluded. Remaining compartments (with K̂trans

j,i > 0) are
selected.

For practical estimation the R package quadprog (Turlach, 2009) is used.
Tuning parameters λ and s can, for example, be determined using K-fold cross-
validation; for an introduction to cross-validation see, e.g., Hastie et al. (2009).
Moreover, entries of z are scaled to have unit variance over time, because oth-
erwise θj corresponding to entries of z with smaller variance would implicitly
undergo higher penalization.

3 Results
For illustration, the contrast agent concentration curve in voxel {33, 23} was fitted
and estimated Ktrans values are shown in Figure 3 for s = 1/8 and λ = 10−5 (top)
or λ = 10−2 (bottom). With smaller λ values a sparser solution is obtained. In
the extreme case λ = 0 the (positive) Lasso (Tibshirani, 1996) results, which,
however, is quite unstable for the given data. With λ = 10−5 and λ = 10−2 the
quality of the fit is very similar, as shown in Figure 4.

In order to find adequate λ and s values for each voxel, 5-fold cross-validation
can be done. However, we prefer sparse solutions, i.e., solutions with just a few
K̂trans

j,i > 0, and we observed that cross-validation scores just slightly changed for
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Figure 3: Estimated Ktrans values for voxel {33, 23}, if s = 1/8 and λ = 10−5 (top) or λ = 10−2

(bottom) are chosen.

different small λ values. So we fixed λ = 10−8, and only s values were chosen via
(5-fold) cross-validation.

For four voxel ({10, 5},{18, 27},{29, 30},{33, 23}) observed (black points) and
fitted (solid red lines) concentration curves are shown in Figure 5. For compari-
son, the fitted concentration curves for the standard one-compartment model are
shown, too (dashed black). In case of voxel {29, 30} the results of both models
are equal. For the other voxels (especially {10, 5} and {30, 23}) the fast uptake is
more adequately described by the multi-compartment model. However, for voxel
{18, 27}, it is unclear whether this feature always results in a better overall fit.

In Figure 6 the estimated variances of error terms ϵi,t are visualized. We see
that variances tend to be larger at the boundary of the tumor. The observa-
tion error ϵi,t has been assumed to be independent over time. In order to verify
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Figure 4: Fitted against observed concentration CT (t) for voxel {33, 23}, if s = 1/8 and λ =
10−5 (left) or λ = 10−2 (right) are chosen.

this assumption observed (first-order) autocorrelations are summarized in Fig-
ure 7. From the left panel we can see that autocorrelation values are modest and
the distribution is rather symmetric and centered at zero, which supports the
assumption of independent errors. Moreover, no spatial pattern of correlation
coefficients is observed (right panel).

In Figure 8 a map of the number of compartments selected by the algorithm
is shown. A one-compartment model is indicated in red, two compartments in
orange, and three or more in white. The number of compartments is defined
as the number of disjoint clusters of estimated nonzero Ktrans values for the
respective voxel. The model fitted to the concentration curve of voxel {33, 23},
for example, is a two-compartment model (see also Figure 3). The number of
compartments is increased towards the upper left of the region of interest, which
in this case roughly corresponds to a region with relatively healthy tissue.

4 Summary and Discussion
In this paper we presented a nonnegative Elastic Net estimator for fitting com-
partmental models. The proposed estimation approach allows to estimate the
number of compartments along with the kinetic parameters.

The proposed approach uses the basis pursuit approach by Gunn et al. (2002),
but accounts for the high correlation of the basis functions. In contrast to the
Lasso, the Elastic Net allows to chose clusters of basis functions, and hence, is
more stable for correlated basis functions. As additional challenge, the algorithm
has to account for the fact that the estimated parameters are rates and therefore
have to be non-negative.
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Figure 5: Observed (black points) and fitted concentration curves for four voxel if the multi-
compartment model (solid red line) or one-compartment model (dashed black line) is applied.

The proposed algorithm is able to give better fits to the observed contrast
agent concentration. However, the map of estimated compartments is not com-
pletely conclusive. The number of compartments in a pixel can be a indicator for
the heterogeneity of the tissue, however, a higher number of compartments can
also be caused by incorrect definition of the input function. Here, we used a liter-
ature AIF, which may not be adequate for the data. Hence, further investigations
on the causes of the number of compartments will be necessary.

The proposed approach is however not limited to DCE-MRI data, but can be
used for all applications, where kinetic models with more than one compartment
are considered. This is the case for a variety of applications in biology and
medicine.
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