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Abstract

This research examines the issue of option pricing using stochastic volatility models and
compares the results to the Black-Scholes-Merton approach. The analysis of the models
and the pricing concepts are focused on the foreign exchange market, however, most of
the procedures and techniques proposed in this thesis can be applied to other markets
and asset classes. The schema is thus presented with an introduction to the foreign
exchange market and to the financial derivatives which are followed by the derivation
of the Black-Scholes-Merton framework. After introducing foreign exchange specifics
besides expounding the drawbacks of the Black-Scholes-Merton model and presenting
more complex option strategies including exotics, stochastic volatility models are de-
veloped to provide solutions to the problems of the initial framework. The concept of
stochastic volatilities is represented by the Heston and the Heston-Nandi model and
enables more sophisticated option pricing as it does not wrongly assume the volatility
to be constant. The latter builds on an NGARCH process to describe the variance (i.e.
squared volatility) movements and can be fitted to given market data in different ways.
Extensions of the stochastic volatility models are shown in order to deliver a complete
specification of the foreign exchange market, its derivatives and how to determine the
value of these financial instruments with different pricing schemes. Great value has been
laid on comparing the different models with empirical results in order to give a distinct
insight into the entire theme.
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1. Introduction

Option pricing and stochastic volatility models are both extraordinary and remarkably
interesting themes which are as boundless as they are important and fascinating. The
entire financial industry lives from the accurate pricing of financial instruments and cor-
rectly modelling the market behaviours. The knowledge and ability to valuate complex
derivatives and understand the underlying processes is of great interest to the supporting
companies DEVnet and Assénagon.

The mathematical and statistical theory which deliver the essential basis of these tools
are methods developed in recent years and still provide many problems to be solved.
The cornerstone was undoubtedly laid by the Black-Scholes-Merton model in the 1970s.
Since then a vast amount of models and concepts have been developed. The two main
models presented in this thesis are the Heston and the Heston-Nandi framework which
have had another deep impact on pricing options as they deliver closed form solutions
for stochastic volatility models. These approaches were produced1 in the years 1993 and
2000 and have been enlarged upon since then.

1.1. Motivation

One reason for writing this diploma thesis is to give a beneficial and thorough insight
into the option pricing theory concentrating on closed form stochastic volatility models
and the foreign exchange market. It also summarises approximately the first half of
[Hull02] which is one of the absolute standard references on basic option pricing and
gives a good understanding of the general theme.

However, the foremost motivation is to challenge the theory of more advanced approaches
adding the necessary complexity in order to deliver more sophisticated and accurate
pricing schemes. The concepts chosen in this context are two widely used closed form
stochastic volatility frameworks provided by the Heston and the Heston-Nandi model.
The interesting questions arising from different possible option pricing schemes can be
asked in the following way. How well can they determine the market prices of options?
What are the empirical and theoretical similarities and differences between the distinc-
tive approaches? How well do the models fit the volatility implied by the market? What

1Parts of the Heston-Nandi framework were published beforehand.
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are the different assumptions underlying the models? How well do the more compli-
cated stochastic volatility models perform especially when comparing the results to the
original BSM option pricing concept?

These questions are examined carefully in the subsequent chapters including an intensive
empirical analysis as well as some digressions and outlines. The basic schema of this
research can be found in the following section. It should be emphasised that all concepts
and models presented in this diploma thesis are of equal theoretical and practical value.

1.2. Schema

This diploma thesis can be partitioned into three parts. The first gives an introduction
to the basic knowledge of the foreign exchange market, its financial derivatives and
the option pricing theory applying the Black-Scholes-Merton model which are presented
in Chapters 2 and 3. Moreover, the motivation for using stochastic volatility models,
particularly when more complex (foreign exchange) options need to be priced is found
in Chapter 4.

The derivation of the Heston and the Heston-Nandi stochastic volatility model is de-
picted in the second part of this research, i.e. Chapters 5 - 6. The empirical analysis of
these models, including a description of the calibration and estimation, the comparison
and validation and also option pricing with stochastic volatility processes is treated in
Chapters 7 - 9. The last Chapter 10 provides an outline of further concepts and exten-
sions and is seen as a supplementary part. Practically all the statistical and theoretical
background is given in Appendix A. As the graphical analysis is quite intensive, most
of the figures are also presented in Appendix B.
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2. The Forex Market and Basic
Financial Derivatives

2.1. An Introduction to the Forex Market

The foreign exchange (forex, or FX) market with its financial instruments, or derivatives,
is of particular interest for investigating the occurrence of stochastic volatility in financial
data as there are many exotics and complex derivatives being traded which usually tend
to be sensitive to the volatility smile seen in the market. This will be the motivation for
using Heston’s stochastic volatility model as seen later on.

The forex market is also predetermined to compare different models as it provides sizable
amounts of data being the largest and one of the most liquid financial markets in the
world. It includes trading between large banks, central banks, currency speculators, cor-
porations, governments, and other financial institutions. Daily turnovers were reported
to be over US $ 3.2 trillion (e 2.25 trillion) in April 2007 by the Bank for International
Settlements ([BIS07] p.1, confer also Figure 2.1). Since then, the market has continued
to grow. According to the annual Forex Poll by [Euromoney08], volumes grew a further
41% between 2007 and 2008.

The forex market is not restricted to an actual stock exchange, it is, therefore, an over-
the-counter (OTC) or off-exchange market where market participants1 trade directly
with each other. The word “exchange” in foreign exchange is hence somewhat misleading
as there is no central exchange or clearing house. OTC markets are in general more
flexible than exchange markets as there are hardly any restrictions to what is traded
and which parties trade with each other. This differs to exchange trading where parties
can only trade with facilities like the New York Stock Exchange (NYSE) or the Chicago
Board of Trade (CBOT, established in 1848 to bring farmers and merchants together
[Hull02] ch.1) which only offer standardized goods like futures or stocks determined and
specified by these facilities.

The actual purpose of the forex market is to facilitate international trading and investing.
Any market participant can exchange currencies at a negotiable price, to be able to
do business in another country in a different currency (as mentioned, forex is OTC).
Currency trading always arises in pairs (e.g. USD-EUR) where one currency is sold, i.e.

1The main categories of market participants or traders are: hedgers, speculators and arbitrageurs.
For more information compare [Hull02] ch.1.
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Growth of the Forex Market and the Underlying Contracts

Figure 2.1.: Average daily turnover of global foreign exchange (billions of US dollars,
April 2007). Traditional markets : spot transactions, outright forwards and
forex swaps2. Other forex instruments : currency swaps and options & ex-
change traded contracts compare also Section 2.2 and [IFSL07] p.1.

exchanged simultaneously for another and is depicted by EUR/USD or USD/EUR (c.f.
Chapter 4). By doing so a foreign currency is valued relative to another currency. This is
where speculators try to make a profit by betting on whether a certain currency is going
to gain or lose value relative to another in the future. The price of a currency, therefore,
obeys the laws of supply and demand. The actual valuation of currencies is another very
important purpose of the forex market as it indicates an economy’s condition. However,
it is to be noted that some, especially emerging markets, prevent their currencies from
being freely traded. A brief overview of the forex market is depicted in Table 4.1.

Summarizing, the forex market is unique because of:

• the size of the trading volume

• the large number and variety of traders in the market

• the extreme liquidity of the market

• the variety of factors that affect exchange rates

• its geographical dispersion

• its long trading hours: from 22:00 UTC on Sunday until 22:00 UTC Friday 24
hours a day, inter-bank forex trading continues 5.5 days a week, from Monday to
midday on Saturday

• the low margins of profit compared with other markets of fixed income (but profits
can be high due to very large trading volumes)

4



Outline of the Forex Market:
The Leading Forex Markets, Currency Traders and Currency Pairs

(a) Forex Markets:
position forex market overall market share
1. UK 34.1%
2. USA 16.6%
3. Switzerland 6.1%
4. Japan 6.0%
5. Singapore 5.8%

(b) Currency Traders:
position trader overall market share
1. Deutsche Bank AG 21.70%
2. UBS AG 15.80%
3. Barclays Capital 9.12%
4. Citigroup Inc 7.49%
5. Royal Bank of Scotland 7.30%

(c) Currency Pairs:
position currency pair overall market share
1. USD-EUR 27%
2. USD-YEN 13%
3. USD-GBP 12%
4. USD-AUD 6%
5. USD-CHF 5%

Table 2.1.: (a) The top 5 foreign exchange markets in 2007, according to [RBA07]
(b) The leading currency traders in 2008, see [Euromoney08]
(c) The most traded currency pairs in 2007, compare [BIS07]

Apart from the aspect that forex is a market it is also seen as an asset class, just as fixed
incomes (bonds) and equities (stocks) represent a family of asset classes. Moreover, forex
has become a very interesting asset class because they are often not correlated to other
asset classes and also seem to deliver descent annual excess returns, when comparing to
bonds and stocks, as the Deutsche Bank Currency Index suggests [IFSL07].

2.2. A Brief Summary of Derivatives

As seen in Figure 2.1, there are different kinds of derivatives traded on the forex market
which also exist in many other markets. The following segmentation has been undertaken
in the respective figure: traditional forex instruments which include spot transactions,

5



outright forwards and forex swaps and describe nearly 90% of the global turnover in April
2007. The rest of the turnover is divided into OTC currency swaps and options2. The
following sections outline the most important derivatives in analogy to [Hull02] ch.1-7.
It is to be noted that transaction costs are neglected which simplifies calculations and
the notational burden, c.f. Section 2.3.2.

2.2.1. Spot Contracts

Starting with the simplest derivative, spot transactions or spot deals simply express a
trade being done and confirmed right away, or “on the spot”. During the settlement
period, which is usually a few days, money and securities change hands.

2.2.2. Forward Contracts

A forward contract is an agreement to buy or sell an asset at a certain future time for a
certain price, c.f. [Hull02] ch.1. The difference to spot contracts, therefore, is the time
component: Spot contracts are exercised the same day, forwards will be exercised at an
arranged future date. As forwards can be traded between any parties and can consist of
any kind of assets, forwards are classed as OTC transactions. Forward contracts which
only consist of currency assets, are referred to as currency forwards, forex forwards or
outright forwards.

The idea of forwards is to fix the future buying or selling price. One can either take a
long position (buy to the arranged future date) or a short position (sell to the arranged
future date). At time t0 the forward price Ft0,T is negotiated (or often just given) for
a forward maturing at T . When settling the contract, the forward price becomes the
delivery price to which the forward is exchanged at expiration date T . So, at time t0 the
forward price equals the delivery price. During the time period τ := T − t0 the delivery
price, of course, stays the same until clearance at time T , as it is fixed in the contract.
The forward price Ft,T at time t ∈ [t0, T ], however, will almost certainly change during
the time period τ . When the spot price of an asset changes, the future price of the
asset also shifts consistently. The main reason for this occurrence is the no-arbitrage
theorem which implies that the difference in price between a forward and the underlying
asset, depending on the contract risk, must be proportional to the risk-free interest rate
otherwise there would be an arbitrage possibility (for more details, see Section 2.3).

It can easily be concluded that if the value of the asset rises until maturity the long
(short) position gains (loses) as the asset price ST at time T is worth more than the
delivery price (K) which is paid at time T but was contracted at time t0, i.e. ST > K.

2A forex swap is the simultaneous purchase and sale of identical amounts of one currency for another
with two different value dates (normally spot to forward), [Reuterser]. Where as currency swaps involve
two reversed bonds in two different currencies as seen in Section 2.2.5
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Payoff Curves of a Forward at Maturity T
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Figure 2.2.: Payoff curves of a forward at maturity T : (a) long position, (b) short position

Equivalently, if the price falls until maturity (ST < K) the long (short) position loses
(gains). The payoff from a long position is thus given by

ST −K (2.1)

and the payoff from a short position is

K − ST (2.2)

which also can be seen in Figure 2.2. Note, that the parties involved are obliged to fulfill
their contract at maturity, no matter whether their payoffs are positive or negative.

2.2.3. Futures Contracts

Futures contracts are practically the same as forward contracts except that they are
usually traded on an exchange as opposed to OTC markets. This means, as stated in
Section 2.1, that futures are standardized and usually only mature to certain dates as
opposed to any specified date when dealing with forwards.

The exchange institution also facilitates the actual formal exchange and often maintains
the marketing-to-market undertakings which have the purpose of checking and balancing
the exchange market participants’ transactions performed from their margin account
so that the contract risk is limited. This is clearly one advantage to forwards but
with the disadvantage that only standardized assets are offered by the exchange. The
latter characteristic, however, insures greater liquidity which is useful for trading and
speculating.

Note, when valued on the expiration date T , futures have similar payoff curves to for-
wards as shown in Figure 2.2. However, due to the marketing-to-market procedure,
adjustments are undertaken as seen in Section 2.3.2.
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2.2.4. Options

Forwards and futures are binding contracts to exchange assets in the future, whereas
options only give the right to be able to buy or sell assets in the future at an arranged
price. The holder of an option, therefore, is not obliged to exercise this right. This has
an impact on the payoff curve as seen in Figure 2.3. Options which give the right to
buy are referred to as call options and options which allow one to sell are cited as put
options.

To this point only the long position has been regarded where a market participant
actually buys the right to purchase or sell an asset in the future. The other party of
the contract writes or sells this right, so, it has a short position. As seen in Figure 2.3,
the payoffs of the short positions of an option are the reverse of the long positions. The
gains of the party with a long position are the losses of the market participant holding
the short position and vice versa. The graphs are simply mirrored around the x-axis
(asset price axis).

Options exist in both exchange and OTC markets. There are two main subclasses
of options: American options and European options3. European options can only be
exercised at maturity whereas American options can be carried out to any arbitrary
time between t0 and T . This is one reason why trading American options is popular.
European options, however, are easier to handle and also easier to price, as seen later
on.

As mentioned, the writer of an option receives a fixed payment called premium at time
t0 from the buyer of this option who, therefore, acquires the option’s right. At maturity
of a (European) option it is irrelevant how much was paid for the option at time t0, as
they are sunk costs. Therefore, when working with options’ payoffs the initial payment
is ignored which also simplifies calculations (dashed lines in Figure 2.3).

When dealing with options the term delivery price is not used as with forwards and
futures. Instead K denotes the strike or exercise price. As depicted earlier, let ST be
the terminal spot price of the underlying asset, the payoff of a long European call option
is then given by

max {ST −K, 0} (2.3)

which can easily be seen by noting that the call will only be exercised when ST > K.
The holder of the long position call can, hence, acquire the asset to the strike K smaller
than ST , instantaneously sell the asset at ST and, therefore, make a profit of ST −K > 0.
Whereas if ST < K, the call option will simply not be exercised, as the asset can be

3The terms “American” and “European” do not refer to the geographical area where these options
are traded. Instead they are just named in this way to distinguish between these two options and can
generally be traded on all markets.
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Payoff Curves of a European Option at Maturity T
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Figure 2.3.: Payoff curves of a European option at maturity T : (a) long position in a call
option, (b) long position in a put option, (c) short position in a call option,
(d) short position in a put option

bought to the market price ST (which is less than K), so the payoff is zero. Similarly,
the payoff of a long European put option is

max {K − ST , 0} , (2.4)

as the holder will only exercise the put option if the strike K is above the terminal spot
price ST , otherwise the asset can be sold to the market price (i.e. spot price) at time
T .

The payoffs of the short position are, as stated above, reverted to the long position. By
multiplying the negative sign to the payoffs of the long position one obtains the payoff
of a short position of a European call option and a short position of a European put
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option, i.e.

−max {ST −K, 0} = min {K − ST , 0} , (2.5)

−max {K − ST , 0} = min {ST −K, 0} . (2.6)

The payoff which an option would have at any given time t to maturity, t0 ≤ t ≤ T ,
is referred to as the intrinsic value. It is to be remembered that American options can
be exercised at an arbitrary time before maturity, so they are worth at least as much
as the intrinsic value. If American options are worth more, they have an additional
time value which reflects positive expected price movements. Options, in general, are
referred to as being in-the-money (ITM) if the holder can sell or exercise the option at
a (positive) profit at a certain time. out-of-the-money (OTM) means that the holder of
an option would, at a set time t, only be able to sell or exercise at a loss. Hence, an
option is at-the-money (ATM) if the strike is the same as the spot price (K = St) and
would only generate a zero cash flow. The latter descriptions are summarized by the
term moneyness which is usually defined by the ration of the asset price to the strike,
Mt :=

St

K
. Hence, if the option is ATM, it has a moneyness of Mt = 1, if OTM: Mt < 1

and if ITM: Mt > 1, compare Section 4.2.2.

2.2.5. Swaps

A swap is OTC traded and can be seen as a forward contract to exchange cash flows in
the future. The emphasis is laid on cash flows which stresses the difference to ordinary
forwards. The idea of forwards, as stated above, is to lock in the future price of an asset.
Swaps are mainly used to fix the future price of interest rates (plain vanilla4 interest
rate swaps) and to fix future cash flows in two different currencies generated from two
reversed loans or bonds (fixed-for-fixed currency swaps). As solely monetary quantities
are involved, only the differences of values (net cash flows) are exchanged and not the
total amount of the values5. Another related characteristic of swaps in comparison to
forwards is the fact that the latter usually refers to only one exchange date in the future
(which was depicted above by T ) whereas swaps consist of more than one future dates
where (monetary) exchanges take place (t0, t1, . . . , tn = T ).

Swaps, in general, are motivated by comparative advantages. There are often sizable
differences between the interest rates offered to individual companies and parties which
is due to their credit risk. The comparative advantages arise from the relative prices
for long and short term bonds of differently rated companies. These companies can
then negotiate with each other to be able to benefit from these discrepancies. Often,

4The term plain vanilla is often used in the financial language and has the meaning of beeing
’standard’ or ’default’. E.g. a plain vanilla option refers to the standard (or simple) option as opposed
to a more complex structured option.

5This certainly accounts for plain vanilla interest rate swaps, but not always for fixed-for-fixed
currency swaps as the two bonds of the underlying swap are valid in two different currencies.

10



the parties only negotiate directly with a financial intermediary and do not actually
know about each other. The financial institute undertakes the cash flow exchanges and,
therefore, charges a fee (but in most cases also takes the risk of one party defaulting).

2.3. An Introduction to Valuating the Derivatives

There are certain restrictions to be considered before being able to price derivatives. At
first it is assumed that there are no transaction costs and all trading profits are subject
to the same tax rate. These properties enable comparisons between the derivatives and
also ease the calculations. Secondly, borrowing and lending is undertaken at the same
risk-free interest rate. This is not too unreasonable for big financial institutions. It is also
assumed that any market participant will undertake the opportunity of any arbitrage
possibilities. Therefore, these occurrences disappear instantly, and it is assumed they
do not exist. The interest rate r is to be seen as a positive value.

2.3.1. Valuating Forward Contracts

The present value PV of a bond (or in general, future cash flows) is generally obtained
by discounting the cash flows ci exchanged in different time periods to the present time
t0 using the continuous or discrete discount factor pti,t0 (ri), where ri denotes the market
interest (LIBOR6) rate during the time period δti = ti − t0,

PVt0 =
n�

i=1

cipti,t0 (ri) . (2.7)

For example, when trading with coupon bonds, c0 usually is the issue price, c1, . . . , cT−1

refer to the coupon payments and cT depicts the face value including the last coupon
payment. Depending on whether one receives or transfers at ti, the single ci’s are either
positive or negative. This notation has the advantage that one can see the essential dates
right away and can discount ci to the market interest ri even when the time periods of
the cash flows do not overlap. However, for the sake of simplicity, it is assumed that the
underlying time intervals fit. Also, continuous compounding is used and, if not stated
otherwise, at a constant risk-free interest rate r, so when discounting one obtains

pti,t0 (ri) = exp

�
−
�

ti

t0

rsds

�
!
= pti,t0 (r) = e−r(ti−t0), (2.8)

6London Interbank Offer Rate (LIBOR) is the on average offered interest rate (of preselected banks)
to which banks lend to other banks. The rate is determined by supply and demand depending on
economic conditions and is not risk free.
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and, when compounding one applies

pt0,ti (ri) = exp

��
ti

t0

rsds

�
!
= pt0,ti (r) = er(ti−t0). (2.9)

As indicated earlier, the forward price of an asset is proportional to the spot price, St0 .
It can easily be concluded that the price of the forward Ft0,T is exactly7

Ft0,T = St0e
rτ = St0e

r(T−t0), (2.10)

as, on average, the interest earned on a forward has to be the risk-free interest rate r
earned during that period of time, τ (in practice, however, the LIBOR rate is often used
as a reference rate to reflect the opportunity cost of capital). If this were not so and
if St0e

rτ − Ft0,T > 0, arbitrage profits could be made by selling the underlying asset at
time t0, investing the proceeds for the time period τ at the interest rate r and by taking
a long position forward, Ft0,T , with duration T . The reverse is done if Ft0,T −St0e

rτ > 0,
namely: at t0 borrow St0 for τ = T − t0 to instantaneously buy an asset worth St0 and
short a forward Ft0,T . The profit is Ft0,T − St0e

rτ , which is positive, as given above.

If known future cash flows are given, e.g. coupon payments from a bond, the present
value PVt0 of these cash flows is subtracted from the spot price and then compounded
to T in order to obtain the actual value of the forward. The equation (2.12) uses known
yields, which is depicted by q, instead of known incomes and, with minor assumptions,
it can be transformed to (2.11),

Ft0,T = (St0 − PVt0) e
rτ , (2.11)

Ft0,T = St0e
(r−q)τ . (2.12)

The price of a currency forward can be seen as a special case of (2.12), where rf is the
yield (positive or negative) of a foreign risk-free interest rate and St0 is the currency spot
price valued in the domestic currency per foreign currency unit,

Ft0,T = St0e
(r−rf)τ . (2.13)

At time t0 or any other time t ∈ [t0, T ], the value of a long forward Vlong(Ft0,T ) can easily
be computed by subtracting the strike K, which will be received at maturity T , from
the price of a forward at t0, maturing at T . This is then discounted to acquire the value
of a long position of a forward at t0,

Vlong(Ft0,T ) = (Ft0,T −K) e−rτ . (2.14)

So, as K is constant, the value of the forward changes with Ft0,T which is dependant
on the spot price St0 , as seen in equations (2.10) - (2.13). The value of a short forward
contract is obtained by the reverse subtraction, hence, the absolute values are equal,

Vshort(Ft0,T ) = (K − Ft0,T )e
−rτ . (2.15)

7It is often assumed that t0 = 0 but here the general case is regarded: τ := T − t0. Also, incomes
and yields are assumed away and will be considered in the following.
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2.3.2. Valuating Futures Contracts

As forwards and futures are very similar the question arises whether the two derivatives
(are able to) have a difference in value. It can be concluded, as outlined in [Hull02] ch.3
that if the risk-free interest rate is constant and the maturities are the same (futures
normally only have specific duration dates), then the prices of forwards and futures
of the same underlying asset are equal. In reality, though, interest rates do change
significantly over time, and also price differences between forwards and futures can be
observed. This is due to the marketing-to-market procedure, as gains and losses are
balanced every day and, therefore, have an impact on the exposure to the interest rate.
If, for example, the underlying asset is positively correlated to the interest rate, a holder
of a long futures contract will profit from the positive price movement immediately and
is able to earn interest on the proceeds, whereas the long forward position will only gain
from this movement (if at all) at the end of the derivatives life time.

The price asymmetries usually are not significant in the short term. For long dated
contracts, however, a convexity adjustment is made. According to [Hull02] p.111, for-
ward interest rates can be converted into future interest rates applying the following
approximative formula

forward rate = futures rate− 1

2
σ2t1t2 , (2.16)

where t1 is the time to maturity of the futures contract, t2 is the time to maturity of
the rate underlying the futures contract, and σ is the standard deviation of the change
in the short-term interest rate in one year (using continuous compounding).

2.3.3. Valuating Options

Price estimates for options can be specified with the Black-Scholes-Merton model or
related models shown later on. However, certain rules can easily be obtained to specify
a range in which the price of an option has to lie.

As options consist of altogether four “sub-derivatives”, namely European and American
calls and puts, American calls C and puts P are denoted in script letters as opposed
to the normal font used for European calls C and puts P .

Upper Bounds The (European or American) call price Ct,T , with t ∈ [t0, T ], cannot
be higher than the underlying asset price itself, otherwise arbitrage can easily be taken
by buying the asset and selling the call option. Therefore,

Ct,T ≤ St0 (2.17)
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must hold. Equivalently, the price of a put option Pt,T cannot be higher than the strike
K, or else, a profit Pt,T − K > 0 would always be possible by shorting the put with
strike K, so:

Pt,T ≤ K. (2.18)

Put-Call Parity There is an important relationship between the call price and the put
price of a European option which always holds: the put-call parity,

Ct,T − Pt,T = St −Ke−r(T−t). (2.19)

To see why this is so, the values of each side of the equation are observed as individual
portfolios. The lhs (left hand side) is, therefore, a portfolio consisting of a long call
and a short put. The rhs contains a long position of an asset and a short position of a
risk-less zero coupon bond discounted to t0 with a notional amount of K. At maturity
T the following payoffs arise:

• As the call and the put have the same strike K and the same underlying stock
which is worth ST at maturity, only one of the two options will have a positive
payoff and be exercised at time T . If ST −K > 0 the call is in-the-money and the
payoff for the long position is ST−K, compare (2.3). If ST−K < 0, or equivalently
K−ST > 0, the put is in-the-money and will be exercised, so the payoff (i.e. loss)
of the short position is, again, − (K − ST ) = ST −K, c.f. equation (2.6).

• At time T the rhs is simply ST −K, as the spot price is now ST and the bond is
worth K = Ke−r(T−T ).

So, both sides of (2.19) have the same deterministic value at maturity T and, as arbitrage
is not possible, the equation must hold at any given time t ∈ [t0, T ].

Lower Bounds The lower bound of a European call can be acquired by adding the put
price Pt,T on both sides of (2.19) resulting in

Ct,T = St0 −Ke−rτ + Pt,T . (2.20)

By dropping Pt,T one obtains the inequality, Ct,T ≥ St0 −Ke−rτ , and as the call is only
exercised if greater than zero,

Ct,T ≥ max
�
St0 −Ke−rτ , 0

�
(2.21)

holds and is the t0-equivalent to statement (2.3). Note that (2.21) only holds for Euro-
pean call options Ct,T , and not for American calls which can be exercised early. Similar
conclusions can be drawn to be able to receive the following European put price

Pt,T ≥ max
�
Ke−rτ − St0 , 0

�
. (2.22)
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Early Exercising: American Calls and Puts American call options8 have the same
exercising opportunities as the corresponding European calls, so , it can be concluded
that American calls are worth at least as much as the European equivalents, Ct,T ≥ Ct,T ,
and, by using equation (2.21), Ct,T ≥ St0 − Ke−rτ . It can be shown that it is never
optimal to exercise early so an American call is practically equal to a European call. If
r > 0 and, hence, e−rτ > 1, one has

Ct,T > St0 −K. (2.23)

At time t0, the price of an American call has a time value as it is above its intrinsic
value (see Section 2.2.4) and, for this reason, will not be exercised. As time moves on
the same arguments hold, as the call option can always be sold at Ct,T ≥ St −Ke−rτ ,
and therefore, Ct,T > St −K, for any t ∈ (t0, T ).

The European put price has at least to be worth Pt,T ≥ Ke−rτ − St0 , compare equation
(2.22). the American put, however, has to have the value of

Pt,T ≥ K − St0 , (2.24)

with K − St0 > Ke−rτ − St0 , as the American put can be exercised right after the
contract has been settled at t0. So, in comparison to (2.23), the American put is only
greater than or equal to the difference between the strike K and the stock price St0 , and
as soon as the stock price is sufficiently low (the difference or profit due to K − St0 is
then relatively large), the American put option is exercised.

For American options the put-call parity does not hold as in (2.19), however, in agree-
ment [Hull02] p.175, one can derive the following inequalities

St0 −K ≤ Ct,T − Pt,T ≤ St0 −Ke−rτ . (2.25)

2.3.4. Valuating Swaps

As stated in Section 2.2.5, swaps, in general, are defined as an exchange of cash flows,
compare [Neftci04] ch.5. However, according to [Hull02] ch.6, the difference between the
present values PVfix,t0 and PVfl,t0 of the cash flows generated from the swap can also be
seen as two reversed bonds with different characteristics,

Vswap, t0 = PVfix,t0 − PVfl,t0 , (2.26)

where PVfix,t0 depicts the present value of a bond with fixed interest rates and PVfl,t0

specifies the present value of a floating-rate bond underlying the swap. The present

8Assuming, that there are no dividends paid on the underlying stock.
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value of the bond with floating interest rates equals9

PVfl,t0 = (L+ c∗)e−r1(t1−t0). (2.27)

Equation (2.26) then denotes the value of a swap to a party receiving fixed and paying
floating interest rates. In the standard case the value of a swap is usually (close to) zero
when issued as the bonds normally have the same principal (the exchanged amounts of
the first payment date usually also hardly differ), so PVfix,t0 ≈ PVfl,t0 . This can change
over time as the floating-rate becomes larger or smaller than the fixed-rate.

From the view of a party receiving floating and paying fixed rates (the reverse to equation
(2.26)), the value at time t0 is

Vswap, t0 = PVfl,t0 − PVfix,t0 . (2.28)

For the valuation of currency swaps one has two reversed (fixed-rate) bonds where one
bond is valued in a foreign currency. So, additionally, the spot exchange rate, St0

(domestic currency per unit of foreign currency), has to be multiplied to the foreign
currency bond. E.g. if a company receives payments from a bond in its domestic
currency (PVd,t0) and has cash outflows from a bond in a foreign currency (PVf,t0), the
value of the swap is

VFXswap, t0 = PVd,t0 − St0PVf,t0 . (2.29)

9The value of PVfl,ti immediately before the next payment date ti, t0 < ti ≤ T , is (assumed to be)
known, PVfl,ti−dt = L + c∗, where L denotes the principal and c∗ specifies the realised floating-rate
payment. Right after the actual payment, the bond can be viewed at as newly issued, and is worth
PVfl,t1 = L. Therefore, at time t0 the present value of the bond is PVfl,t0 = (L+ c∗)e−r1(t1−t0), where
t1 refers to the first payment date and r1 to the LIBOR rate during t1 − t0, c.f. [Hull02] p. 137.
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3. The Black-Scholes-Merton Model

The Black-Scholes-Merton (BSM) model was a milestone in the early 1970s for pricing
stock options and other derivatives, and was honored by the Nobel prize for economics
in 1997. The basic conclusion made in the model is that an option is priced implicitly
when its underlying stock is traded.

This chapter introduces the concept of the BSM framework according to [Hull02] ch.11
and ch.12. The assumptions taken in this model are similar to the ones made in Section
2.3: borrowing and lending is possible at the same risk-free interest rate, no risk-free
arbitrage possibilities, no credit risk, no transaction costs or taxes, derivatives are per-
fectly divisible and there are no restrictions on short selling. Originally, stocks were
implied to be non-dividend paying but extensions have been developed to deal with this
drawback. However, two disadvantages of this model, i.e constant drift and volatility,
remain and cannot be ignored which will be reviewed later on.

3.1. Properties of Stock Prices

3.1.1. The Process of Stock Prices

Although the two properties continuous time and continuous price movements are not
completely satisfied (e.g. weekend breaks and discrete price movements) the process
of a stock price {St}t>0 is often assumed to follow a generalized Wiener process or Itô
process with a constant volatility σ and drift rate µ, see Appendix A.1.12 and A.1.13.
Therefore, the formula for the relative price movements dSt

St

, also referred to as discrete
returns, can be depicted by

dSt

St

= µ dt+ σ dWt����
A.1.12
= Zt

√
dt

, t > 0, (3.1)

where dW is a standard Wiener process, dW ∼ N(0, dt). The expected return E[dSt

St

] = µ
is, as stated above, specified as the expected drift rate which is often considered to be the
risk-free interest rate r in the risk-neutral world as seen later on. Due to the properties
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Simulated Price Process with BSM Price Process

date t

Figure 3.1.: Simulated Price Process with BSM Price Process. Parameters are obtained
from Table 7.1. The simulation has the same starting value and time interval
as in Figure 4.5

of the normal distribution, the relative price movements are also normally distributed,
however, with mean µ dt and variance σ2dt,

dSt

St

∼ N(µ dt, σ2dt) , t > 0. (3.2)

3.1.2. The Lognormal Property of Stock Prices

After assuming that the asset price returns are normally distributed, one can show that
the logarithm of the stock price lnSt, t > 0, is lognormally distributed. This property
can be derived by applying Itô’s Lemma which is depicted in the following section,

lnST − lnSt0 ∼ N
��

µ−σ
2

2

�
dt, σ2dt

�
, (3.3)

lnST ∼ N
�
lnSt0+

�
µ−σ

2

2

�
dt, σ2dt

�
. (3.4)

The preceding statements are the results of setting the general function of the Itô Lemma
which is dependent on the stock price, equal to the natural logarithm of the stock price,
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g(St,t)
!
= lnSt. The partial derivatives1 needed in the formula are

∂g(St,t)

∂St

=
1

St

,
∂2g(St,t)

∂S2
t

= − 1

S2
t

,
∂g(St,t)

∂t
= 0 .

Substituting these results into (3.9), one obtains2 for t > 0

dg(St,t) = d(lnSt) =

�
µ− σ2

2

�
dt+ σdWt . (3.5)

3.1.3. Itô’s Lemma

As the Itô Lemma is essential for deriving the price of an option based on the BSM as
well as the Heston model, a simple draft of the derivation is outlined in this subsection.
For the sake of simplicity, only the stock price St and the time t are the dependent
variables in this context, c.f. Appendix A.1.13. After employing the Taylor expansion
and well known calculus results, the subsequent formula is obtained

δg(St,t) =
∂g(St,t)

∂St

δSt +
∂g(St,t)

∂t
δt

+
1

2

∂2g(St,t)

∂S2
t

δS2
t
+

1

2

∂2g(St,t)

∂t2
δt2 +

∂2g(St,t)

∂St∂t
δStδt+ . . . . (3.6)

When taking the limit limδt→0, the expressions containing higher orders of δt including
δStδt become zero. The term holding δS2

t
, however, is proportional to δt and, therefore,

cannot be ignored. This can be seen by exploiting the Itô process as depicted in the
equation (A.20) in Appendix A.1.13,

δSt = µ(St,t) δt+ σ(St,t)Zt

√
δt� �� �

= δWt

,

and by squaring (again, higher orders of δt are neglected) is proportional to

δS2
t
∝ σ2

(St,t)Z2
t
δt .

The expected value of the rhs is σ2
(St,t) δt, as E[Zt] = 0, so E[Z2

t
] = Var[Zt] = 1. This

remaining expression can also be seen as a constant as opposed to a random variable,

1Financial derivatives and partial derivatives are not to be confused:

• a financial derivative, or just derivative is a financial instrument gained or derived from its
underlying asset,

• a partial derivative and, also a total derivative, belong to the mathematical theory of differential
calculus.

2Assuming the drift rate µ(St,t) = µSt and the volatility rate σ(St,t) = σSt of the Itô process are

constant over any time period δt, specifically δt
!
= τ

2.3.1
:= T − t0, the equations (3.3) and (3.4) hold.
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as the variance of Z2
t
δt is of order (δt)2, so, in the limit it is zero3. After limiting

limδt→0 δt = dt, the latter equation is given by

dS2
t
= σ2

(St,t)Z2
t
dt (3.7)

and equation (3.6) becomes

dg(St,t) =
∂g(St,t)

∂St

dSt����
(A.18)
= µ(St,t) dt+σ(St,t)Zt

√
dt

+
∂g(St,t)

∂t
dt+

1

2

∂2g(St,t)

∂S2
t

dS2
t����

(3.7)
= σ

2(St,t)S
2
t
dt

. (3.8)

Finally, dSt and dS2
t
are replaced by (A.18) and (3.7), respectively, and after assuming

a constant drift rate µ(St,t) = µSt and volatility rate σ(St,t) = σSt, one obtains

dg(St,t) =

�
∂g(St,t)

∂St

µSt +
∂g(St,t)

∂t
+

1

2

∂2g(St,t)

∂S2
t

σ2S2
t

�
dt+

∂g(St,t)

∂St

σStdWt . (3.9)

3.2. Pricing Derivatives Using the BSM Model

The subsequent section shows that the value of any derivative V (St,t) which depends
on the price of the underlying stock St and the time t can be derived solving a partial
differential equation based on Itô’s Lemma. For example, the value of a long forward
Vlong(Ft0,T ) = Vlong(St,t) = St −Ke−rτ , c.f. equation (2.10) and (2.14), also has to fulfill
this partial differential equation (PDE). Therefore, the price of (European) call and put
options also can be acquired by applying these calculations.

3.2.1. The Black-Scholes-Merton Differential Equation

By setting g(St,t)
!
= V (St,t) into the final equation (3.9) of Itô’s Lemma, and omitting the

dependency of St to ease the complexity, V (St,t) = Vt, one obtains

dVt

Itô
=

�
∂Vt

∂St

µSt +
∂Vt

∂t
+

1

2

∂2Vt

∂S2
t

σ2S2
t

�
dt+

∂Vt

∂St

σStdWt . (3.10)

It can easily be seen that the above equation and the contingent stock with a price
process as in equation (3.1),

dSt = µStdt+ σStdWt , (3.11)

3As Zt is standard normally distributed, Zt ∼ N(0, 1), the square of Zt is χ2-distributed, Z2
t ∼

χ2(k=1), with the expected value being E
�
Z2
t

�
= k = 1 and the variance Var

�
Z2
t

�
= 2k = 2. Hence, the

variance of Z2
t δt is

Var
�
Z2
t δt

�
= (δt)2 Var

�
Z2
t

�
= 2 (δt)2 .
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have the same underlying Wiener process W which describes the uncertainty of the price
changes. By offsetting the two stochastic processes, i.e. taking a long position of ∂Vt

∂St

shares4 of the underlying asset priced at St and shorting one derivative with the value
Vt, so that σStdWt drops out, a risk-less portfolio for an infinitesimal small time dt is
derived

Πt = −Vt +
∂Vt

∂St

St , (3.13)

with,

dΠt = −dVt +
∂Vt

∂St

dSt . (3.14)

Inserting the corresponding values of (3.10) and (3.11) into equation (3.14),

dΠt = −
��

∂Vt

∂St

µSt +
∂Vt

∂t
+

1

2

∂2Vt

∂S2
t

σ2S2
t

�
dt+

∂Vt

∂St

σStdWt

�

+
∂Vt

∂St

(µStdt+ σStdWt) , (3.15)

and by cancelling out the offsetting terms, the following equality is acquired

dΠt =

�
−∂Vt

∂t
+

1

2

∂2Vt

∂S2
t

σ2S2
t

�
dt . (3.16)

As mentioned, the value of the portfolio does not change in a(n) (infinitesimal) short
period of time and, therefore, has to earn the same amount as when invested at the
risk-free rate r, otherwise arbitrage profits could be made. Hence,

dΠt = rΠtdt (3.17)

must hold. To keep the portfolio risk-less it has to be permanently adjusted by the
proportion of the stock price to the derivative. After substituting equations (3.16) and
(3.13) into the last expression (3.17), the final BSM partial differential equation (PDE)
is given by

∂Vt

∂t
+ rSt

∂Vt

∂St

+
1

2
σ2S2

t

∂2Vt

∂S2
t

= rVt . (3.18)

4In finance, the partial derivative of the financial derivative’s value with respect to the underlying
asset is called ’Delta’ and is denoted in an italicised font, i.e. ∆, confer Section 3.4. This partial
derivative reflects the amount which is needed to keep the portfolio risk-less,

∆ =
∂Vt

∂St
. (3.12)
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It is to be noted that the theoretical price of any financial derivative depending on its
underlying stock price St and the time t has to satisfy this equation, so no arbitrage
possibilities can arise subject to the assumptions made in this chapter. The example
of a forward at the beginning of Section 3.2 therefore also fulfills the BSM differential
equation with the partial derivatives ∂Vt

∂t
= −rKe−rτ , ∂Vt

∂St

= 1 and ∂
2
Vt

∂S
2
t

= 0, obtaining

−rKe−rτ + rSt on the lhs which equals rVt, compare equation (2.14). In general, the
BSM-PDE (3.18) is solved by considering the boundary conditions of the respective
derivative.

3.2.2. Black-Scholes-Merton Pricing Formulae for Options

Pricing call and put options demand somewhat more technical adjustments to satisfy
the BSM differential equation (3.18), as the boundary conditions of the payoff functions
contain max{.} or min{.} terms, compare equations (2.3) to (2.6).

The BSM-PDE does not contain the expected return of the stock µ, hence, no risk
preferences enter the equation (the higher the risk aversion of investors, the higher µ
will be). The reason for this is the “perfect” hedge4 ∆ = ∂Vt

∂St

used to derive the BSM-
PDE in Section 3.2.1, where the terms containing µ offset each other in equation (3.15),
and therefore, do not appear in the preceding equation 3.16. This simplifies calculations
to a great extent, as without loss of generality (w.l.o.g.), one can assume to be in a
risk-neutral world, where µ = r. The expected payoff at time t0 of a European call using
a risk-neutral measure5 Q can then be computed by

Ct0,T (St0 ) = e−rτEQ
�
(ST −K)+� �� �

=max{ST−K,0}

�
. (3.19)

The stock price follows the process as stated in (3.5), however, it is assumed that the drift
rate and the volatility rate stay constant2 over τ . So, by replacing dt by δt = T − t0 = τ ,
exponentiating the remaining equation and substituting the result into ST , one obtains

Ct0,T (St0 ) = e−rτEQ

��
St0e

(r− 1
2σ

2)τ+σZt

√
τ −K

�+
�

= e−rτ

� ∞

−∞

�
St0e

(r− 1
2σ

2)τ+zσ
√
τ −K

�+

� �� �
≥0

· 1√
2π

e−
1
2 z

2
dz. (3.20)

5In the BSM framework this means the µ’s get cancelled out when deriving the BSM-PDE and the
value of an option equals the expected present value of the payoff (under a risk neutral random walk).
Hence, it is irrelevant what the option’s rate of return actually is, as one can “perfectly” hedge (at
least in the theory) the option with its underlying asset, so any exposure to the asset’s performance
is eliminated. Generally, one applies Girsanov’s theorem which is the formal concept to change the
measure from the real world to the risk-neutral world, compare Appendix A.2, [Wilmott07a] p.107 et
seq and [Grimmett01] p.549 et seq for more details.
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The only stochastic term is the normally distributed random variable z in the stock price
process. Therefore, to ensure non-negative values from the difference between the stock
price process and the strike K, it only has to be derived from which point onwards one
has to integrate, so

0 ≤ St0e
(r− 1

2σ
2)τ+zσ

√
τ −K ⇔

z ≥
ln
�

K

St0

�
−

�
r − σ

2

2

�
τ

σ
√
τ

,

denoting,

z∗ :=
ln
�

K

St0

�
−
�
r − 1

2σ
2
�
τ

σ
√
τ

. (3.21)

By inserting this result into (3.20),

Ct0,T (St0 ) = e−rτ

� ∞

z∗

�
St0e

rτ− 1
2σ

2
τ+zσ

√
τ −K

�
· 1√

2π
e−

1
2 z

2
dz

= St0

� ∞

z∗

1√
2π

e−
1
2 z

2+zσ
√
τ− 1

2σ
2
τ

� �� �
= e

− 1
2 (z−σ

√
τ)2

dz −Ke−rτ

� ∞

z∗

1√
2π

e−
1
2 z

2
dz

� �� �
6

= 1−Φ(z∗)

,

and by substituting ξ = z − σ
√
τ , one obtains

= St0 ·
� ∞

z∗−σ
√
τ

1√
2π

e−
1
2 ξ

2
dξ

� �� �
6

= 1−Φ(z∗−σ
√
τ)

− Ke−rτ (1− Φ(z∗))

= St0 (1− Φ(z∗−σ
√
τ))−Ke−rτ

�
1− Φ(z∗)

�
. (3.22)

From the properties of the normal distribution it can be concluded that 1−Φ(x) = Φ(−x),
so equation (3.22) results in

1− Φ(z∗−σ
√
τ) = Φ( −(z∗−σ

√
τ)� �� �

=−z
∗+σ

√
τ

),

6As Zt ∼ N(0,1) and Φ(x) =
� x
−∞

1√
2π

e−
1
2 z

2
dz, with limx→∞ Φ(x) =

�∞
−∞

1√
2π

e−
1
2 z

2
dz = 1,

1− Φ(x) =

� ∞

−∞

1√
2π

e−
1
2 z

2

dz −
� x

−∞

1√
2π

e−
1
2 z

2

dz =

� ∞

x

1√
2π

e−
1
2 z

2

dz,

where Φ(.) denotes the standard normal cumulative distribution function (cdf).
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with,

−z∗ + σ
√
τ =−

ln
�

K

St0

�
−

�
r − σ

2

2

�
τ

σ
√
τ

+ σ
√
τ

=
ln
�

St0
K

�
+
�
r + σ

2

2

�
τ

σ
√
τ

=: d1,

and analogously,

1− Φ(z∗) = Φ(−z
∗) = Φ( d1−σ

√
τ� �� �

=: d2

).

Applying the latter conclusions, the BSM formula for the value of a European call option
is finally acquired by

Ct0,T (St0 ) = St0Φ(d1)−Ke−rτΦ(d2).

The Price of a European put option can easily be computed by employing the put-call
parity from equation (2.19),

Pt0,T (St0 ) =Ct0,T (St0 ) +Ke−rτ − St0

=St0Φ(d1) −Ke−rτΦ(d2) +Ke−rτ − St0

=Ke−rτ (1− Φ(d2))− St0 (1− Φ(d1))

=Ke−rτΦ(−d2) − St0Φ(−d1).

Summarising, the two BSM formulae for the price of European call and put options are
given by

Ct0,T (St0 ) = St0Φ(d1) −Ke−rτΦ(d2),

Pt0,T (St0 ) = Ke−rτΦ(−d2) − St0Φ(−d1),
(3.23)

with

d1 =
ln
�

St0
K

�
+
�
r + σ

2

2

�
τ

σ
√
τ

,

d2 = d1 − σ
√
τ .

(3.24)

3.2.3. Interpretation and Properties of the BSM-Formulae

Using the risk-neutral measure Q and equations (3.19) and (3.20), the term Ke−rτΦ(d2)

in (3.23) can be interpreted as the discounted strike to time t0 multiplied with the
probability of exercising the option in a risk-neutral world. St0Φ(d1) denotes the expected
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value (with respect to Q) of the stock price ST if ST > K at maturity and is zero
otherwise, c.f. [Hull02] p.247.

When assuming that there are no dividends, the price of an American call is equal to
that of a European call (see Section 2.3.3), so the call equation in (3.23) can also be
applied to the American equivalent. For the value of an American put, however, there is
no analytical solution known and can only be approximated by numerical procedures.

From the equations in (3.23) and (3.24) one can see that the price of a call and a put
are dependent on the spot price St0 , the strike K, the interest rate r, the maturity T
(as τ = T − t0), the initial time t0 and the volatility σ. All except the latter are known
and given. A simple way to estimate the (historical) volatility σ of a stock would be to
calculate the standard error (σ̂) of the returns (Rt =

St−St−1

St−1
≈ ln St

St−1
, t = t0, . . . , T ) for

T discrete points of time (e.g. T daily returns), as seen in the formula below. However,
this is usually not practised, as shown in Section 3.3,

σ̂ =

���� 1

T − 1

T�

t=t0

�
Rt − R̄

�
, with R̄ =

1

T

T�

t=t0

Rt . (3.25)

3.3. Implied Volatility

An effective way to get an idea of what the volatility looks like which is anticipated by
the market is the following: by observing the call and put prices being traded, one can
calculate what volatility is assumed or implied by the market participants to receive
these prices. This is referred to as the implied volatility.

The function of the BSM call price depending on the implied volatility is monotone
which is shown in Figure 3.2 as an example and is also stated in [Wilmott07a] p.151
and in [Wystup07] p.19. This is why it is equivalent to express the value of an option as
actual call prices or as the respective implied volatilities. Similarly, the BSM put price
can be seen as a function of the implied volatility.

Unfortunately, the BSM-formulae (3.23) cannot be inverted analytically to obtain the
implied volatility as a function of the remaining variables. Instead, iterative methods
such as the Newton-Raphson algorithm are adopted to obtain a solution to any degree
of accuracy, see [Wilmott07b], p.192.

The concept of the implied volatility is widely used in finance and has the advantage
of reflecting the “real” or “felt” volatility of the (future) market at any given time t,
respectively, at least gives the direction of the volatility as stated in [Wilmott07a], p.153.
In contrast, the historical volatility measures the volatility of the past time period until
time t.
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Monotone Function: BSM Call Price C(σimpl)

σimpl

Figure 3.2.: BSM Call Price is a monotone function of the implied volatility, C(σimpl). As
stated in Section 2.3.3, the call price cannot be larger than the price of the
underlying asset. C(σimpl) converges to St for (unreasonably) high implied
volatility σimpl; usual range for implied volatility of an exchange rate in the
forex market: 0 < σσimpl

< 0.3. Chosen parameters are arbitrary (spot
exchange rate for USD

EUR
at t0 = 18/09/2009): St0 = 1.4712, K = 1.4712,

r = 0, T = 0.5 years.
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3.4. The Greeks

From a mathematical point of view the so called greeks7 are simply the partial derivatives
of a financial derivative’s value function. However, in finance each greek measures a
different dimension of the risk given by an option and the aim of a trader is to manage
the greeks so that all risks are acceptable, compare [Hull02] p.299. They, therefore,
estimate the sensitivity of the derivatives price with respect to the time, the underlying
asset or other values. Also, these figures lay the bases for hedging.

In Section 3.2.1, a risk-less portfolio was derived, using the partial differential equation
(3.14). As mentioned, the partial derivative ∂Vt

∂St

describes the amount needed from the
underlying stock in order to keep the portfolio risk-free. This is the definition of the
∆-hedge, where ∆ := ∂Vt

∂St

. In theory, the exposure of the option to the underlying asset
is hedged away for an infinitesimal short time. Therefore, this is often referred to as the
“perfect” hedge but, also due to not being able to continuously readjust (or rehedge)
the necessary amount of the underlying, it is not perfect in the real world.

The respective greeks are given in the following, compare [Hull02] ch.14, [Wilmott07a]
p.110 et seq and [Wystup07] ch.1:

∆ := ∂Vt

∂St

is defined as the (infinitesimal small) rate of change in the value of an option
(or portfolio of options) when the price of the underlying asset undertakes an
infinitesimal small shift. In other words, it is the sensitivity of the option’s
value (or value of the portfolio of options) to the underlying asset. As
mentioned, ∆ changes with stock price St and with time t. In order to lock-
in a delta-neutral position, continual rebalancing or rehedging is required.

Γ := ∂
2
Vt

∂S
2
t

is the second derivative of the value of an option (or portfolio of options)
with respect to the underlying asset. It reflects the sensitivity of ∆ to the
underlying and is a measure of how often rehedging needs to be undertaken
in order to keep a ∆-neutral position.

Θ := ∂Vt

∂t
is the partial derivative of the position with respect to time and measures
the exposure to t the value of an option (or portfolio of options) has.

� := ∂Vt

∂r
is a measure for the sensitivity of the option price to the interest rate r.
However, one often applies a time-dependent rate, e.g. LIBOR rate, or an
foreign interest rate e.g. for forex options.

V := ∂Vt

∂σt

measures the exposure to the volatility σ the value of an option (or portfolio
of options) has. By measuring this value one assumes the volatility is not
constant might be inconsistent with the BSM model.

7In financial literature the partial derivatives are denoted in certain capitalized Greek letters, i.e.
∆, Γ , Θ , � and V which is why they are referred to as the “greeks”. In order to differentiate between
Greek letters used elsewhere, the greeks ∆ (’delta’), Γ (’gamma’) and Θ (’theta’) are depicted in the
italicised Latex font. As the capitalized Greek ’rho’ is practically identical to the Latin ’P’, the Latex-
style ’varrho’, �, is used in this context. ’Vega’ does not exist in the Greek alphabet and will be
symbolized by V.
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The exact formulae of the specific greeks outlined above as well as various other greeks
which also measure the sensitivity of options with respect to changes in St, r, t or σ
are depicted in [Hull02] ch.14, [Wilmott07a] p.110 et seq, [Wilmott07b] p.182 et seq and
[Wystup07] ch.1.
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4. Distinctive Forex Market Features
and Exotic Options

In the preceding chapters a basic understanding of the forex market, financial derivatives
and the Black-Scholes-Merton model has been acquired. This unit concentrates on
the specific forex characteristics of the experienced tools and also introduces further
strategies containing vanilla options as well as more complex derivatives on the basis of
exotics. It is also shown that the BSM framework has drawbacks when comparing the
results of the model to the real market prices which give the motivation for examining
further models in the subsequent chapters.

4.1. The BSM Model in the Forex Market

4.1.1. The General BSM Model Including Dividends

As mentioned in Chapter 3, the BSM model can be extended to be able to account
for dividends paid on stocks during the option’s lifetime. Similar to equations (2.11)
and (2.12) in Section 2.3.1, the dividends can be expressed in terms of yields q on the
respective stocks during the time period τ which is depicted by

St0e
−qτ . (4.1)

It is to be noted that dividends reduce the value of the underlying stock and thus the
yield q is multiplied with a negative sign in the exponent. Hereby, it is assumed that the
amount and the timing of the dividends during the options lifetime can be predicted with
certainty, c.f. [Hull02] p.252. For short-life options this approximation is very accurate
whereas the estimation for long-term options can differ to a notable extent making the
pricing of options very challenging.

In order to employ dividend payments of stocks into the BSM framework, only the factor
e−qτ has to be multiplied to the stock price St0 , given the above assumption. Hence, the
options’ call and put prices are given by

Ct0,T (St0 ) = St0e
−qτΦ(d1) −Ke−rτΦ(d2), (4.2a)

Pt0,T (St0 ) = Ke−rτΦ(−d2) − St0e
−qτΦ(−d1), (4.2b)
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respectively, with

d1 =
ln
�

St0
K

�
+
�
r − q + σ

2

2

�
τ

σ
√
τ

,

d2 = d1 − σ
√
τ .

Similarly the price process is adjusted to

dSt = (r − q)� �� �
=µ

Stdt+ σStdW̃t , t > 0. (4.3)

The put-call parity introduced in Section 2.3.2 also needs to be adjusted to account for
the dividend yields of the stock. Again only the discount factor e−qτ is multiplied to the
stock price and equation (2.19) becomes

Ct,T − Pt,T = Ste
−qτ −Ke−r(T−t). (4.4)

4.1.2. The Specific Forex BSM Model

In the above sections, it has been mentioned that in order to adapt formulae to the
forex market one simply needs to replace the dividend yield q by the respective foreign
interest rate rf which equivalently has a decreasing effect on the assets’ performance.
In the forex market the asset is the currency exchange rate St, c.f. Section 4.2.1, and
the ’yield’ on the asset is the foreign interest rate rf , as seen in Section 2.3. Thus, the
specific forex BSM model is given by

Ct0,T (St0 ) = St0e
−rf τΦ(d1) −Ke−rτΦ(d2), (4.5a)

Pt0,T (St0 ) = Ke−rτΦ(−d2) − St0e
−rf τΦ(−d1), (4.5b)

with

d1 =
ln
�

St0
K

�
+
�
r − rf +

σ
2

2

�
τ

σ
√
τ

, (4.6a)

d2 = d1 − σ
√
τ . (4.6b)

Again, the price process is modified to

dSt = (r − rf )� �� �
=µ

Stdt+ σStdW̃t , t > 0 (4.7)

and the put-call parity is given by

Ct,T − Pt,T = Ste
−rf τ −Ke−r(T−t). (4.8)
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4.2. Notations in the Forex Market and the
∆-Quotation

The ’delta’, i.e. ∆, does not just represent the amount of the underlying stock needed
or the partial derivative of the options value, it also has an interesting connection to
the moneyness and indicates the likeliness of the option expiring in-the-money. This
conclusion and other features of the forex market are examined in this section.

4.2.1. Specifics in the Forex Market

In the forex market one is not confronted with stocks and dividends. Instead, the
underlying assets are the exchange rates of currency pairs (c.f. Table 4.1 in Section 2.1)
and the foreign interest rates rf correspond to the dividend yields q, c.f. Section 2.3.1.

The spot price at time t of a foreign currency is also depicted by St, as buying one unit
of a foreign currency is no different from buying one unit of any other asset. However,
in the forex market currency pairs can be traded either by

foreign currency

domestic currency
or

domestic currency

foreign currency
, (4.9)

depending on what currency is defined as the numéraire, c.f. Appendix A.2.2. For
example, the currency pair USD-EUR can be donated by USD per EUR, i.e. USD

EUR , or
vice versa by EUR

USD . It should be registered that the domestic currency in general does
not have to refer to the location. It is more a convention of expressing the numéraire.
In practise, numéraire, domestic currency and base currency are synonyms, as well as
foreign currency and underlying, c.f. [Wystup07] p.8.

A forex option can also be expressed in either of a pair’s currencies, so if the domestic
currency is for example EUR, the value of a call option at time t ∈ [t0, T ] is, c.f. Section
4.1.2,

Ct,T (St,K), (4.10)

with the payoff at time T of the long position (equivalent to equation 2.3) being

max {ST −K, 0} . (4.11)

The value of the same option donated in a different currency, e.g. USD, is simply given
by dividing the call price Ct,T (St,K) by the current spot exchange rate St, e.g.

USD
EUR ,

1

St

Ct,T (St,K). (4.12)
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The payoff of a long EUR-call option is consequently given by

1

ST

·max {ST −K, 0} = max

�
1− K

ST

, 0

�
(4.13)

which can also be seen as a long USD-put option. By multiplying 1
St

to equations (3.23)
or, equivalently, (4.5), it can easily be verified that the subsequent relations hold

1

St

Ct,T (St,K) = Ct,T (1, K
St

), (4.14)

1

St

Pt,T (St,K) = Pt,T (1, K
St

) (4.15)

which is also stated in [Wystup07] p.7-p.8.

4.2.2. Delta-Quotations

The last section describes how to value forex call and put prices in the respective curren-
cies. Especially in the forex market this is an inadequate way to denote the value of an
option. This is why BSM implied volatilities are used instead which are independent of
currency burdens. By applying this notation, the implied volatilities are assumed to be
random and time varying, as a different volatility is implied for each option price with
respect to the individual strikes and maturities, c.f. [Neftci04] p.443. In the following
two sections one is interested in describing the implied volatilities depending on different
strikes K, maturities τ and other variables for a given asset price St0 at t0 > 0.

However, the figure of interest is not so much the level of K. Instead, one would like
to examine the relation between the strike and the spot price of the underlying asset,
as these two values determine whether the option matures in- or out-of the money at
expiry T . A figure which measures the difference between the two values is, as stated in
Section 2.2.4, the moneyness which is defined1 by the ratio of the asset price St, t > 0,
to the strike K, c.f. [Wilmott07b] p.242,

Mt :=
St

K
. (4.16)

It can easily be seen that this notation is not dependent on any currency, as the latter
gets cancelled out (strike and spot are usually exchanged in the same currency). This
also holds when the log-moneyness is regarded,

mt := ln

�
St

K

�
. (4.17)

1It is to be noted that there are various different definitions of moneyness, c.f. [Neftci04] p.443,
[Wikipediaerb] and [IVolatility.com09].
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Nevertheless, in finance and especially in the forex market, it is common to use ∆s
(’deltas’) which are related to the (log-) moneyness as can be seen by the subsequent
context, c.f. [Wystup07] p.5 and p.10-p.11 as well as [Neftci04] p.443,

∆C,t := e−rf (T−t)Φ(d1) , (4.18a)

∆P,t := −e−rf (T−t)Φ(−d1) , (4.18b)

where

∆C,t = −∆P,t (4.19)

and

d1 =
mt +

�
r − rf +

σ
2
impl

2

�
(T − t)

σimpl

√
T − t

=
ln
�
St

K

�
+
�
r − rf +

σ
2
impl

2

�
(T − t)

σimpl

√
T − t

. (4.20)

The parameter d1 is equivalent to equation (4.6a) and similar to (3.24a)in the original
BSM formula after replacing σ by σimpl. This notation also has the advantage that
∆Call,t approximates2 the probability of the option maturing in the money and at the
same time it specifies the amount of the underlying asset needed to hedge the option,
c.f. Section 3.4.

Equation (4.19) shows the relation (and symmetry) between the call delta ∆C,t and the
put delta ∆P,t . However, in most financial literature, the sign is omitted, especially
when plotting volatility surfaces as in Section 4.3. In order to make the delta notation
more symmetric for both parties in the forex market, i.e. the delta has to be the same3

in both currencies, the drift e−rf (T−t) is also dropped in the following notation and is,
therefore, referred to as the driftless delta ∆dl,t . To distinguish between the actual greek
delta ∆t and the simple delta notation which is the driftless delta ∆dl,t , the latter is
donated as %C-∆dl,t for the call delta and %P-∆dl,t for the put delta and is defined by

C-∆dl,t := Φ(d1) · 100[%] , (4.21a)

P-∆dl,t := Φ(−d1) · 100[%] , (4.21b)

and

d1 =
mt +

�
r − rf +

σ
2
impl

2

�
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σimpl

√
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=
ln
�
St

K

�
+
�
r − rf +

σ
2
impl

2

�
(T − t)

σimpl

√
T − t

. (4.22)

2As stated in Section 3.2.3, the exact probability is Φ(d2) which is approximately Φ(d1) if T − t
and/or σ are not too large (d2 = d1 − σ

√
T − t).

3this is not exactly true as one still has the difference between the domestic interest rate r and
foreign interest rate rf in d1. This difference is, however, comparatively small, apart from the fact that
currency pairs have default traded quotations, e.g USD

EUR , c.f. [Wystup07] p.8 et seq. This simplification
is also necessary to ease the difficulty of being able to quote prices properly in the forex market which
is described by [Wystup07] as: “The entire forex quotation story becomes generally a mess...”.
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Also, the subsequent relations hold

50C-∆dl,t = 50P-∆dl,t = ATM, (4.23a)

90C-∆dl,t = 10P-∆dl,t . (4.23b)

It is also common to only depict the options which are OTM, as they usually have a
higher liquidity, c.f. [Wystup07] p.26. For example, a series of options reaching from far
OTM put options (far ITM call options) to far OTM call options (far ITM put options)
is thus given by

�
5P-∆dl,t 25P-∆dl,t ATM 25C-∆dl,t 5C-∆dl,t

�
. (4.24)

It can be seen from the formula in (4.21) and (4.22) that the driftless delta ∆dl,t is not
only dependent on the log-moneyness itself but also the interest rates r and rf , the time
period T − t and the instantaneous implied volatility σimpl. The latter is due to the
fact that the probability of an option expiring in ITM at T when being OTM at time
t < T , has to be dependent on the implied volatility: the higher volatility, the higher
the probability, thus the driftless delta has to be dependent on this parameter. For a
similar reason, the time interval [t, T ] is a relevant factor in the formula: if an option is
OTM, then the driftless delta, or probability, has to increase with the size of the interval
[t, T ], c.f [Neftci04] p.443 and p.449.

Not only does the driftless delta quotation have significant advantages over the simple
call-price equivalent, but it also seems to be the more “natural” notation as it indicates
how far the option is in- or out-of-the-money, c.f. [IVolatility.com09]. As the example in
Table 4.1 illustrates, the driftless delta changes abruptly when the maturity is only seven
days ahead, whereas, for the same strike and moneyness values, the alterations in the
driftless deltas maturing in 180 days are somewhat smaller. This is also the reason why
automatically the relevant area is examined in more detail when applying the driftless
delta notation.

Given the individual (driftless) deltas ∆dl,t0 , the respective strikes K can be retrieved
by inverting the respective equation in (4.18), c.f. [Wystup07] p.10. Let ω ∈ {−1,+1}
be a dummy variable which takes on −1 for a put and +1 for a call, then the strike is
obtained by

K = St0 exp

�
−ωΦ−1

(ω∆dl,t0
)σimpl

√
τ +

�
rd − rf +

σ2
impl

2

�
τ

�
. (4.25)

It is to be noted that if the original greek delta ∆t0 is given in the latter formula, then
the driftless delta ∆dl,t is replaced by ∆t0e

rf τ including the drift.
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Driftless Delta Quotation Example:
Comparing C-∆dl,t-Quotes to Moneyness Mt and Strikes K with Different Maturities τ

Days to Maturity T − t = 7 Days to Maturity T − t = 180
strike K moneyness Mt C-∆dl,t strike K moneyness Mt C-∆dl,t

1.7487 0.839 0 % 1.7487 0.839 1 %
1.6236 0.904 0 % 1.6236 0.904 9 %
1.5635 0.939 0 % 1.5635 0.939 20 %
1.5222 0.964 1 % 1.5222 0.964 32 %
1.4885 0.986 17 % 1.4885 0.986 43 %
1.4576 1.007 69 % 1.4576 1.007 55 %
1.4261 1.029 98 % 1.4261 1.029 67 %
1.3904 1.056 100 % 1.3904 1.056 78 %
1.3427 1.093 100 % 1.3427 1.093 89 %
1.2535 1.171 100 % 1.2535 1.171 99 %

Table 4.1.: Fictive example based on the BSM model with the EUR-USD exchange
rate data from t = 09/18/2009. However, for the sake of simplicity, the
interest rates are set to be r = rf = 0 in this illustration. The remaining
parameters are: St0 = 1.4678, σimpl = 0.10522. The example shows that the
C-∆dl,t -quotation is in comparison a somewhat more “natural” notation as
it indicates how far the option is ITM or OTM, c.f. [IVolatility.com09].

4.3. Volatility Surface

4.3.1. Comparing the Volatility Surfaces

In this section the market volatility surface is introduced and compared to the surface
generated by the BSMmodel. At first the former is analysed which applies the quotations
as seen in the preceding section, i.e. the implied volatility depending on ∆dl,t and τ . As
can be seen from Figure 4.1, the market volatility is far from being constant and varies
considerably with respect to the dependent variables.

Figure 4.2 shows a selection of volatility smiles in a two-dimensional plot where the
individual lines represent the different maturities. The shape of the volatility curve very
much depends on the factors specific derivative and distinctive market. It can have the
form of a smile, e.g. options in the forex market, as well as a slope or skew. The general
interpretation of the shape is that it represents the market’s view of future volatility in
some complex way, c.f. [Wilmott07b], p.194.

It is often concluded that when upside movements are as equally large and likely as the
downside shifts, the shape of the volatility typically has a smile rather than a slope.
Usually, options of indices such as the S&P 500, tend to have a volatility slope as the
downside risk is comparatively large. Smiles also implicate that out-of-the-money puts
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Market Volatility Surface: EUR-USD, t0 = 23/09/2009

Figure 4.1.: Market Volatility Surface of EUR-USD for t0 = 23/09/2009. Implied volatil-
ity σimpl denoted in %, depending on the driftless deltas ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Smile of Individual Maturities: EUR-USD, t0 = 23/09/2009

∆dl,t[%]

Figure 4.2.: Market Volatility Smile of Individual Maturities: EUR-USD, t0 =
23/09/2009. Implied volatility σimpl denoted in %, depending on the drift-
less deltas ∆dl,t in % of the OTM option, as stated in Section 4.2.2. The
selected expiries τ are 1 week (w), 1 month (m), 3 months (m), 1 year (y),
7 years (y).

(in-the-money calls) and out-of-the-money calls (in-the-money puts) have higher implied
volatilities than at-the-money options.

In order to compare the given market data with the volatility implied by the BSM model,
it is necessary to calibrate the model. Calibration in this sense means that the sum of
the squared differences between the real market data and the respective values from the
model is minimised. More details about calibrating models to the market prices are
found in Chapter 7. It is to be remembered that the BSM framework assumes constant
volatility. Hence, only one value for the volatility is given to model the surface. The
results of fitting the model to the data can be viewed in Figure 4.3.

It can be clearly seen that the implied volatility of the BSM model in Figure 4.3 fails
to model the given market volatility in Figure 4.3 which is why one needs to derive a
more sophisticated model. The differences of the call prices Ct relative to the underlying
St in percent, i.e. Ct

St

[%], of the model in comparison to the market data can also be
viewed in Figure 4.4. Nevertheless, due to the fact that the BSM model is easy to
employ, the BSM formulae are still widely used. Also, fairly decent results for call and
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Volatility of Calibrated BSM Model for EUR-USD, t0 = 23/09/2009

Figure 4.3.: Calibrated BSM model to call prices of EUR-USD, t0 = 23/09/2009. Re-
sulting implied volatility σimpl denoted in % depending on the driftless delta
∆dl,t in % of the OTM option and maturity τ in years, c.f. Section 4.2.2
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Deviation of BSM to Market Call Prices: EUR-USD, t0 = 18/09/2009

Figure 4.4.: Deviation of BSM to Market Call Prices for EUR-USD, t0 = 18/09/2009.
Deviation of BSM call prices to the market call prices relative to the stock
price in percent, i.e. CBSM−CMarket

St

[%], depending on the driftless delta ∆dl,t

in % of the OTM option and maturity τ in years, c.f. Section 4.2.2.

put prices can be accomplished by pricing plain vanilla options which is due to the fact
that implied volatility of the BSM model is “the wrong number in the wrong formula
to get the right price” as stated in [Rebonato99] p.78. However, as soon as non-vanilla
options are priced, the discrepancies between the proposed BSM prices and the real
market prices as well as the prices one would assume under rational aspects become too
large, c.f Chapter 9.

4.4. Further Strategies Containing Vanilla Options

In the preceding chapters options have been introduced as well as techniques to be able
to valuate and price these derivatives. In finance there are many strategies based on
linear combinations of options which have the purpose of widening the possibilities of
hedging, investing and financing. A selection of the most popular amplifications of plain
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vanilla options are outlined in the succeeding sections. These can also be used to describe
the volatility smile.

All pursuing approaches are obtained by simply adding and subtracting calls and puts.
Hereby, the short positions will not be examined as they are straightforwardly the reverse
of the long positions. Figure 2.3 in Section 2.2.4 helps to visualize the combinations of
options. Many of the definitions are conform with those in [Wystup07], p.29 - p.37.

4.4.1. Call and Put Spread

Call spreads are defined by adding a long and a short call option with different strikes
K1 and K2. This strategy is often chosen if a plain vanilla option is too expensive for
protection against a rising asset. E.g. if a company wants to secure its risk arising from
a stronger EUR in comparison to the USD (equivalently, weaker USD relative to the
EUR) but the long position call has a very high premium (the fixed payment the writer
of an option receives, c.f. Section 2.2.4), the firm can sell a call with a higher strike
K2 for the same time period. Hereby the company anticipates that the EUR will rise
relative to the USD in a range between K1 < ST < K2 which would result in a profit
(while neglecting the premiums paid). However, the protection is only limited if the
exchange rate rises to ST > K, but at least only the rate ST − (K2 −K1) < St has to
be paid. Recapitulating, the advantages and disadvantages are:

Pros

• protection against rising assets, e.g. exchange rates

• comparatively low premiums, as the receiving decreases the bearing premium

• maximum loss is the (low) premium

Cons

• protection is limited if ST > K

4.4.2. Risk Reversal

Similarly to the call spread, the motivation of the risk reversal (abbrev. RR) is to be
secured against a rising asset at minimum costs. In the case of the RR it is even “free”
in monetary terms. However, the risk of the upside is financed by the reverse risk on the
downside which gives the derivative its name. Thus, the premium paid for the long call
with strike K1 to protect the risk of a rising asset is equal to the premium received for
the short put which is the second option needed in order to obtain a RR and accounts
for the downside risk at strike K2. Between K1 and K2 the holder of a long RR will not
make any profit or loss. The distinctive properties are:
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Pros

• full protection against rising assets, e.g. exchange rates

• no monetary costs involved

Cons

• risk of a loss is equivalently high, whereas the holder also usually profits from a
weak domestic currency, e.g. when exporting

4.4.3. Straddle

A very simple strategy is the straddle consisting of a long call and a long put with the
same strike K1 = K2. The holder of a long straddle profits from an upside as well as
a downside movement of the underlying asset. However, the premium is comparatively
large which is due to buying two long options. Summarizing:

Pros

• full protection against asset movements and also rising volatility

• maximum loss is the premium paid

Cons

• comparatively expensive derivative

• not always suitable for (delta-) hedging, as often only one risk direction is given

4.4.4. Strangle

The strangle is identical to the straddle, except for the put strike K2 being smaller than
the call strike K1, i.e. K2 < K1. This is usually done by an out-of-the-money put. In
this case, the holder of a long strangle profits from an upside movement of the asset
as much as with a long straddle but normally has a lower premium to forfeit and only
profits from larger downside movements. The characteristics are:

Pros

• full protection against a rising asset as well as large movements in either direction

• protection against volatility

• maximum loss is the premium paid

• normally cheaper than a respective straddle
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Cons

• still relatively expensive

• not always suitable for (delta-) hedging, as often only one risk direction is given

4.4.5. Butterfly

A long position of a butterfly (abbrev. BF ) is a combination of a long strangle and a
short straddle. The BF provides limited protection against a rising or falling asset, i.e
the volatility of an asset. It is also significantly cheaper than a strangle or a straddle as
it depicts the difference between the two. This is also the reason for the limited profit
made by a butterfly. Summing up, one has

Pros

• limited protection against the asset’s movement or increasing volatility

• maximum loss is the (relatively low) premium

• normally cheaper than a respective strangle (and therefore, also straddle)

Cons

• limited profit, respectively limited protection

• not always suitable for (delta-) hedging, as often only one risk direction is given

4.5. Describing the Volatility Smile by Decomposition of
Options

The RR and the BF have an interesting relationship to the volatility which can be
decomposed into the two derivatives at the 25P-∆t and 25C-∆t points. The reason for
this is that the RR and the BF reflect the level of skew and convexity of the smile.
Thus, three points can be given to describe the volatility smile. As stated in [Wystup07]
p.22-p.24, the relations between the above values are given by

σ25C-∆t = σATM + BF +
1

2
RR, (4.26)

σ25P-∆t = σATM + BF− 1

2
RR, (4.27)

RR = σ25C-∆t − σ25P-∆t , (4.28)

BF =
σ25C-∆t + σ25P-∆t

2
− σATM. (4.29)
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4.6. Exotics

The so called (first generation) exotics are options which in comparison to plain vanilla
options have an additional barrier or a touch-level. For example, the one-touch (no-
touch) option pays a fixed amount if the underlying asset ever (never) trades at or
beyond the touch-level and is otherwise zero, c.f. [Wystup07] p.39-p.40. Also double
one-touch and no-touch options with two touch-levels exist.

The following sections, however, concentrate on an assortment of specific exotics consist-
ing of barrier, forward start and cliquet options which give good examples of extensions
to the plain vanilla options and also reveal drawbacks of the BSM model. Again, only
the long positions are analysed, as the short positions are simply the reverse of the
former.

4.6.1. Barrier Options

Instead of paying a fixed amount as with touch options, barriers have payoffs like plain
vanilla options as seen in Section 2.2.4, if they do (not) hit a barrier. An out option
becomes worthless once the corresponding barrier is reached and is said to be knocked
out, c.f. [Wilmott07b] p.288. On the other hand an in option only pays out as soon as
the respective barrier has been hit. This is why barrier options have the characteristic
of being path dependant. As with touch options, variations with one upper, one lower
or two barriers exist which are referred to as up, down or double barrier options.

To be exact, the above definition of barrier options only refers to American barrier
options where the barrier option is knocked in or out if the barrier is touched or exceeded
at any date t ∈ [t0, T ] before maturity. Additionally, European barrier options exist,
where only the maturity date T is relevant. However, only the former is regarded in the
successive sections.

In general, exotics are usually cheaper than the corresponding plain vanilla options which
is one of the main reasons for being popular. Also, the purchaser usually has very precise
views about the direction of assets and markets or might want to hedge very specific
cashflows with similar properties, c.f. [Wilmott07b] p.288. So, for example, if somebody
wants to profit from the payoff of a call but reckons the underlying asset will not rise
beyond a certain level Su, the purchaser can save a certain amount on the premium when
acquiring an up-and-out call. The characteristics of barrier options can be summarised
by, c.f. [Wystup07] p.41,

Pros

• cheaper than the respective plain vanilla options

• conditional protections against a rising asset, e.g. exchange rate

• full participation in a falling asset
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Cons

• option may be knocked out

• premium has to be paid

Let the barrier be denoted by B, and q ∈ {−1,+1} be a dummy variable which takes
on the value −1 for an upper bound and +1 for a lower bound. Furthermore, let 1{.}
be an indicator function which is 1 if the conditions in parentheses are fulfilled and 0
otherwise. The payoff which is also the value Vout, T (ST ) of a standard knock-out barrier
call at time T can then be depicted by

1{qSt>qB,t∈[t0,T ]} max {ST −K, 0} , (4.30)

and, hence, the payoff of a knock-out put is given by

1{qSt>qB,t∈[t0,T ]} min {ST −K, 0} . (4.31)

The relation between the value of a knock-in and a knock-out option at time T , subject
to the same barrier level and payoff, can easily be given by

Vin, T (ST ) + Vout, T (ST ) = Vvanilla, T (ST ) (4.32)

which is due to the fact that the in option is triggered at the same level as the out option,
c.f. [Wilmott07b] p.294. The latter equation also holds for any given time t ∈ [t0, T ]

Vin, t(St) + Vout, t(St) = Vvanilla, t(St) . (4.33)

In general, the value of a barrier option at any time t can be derived from the BSM-PDE
3.18 with respect to the corresponding boundary conditions, as stated in Section 3.2.2
and [Wilmott07b] p.290. After solving these partial differential equations, the down-
and-in call Cd-i which is a call option knocked in at a barrier Sl lower than the initial
spot price St0 and the strike K, is given by

Cd-i(St0) = St0e
−rf τ

�
B

St0

�2ν

Φ(dB1)−Ke−rτ

�
B

St0

�2ν−2

Φ(dB1−σ
√
τ) , (4.34)

c.f. [Hull02] p.439, where

ν =
r − rf +

σ
2

2

σ2
, (4.35)

dB1 =
ln
�

B
2

St0K

�

σ
√
τ

+ νσ
√
τ . (4.36)

It can be seen that equation (4.34) is very similar to (4.5) except for the additional
B

St

and ν terms and also by replacing dB1 for d1 and d2. From the formula (4.33) the
respective down-and-out call Cd-o can be acquired,

Cd-o(St0) = Cvanilla(St0)− Cd-i(St0). (4.37)
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An up-and-in call option Cu-i is depicted by, c.f. [Hull02] p.440,

Cu-i(St0) = St0e
−rf τΦ(dB3)−Ke−rτΦ(dB3−σ
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Although the last call price equation has a more complex form, the original structure of
(4.5) can be identified. The up-and-in, up-and-out, down-and-in and down-and-out put
prices are denoted by

Pu-i(St0) = Ke−rτ
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Pu-o(St0) = Pvanilla(St0)− Pu-i(St0) , (4.41)
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, (4.42)

Pd-o(St0) = Pvanilla(St0)− Pd-i(St0) , (4.43)

respectively. The parameters ν, dB1 , dB2 and dB3 are as stated in (4.35), (4.36) and
(4.39). More details can be found in [Hull02] p.439-p.441 and [Wilmott07b] p.307 et
seq.

4.6.2. Forward Start Options

Forward start options are similar to plain vanilla options except for the strike K not
being known at the options’ initiation at time t0. Instead, the strike es set to beK := νSt

at time t0, with ν > 0 and is realised at some future date t ∈ (t0, T ), c.f. [Wystup07]
p.84. Thus, the payoffs at time T are equivalent to those of (2.3) - (2.6) in Section 2.2.4,
as the strike is given as from t < T .
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Often ν is set to be unity, so at time t the forward start option is exactly ATM. If,
however, ν is less than unity, the call (put) is 1−ν percent ITM (OTM), and if ν > 1, the
call (put) is ν− 1 percent OTM (ITM) at time t, c.f. [Haug98] p.36. The corresponding
formulae are depicted by

Cfs = St0e
−rf (t−t0)

�
e−rf (T−t)Φ(d1) − νe−r(T−t)Φ(d2)

�
, (4.44a)
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−rf (t−t0)
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, (4.44b)
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, d2 = d1 − σ
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T − t . (4.45)

It is to be noted that d1 and d2 in (4.45) are equivalent to the equations (4.6a) and
(4.6b) after replacing τ by T − t and K by νSt. The call and put prices in 4.44 are also
similar to those in 4.5, except for the respective time intervals and setting the strike K
to νSt.

The advantages and disadvantages of forward start options, which also hold for cliquet
options in the subsequent section, can be summarised by, c.f. [Wystup07] p.84:

Pros

• protection against spot market movements as well as generally increasing volatility

• purchaser can lock in the current volatility level

• spot risk is easy to hedge

Cons

• protection level is not known in advance

4.6.3. Cliquet Options

Cliquet options, also often referred to as ratchet or moving strike options, are defined as a
series of forward start options where the strike Ki, i = 2, . . . , n of the next forward start
option is set to the spot at maturity of the previous, c.f. [Haug98] p.37 and [Wystup07]
p.86. The strike of the first period is usually set to be the asset price at t0. The option
price of a cliquet is, therefore, the sum of all n forward start options , i.e.

Ccliqu =
n�

i=1

St0e
−rf (ti−t0)

�
e−rf (Ti−ti)Φ(d1) − νe−r(Ti−ti)Φ(d2)
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, (4.46)

Pcliqu =
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, (4.47)
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where d1 and d2 are equal to the corresponding parameters in (4.45). The payoff of
a cliquet call at time Tn when the last forward start option matures is given by, c.f.
[Henry-Labordère08] p.63,

n�

i=1

max
��

STi
− νSTi−1

�
, 0
�
, (4.48)

and the payoff of the corresponding put is calculated by

n�

i=1

max
��

νSTi−1 − STi

�
, 0
�
. (4.49)

As mentioned in the last section, forward start options are used to lock in the current
volatility level. As cliquets are a strip of forward start options at future dates, they also
represent a classic group of “volatility products”, c.f. [Overhaus07] p.49. Various exten-
sions of the vanilla cliquets exist, including combinations of locally and globally capped
and floored cliquets, multiplicative cliquets and reverse cliquets, c.f. [Overhaus07] p.50
and [Gatheral06] ch. 10. Also, the definitions in the mentioned sources are not always
consistent. One main difference between the notations is that some authors such as
[Gatheral06] assume ν to always be set to unity and discrete returns Ri =

STi−1
−STi

STi

are

applied instead of the simple differences STi−1 − STi
.

4.7. Motivation for Further Option Pricing Models

The last sections show how to price some more complex options other than plain vanilla
options within the Black-Scholes-Merton framework. However, it is to be recalled that
the BSM model assumes constant volatility and the exotic options introduced in the
last sections very much depend on the forward volatility. As can be seen for example in
Figure 4.5, the volatility of the returns is not constant and similarly applies for forward
volatilities. This clearly contradicts the assumption made by the BSM price process in
equation (3.2). Also cliquets depend on the forward skew, whereas the BSM model does
not deliver any skew, as it only depends on the normal distribution, c.f. [Nögel03] p.3.
The issue of being able to price exotics consistently is reviewed in Chapter 9.

Even though the BSM formulae deliver reasonably good prices for plain vanilla options,
it is not very convincing to depend on a wrong number in forms of the implied volatility
which gets inserted into the wrong formulae to produce the right price. Also, another
unsatisfying property of the BSM model is the assumption that the returns of the un-
derlying stock are normally distributed (again with constant volatility). It can be seen
from Figure 4.6 that this is not reasonable.

As the drawbacks of the model are too great to be ignored, further models of pricing
options are examined in the following chapters. The focus is laid on stochastic volatility
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Return Time Series of USD

EUR
during 04/01/1999− 20/01/2010

date

Figure 4.5.: Time series of discrete returns Rt from the underlying asset St. Time series
ranges from 04/01/1999 to 20/01/2010. Estimated variance ht by NGARCH
model with parameters α0 = 1.0e−08, α1 = 9.49e−07, β = 0.972, γ = 73.046
and λ = 0.257, c.f. Chapter 6. It is shown that the variance of the returns
is not constant throughout the time series.

48



Return Histogram of Returns from USD

EUR
during 04/01/1999− 20/01/2010

returns Rt

Figure 4.6.: Histogram of discrete returns Rt from time series as seen in Figure 4.5. The
line represents the normal distribution with estimated mean and variance.
Time series ranges from 04/01/1999 to 20/01/2010. The returns have a
typical histogram found in financial data with a skew, fat tails, less frequency
between the tail and the mean and larger frequency around the mean in
comparison to the respective normal distribution.
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models with closed form solutions. The two main models in this category are the Heston
stochastic volatility model and the Heston-Nandi model which is based on a specific
GARCH process for the volatility. The latter offers two different solutions as seen in
Chapter 6, one is calculated by estimating via Maximum Likelihood and the other is
subject to calibrating the model, as described in Section 4.3.

Stochastic volatility models have the great advantage of being able to explain why op-
tions with different strikes and maturities have different BSM implied volatilities, i.e.
the volatility smile, c.f. [Gatheral06] ch.1. These models assume somewhat more re-
alistic dynamics of the volatility which is also demonstrated in Figure 4.5 where the
volatility is estimated by an NGARCH model introduced in Section 6.1.4. It is to be
remembered that the BSM formulae are still used to calculate the implied volatility in
order to quote the option prices in a different quantity as acknowledged in Section 3.3
and Section 4.2.2.
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5. Heston’s Stochastic Volatility
Model

The main criticism on the Black-Scholes-Merton model is the assumed constant volatility.
This might not be crucial when only an (approximate) estimate for plain vanilla stock
option prices is needed. However, the unrealistic assumption of constant volatility (see
Figure 7.3) in most cases has a significant impact on many derivatives in specific markets
e.g. exotics currency options in the forex market. For this reason a stochastic volatility
is introduced in the Heston model.

5.1. Heston’s Stochastic Volatility Process

Unlike other stochastic volatility models, the Heston model has a closed-form solution
applying the techniques of characteristic functions, cf. Appendix A.3. For this reason,
the Heston model does not require extensive use of numerical methods to solve two di-
mensional PDEs, compare [Heston93]. Moreover, this model assumes that the stochastic
volatility is correlated with the (stochastic) returns in order to implement skewness ef-
fects, and additionally, stochastic interest rates can be employed which is beneficial for
pricing bond options and currency options accurately.

Similar to the price process used in the BSM model, one has a price process as in (5.1)
where the only difference is the volatility

√
vt, or variance vt, which follows a further

stochastic process. The underlying Wiener processes W1,t and W2,t are correlated and,
with ρ ∈ [−1, 1], one optains

dSt = µStdt+
√
vtStdW1,t (5.1)

and

dvt = κ (v̄ − vt) dt+ σv

√
vtdW2,t , (5.2)

with

ρ = Corr [W1,t,W2,t] . (5.3)

In this notation, κ ≥ 0 represents the speed of reversion of the instantaneous variance
vt > 0 to its long-term mean v̄ > 0, and σv > 0 denotes the variance of variance (often
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Simulated Price Process with Underlying Heston Volatility Process

date t

Figure 5.1.: Simulated price process with underlying stochastic volatility. Parameters
are obtained from Table 7.2. The simulation has the same starting value
and time interval as in Figure 4.5. The Returns have similar characteristics
(e.g. clustering) as the time series in Figure 4.5.

referred to as volatility of volatility, as in [Gatheral06]). The model implies the variance
to be mean reverting and autocorrelated which is a realistic assumption as the volatility-
level clustering, seen in Figure 5.1, suggests. In order to guarantee the volatility process
to be posititive, the parameter restriction 2κv̄ > σ2

v
is neccessary, c.f. [Nögel03] p.2.

To be precise and adopting the definition from [Heston93], one actually employs the
square root of the variance process, i.e. the standard error of volatility, into equation
(5.1) which depicts an Ornstein-Uhlenbeck process or square root process, c.f. Appendix
A.1.14,

d
√
vt = −ξ

√
vtdt+ ϑdW2,t .

However, for better interpretation, the preceding can be transformed into equation (5.2)
by applying Ito’s Lemma (similarly to Section 3.1.3) and setting the parameters to equal
the variance process in (5.2) which constitutes a Cox-Ingersoll-Ross (CIR) process, c.f.
Appendix A.1.15,

dvt =
�
ϑ2 − 2ξvt

�
dt+ 2ϑ

√
vtdW2,t

=: κ [v̄ − vt] dt+ σv

√
vtdW2,t .
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5.2. Pricing Options Applying Heston’s Stochastic
Volatility Process

5.2.1. The Partial Differential Equation in the Heston Framework

Similarly to a price process, with µ(St,t) and σ(St,t) being functions depending on the stock
price St and time t, compare Section 3.1.3 and Appendix A.1.13, the general notation
of a stochastic volatility process is given by, c.f. [Gatheral06],

dvt = α(St,vt,t)dt+ σvβ(St,vt,t)
√
vtdW2,t , (5.4)

where α(St,vt,t) and β(St,vt,t) additionally depend on the instantaneous variance vt. The
specific stochastic volatility process of Heston, as given in equation (5.2), the functionals
α(St,vt,t) and β(St,vt,t) are set to be κ (v̄ − vt) and 1, respectively.

In analogy to the derivation of the BSM-PDE, one needs to construct a risk-less portfolio
for an infinitesimal small time dt which is given by

Πt = Vop,t −∆st,tSst,t −∆as,tVas,t,vt

= Vop −∆stSst −∆asVas, (5.5)

where Vop,t denotes the value of the option (op) and Vas,t,vt the value of a supplementary
asset (as) which is dependent on the volatility. ∆st,t and ∆as,t refer to the quantities
(the ’Delta’s, see Section 3.4) of the underlying stock (st), respectively, of the extra
asset which are needed to keep the portfolio risk-less. The only difference between
the preceding equation and (3.13) is the amount ∆as,t of the asset Vas,t, as one has an
additional randomness for the non-constant volatility. In order to simplify the formulae,
the specific time and volatility dependencies are ommited in the following derivation, as
seen in equation (5.5). Applying Itô’s Lemma for three dependant variables, the change
of the portfolio is then given by

dΠ
Itô
=

�
∂Vop

∂t
+

1

2
vS2∂Vop

S2
+ ρσvvβS

∂2Vop

∂v∂S
+

1

2
σ2
v
vβ2∂

2Vop

∂v2

�
dt

−∆as

�
∂Vas

∂S
+

1

2
vS2∂

2Vas

∂S2
+ ρσvvβS

∂2Vas

∂v2

�
dt

+

�
∂Vop

∂S
−∆as

∂Vas

∂S
−∆st

�
dS

+

�
∂Vop

∂v
−∆as

∂Vas

∂v

�
dv , (5.6)

In order to make the portfolio risk-free, one must eliminate the dS and the dv terms by
setting the two last terms to zero,

∂Vop

∂S
−∆as

∂Vas

∂S
−∆op

!
= 0 , (5.7)
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and

∂Vop

∂v
−∆as

∂Vas

∂v
!
= 0 , (5.8)

which results in

∆as =
∂Vop

∂v

∂Vas
∂v

and ∆op =
∂Vop

∂S
−

∂Vop

∂v

∂Vas
∂v

∂Vas

∂S
. (5.9)

This coincides to the derivation of the BSM-PDE, as equation (3.16) also does not consist
of any dS terms which get cancelled out in a similar way. Considering the statements
(5.8) and (5.7), the portfolio’s fluctuation dΠ in an infinitesimal small time dt is then
denoted by

dΠ
Itô
=

�
∂Vop

∂t
+

1

2
vS2∂Vop

S2
+ ρσvvβS

∂2V

∂v∂S
+

1

2
σ2
v
vβ2∂

2Vop

∂v2

�
dt

−∆as

�
∂Vas

∂S
+

1

2
vS2∂

2Vas

∂S2
+ ρσvvβS

∂2Vas

∂v2

�
dt

!
= rΠdt

= r (V −∆opS −∆asVass) dt .

(5.10)

After substituting the equations in (5.9) into the PDE (5.10) and accumulating all the
terms consisting of Vop on the LHS and all the terms containing Vas on the RHS, one
obtains:

∂Vop

∂t
+ 1

2vS
2 ∂

2
Vop

∂S2 + ρσvvβS
∂
2
Vop

∂v∂S
+ 1

2σ
2
v
vβ2 ∂

2
Vop

∂v2
+ rS ∂Vop

∂S
− rV

∂Vop

∂v

=
∂Vas
∂t

+ 1
2vS

2 ∂2
Vas

∂S2 + ρσvvβS
∂
2
Vas

∂v∂S
+ 1

2σ
2
v
vβ2 ∂2

Vas
∂v2

+ rS ∂Vas
∂S

− rVas

∂Vas
∂v

(5.11)

The latter is an interesting result, as both sides of the formula are identical except for
the value of the option Vop to the left, respectively, of the asset Vas to the right of
the equality. This can only hold, when both sides are equal to some function f of the
independent variables S, v and t, i.e. ft(S,v,t), compare [Gatheral06]. This means that
the function f has no dependency on the actual value of the option (Vop) nor to the
asset (Vas). W.l.o.g, one can set the function to be, c.f. [Gatheral06],

f (S,v,t) : = −
�
α(S,v,t) − λ(S,v,t)β(S,v,t)

√
v
�

= −
�
α− λβ

√
v
�
, (5.12)

where α(S,v,t) and β(S,v,t) denote the drift and the volatility functions as in equation (5.4).
λ(S,v,t) is referred to the market price of volatility risk and is outlined in following Section
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5.2.2. After replacing the RHS of (5.11) by equation (5.12),

∂Vop

∂t
+

1

2
vS2∂

2Vop

∂S2
+ ρσvβS

∂Vop

∂vS
+

1

2
σ2
v
vβ2∂

2Vop

∂v2
+ rS

∂Vop

∂S
− rVop

= −
�
α− λβ

√
v
� ∂Vop

∂v
, (5.13)

and inserting the specific values of the Heston model, i.e. α(St, vt, t) = κ (v̄ − vt) and
β(St, vt, t) = 1, one obtains the following PDE which is the Heston counterpart to the
BSM-PDE (3.18),

∂Vop

∂t
+

1

2
vS2∂

2Vop

∂S2
+ ρσvvS

∂Vop

∂v∂S
+

1

2
σ2
v
v
∂2Vop

∂v2
+ rS

∂Vop

∂S
− rVop

= κ (v − v̄)
∂Vop

∂v
. (5.14)

5.2.2. The Market Price of Volatility Risk

The market price of volatility risk is acquired by comparing the previous PDE 5.14 with
a PDE obtained by not considering the value of the additional volatility dependent asset
as depicted in equation (5.5). So, the portfolio Π� is

Π� = Vop −∆stSst , (5.15)

and again by applying Itô’s Lemma, one receives the subsequent PDE

dΠ� Itô
=

�
∂Vop

∂t
+

1

2
vS2∂Vop

S2
+ ρσvvβS

∂2Vop

∂v∂S
+

1

2
σ2
v
vβ2∂

2Vop

∂v2

�
dt

+

�
∂Vop

∂S
−∆st

�
dS

+
∂Vop

∂v
dv . (5.16)

The preceding portfolio Π� is delta-hedged, therefore, the term containing dS drops out,
as ∂Vop

∂S
− ∆st ≡ 0. After subtracting the amount one would achieve when investing Π�

at a risk-free rate r, i.e. rΠ� = r (Vop −∆stSst),

dΠ� − rΠ�dt =
� ∂Vop

∂t
+

1

2
vS2∂Vop

S2
+ ρσvvβS

∂2Vop

∂v∂S
+

1

2
σ2
v
vβ2∂

2Vop

∂v2
+ rS

∂Vop

∂S
− rVop

� �� �
(5.13)
= −(α−λβ

√
v) ∂Vop

∂v

�
dt

+
∂Vop

∂v
dv����
(5.4)
= α(St,vt,t)dt+σvβ(St,vt,t)

√
vtdW2,t

,
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and substituting the two terms by the RHS of (5.13) and the RHS of (5.4), one receives

=
∂Vop

∂v
β
√
v (λdt+ σvdW2) . (5.17)

From the preceding formula it can be seen that the portfolio Π� is not risk-less as the
random term W2 is present. Furthermore, the deterministic term λ may be interpreted
as the excess return to the risk-free rate for accepting a certain level of risk, compare
[Wilmott07b], p. 365. Therefore, for taking σv units of volatility risk dW2 one acquires
λdt units of extra return which is why λ is referred to as the market price of volatility
risk.

Thus, to enable a risk-free portfolio Π�, one needs to employ a risk-neutral drift

α∗ = α− λβ
√
v, (5.18)

with the corresponding SDE for the volatility

dv = α∗dt+ β
√
vdW2 (5.19)

which would lead to the same results as the original SDE (5.2) without any explicit price
of the risk term, c.f. [Gatheral06], p.7. This procedure corresponds to the changing of
the risk measure of the real world P to the risk-neutral world Q, compare Appendix A.2.
In order to simplify calculations, the latter will be applied in the following.

5.2.3. Pricing a European Option with the Heston Model

In analogy to the BSM call price solution, it can be shown that the price of a call option
has to satisfy the following equation, as derived in Appendix A.4.2,

Ct0,T (ST ,v) = SP1 −Ke−r(T−t0)P2, (5.20)

where again, as in Section 3.2.3, the first term represents the pseudo-expectation1 of the
index level given that the option is in-the-money and the second term is the discounted
strike price multiplied by the pseudo-probability of exercise, c.f. [Gatheral06]. After

inserting the call price equation (5.20) into (5.14), with Vop
!
= C, one obtains two PDEs

for the respective pseudo probabilities Pj, j = 1, 2, c.f. Appendix A.4.3. After setting2

1P1 itself is the pseudo-probability of exercising, as P2, but with respect to a different measure,
compare Appendix A.4.1

2Note, to differentiate with respect to τ , one needs to employ the subsequent rule

∂Pj

∂t
=

∂Pj

∂τ

∂τ

∂t����
=−1

= −∂Pj

∂τ
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τ := T − t and x := ln (Ft,T/K), the j-th PDE is given by

−∂Pj

∂τ
+

1

2
v
∂2Pj

∂x2
+ wjv

∂Pj

∂x
+

1

2
σ2
v
v
∂2Pj

∂v2
+ ρσvv

∂2Pj

∂x∂v
+ (a− bjv)

∂Pj

∂v
= 0, (5.21)

with j = 1, 2 and

w1 = 0.5, w2 = −0.5, a = κv̄, b1 = κ− ρσv and b2 = κ.

In order to satisfy the boundary conditions (A.42a) - (A.42e) in Appendix A.4.1, the
preceding PDE (5.21) is subject to

lim
τ→0

Pj(x,v,τ) =

�
1 if x > 0

0 if x ≤ 0

:= 1{x>0}. (5.22)

To be able to solve equation (5.21), with respect to the terminal conditions in (5.22),
it is necessary to exploit the properties of characteristic functions, c.f. Appendix A.3.
In this case, the characteristic functions3 of the respective probabilities Pj are depicted
by

P̃j(u,v,τ) =

� ∞

−∞
e−iuxPj(x,v,τ)dx , (5.23)

so, for τ = 0,

P̃j(u,v,0) =

� ∞

−∞
e−iux1x>0dx =

1

iu
. (5.24)

In Appendix A.3 it can be seen that the inverse transform is given by

Pj(x,vt,τ) =
1

2π

� ∞

−∞
eiuxP̃j(u,vt,τ)du . (5.25)

Substituting the pseudo probabilities Pj by the respective characteristic functions into
PDE (5.21) the subsequent equation is obtained

1

2π

� ∞

−∞

�
−∂P̃jeiux

∂τ
+ wjv

∂P̃jeiux

∂x
+

1

2
v
∂2P̃jeiux

∂x2
+

1

2
σ2
v
v
∂2P̃jeiux

∂v2
+

ρσvv
∂2P̃jeiux

∂v∂x
+ (a− bjv)

∂P̃jeiux

∂v

�
du = 0 (5.26)

3In comparison to Appendix A.3, a negative sign in e−iux is employed which is not relevant as it is
an oscillating factor.
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It is to be noted that after integrating the RHS of (5.23), the characteristic function
P̃j(u,v,τ) does not dependent on the variable x. Thus the partial derivatives with respect
to x are given by

∂P̃jeiux

∂x
= iuP̃je

iux ,

∂2P̃jeiux

∂x2
= −u2P̃je

iux .

In order to simplify the notational expenditure, only the integrand of (5.26) is regarded
until being solved at the end of the derivation in equation (5.34). Hence, after taking
the partial derivatives w.r.t. x and dividing by eiux, the integrand is given by

−∂P̃j

∂τ
+ iuwjvP̃j −

1

2
u2vP̃j +

1

2
σ2
v
v
∂2P̃j

∂v2
+ iuρσvv

∂P̃j

∂v
+ (a− bjv)

∂P̃j

∂v
= 0 (5.27)

The following shows that the characteristic function P̃j(u,v,τ) is decomposed into two
functions Cj(u,τ) and Dj(u,τ) which help to derive the price of a call option by reducing
the preceding PDE to two ordinary differential equations (ODE). This substitution relies
on a sophisticated guess which exploits the linearity of the coefficients in equation (5.27)
and is depicted by

P̃j(u,v,τ) = P̃j(u,v,0) · ev̄Cj(u,τ)+vDj(u,τ)+iux

=
1

iu
· ev̄Cj(u,τ)+vDj(u,τ)+iux, (5.28)

subject to the terminal condition

P̃j(u,v,τ
!
=0) =

1

iu
eiux

which holds if, c.f. equation (5.28),

Cj(τ
!
=0,u) = 0 and Dj(τ

!
=0,u) = 0. (5.29)

Thus, the partial differential equations of P̃j are given by

∂P̃j

∂v
= DjP̃j ,

∂2P̃j

∂v2
= D2

j
P̃j ,

∂P̃j

∂τ
=

�
v̄
∂Cj

∂τ
+ v

∂Dj

∂τ

�
P̃j .

(5.30)
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Substituting these results into equation (5.27) yields

P̃j

�
−∂Cj

∂τ
+ aDj

�

� �� �
(∗)

+P̃jv

�
∂Dj

∂τ
+ wjiu− 1

2
u2 +

1

2
σ2
v
D2

j
+ ρσviuD− bjDj

�

� �� �
(∗∗)

= 0.

(5.31)

It can easily be seen that equation (5.31) can only hold if (∗) and (∗∗) equal 0. Thus, as
mentioned above, the PDE can be decomposed into two ordinary differential equations
for the j-th pseudo probability

−dCj

dτ
+ aDj = 0,

dDj

dτ
+ wjiu− 1

2
u2 +

1

2
σ2
v
D2

j
+ ρσviuD− bjDj = 0,

(5.32)

subject to the terminal conditions in (5.29). The functions Cj and Dj can now be
calculated by integrating and by solving Riccati equations subject to the boundary
conditions Cj(u,0) and Dj(u,0), as explicitely derived in [Desmettre07]. The respective
values are given by

Cj(u, τ) = τriu+
a

σ2
v

�
(bj − ρσviu+ dj) τ − 2 ln

�
1− gjedjτ

1− gj

��
.

Dj(u, τ) =
bj − ρσviu+ dj

σv

�
1− edjτ

1− gjedjτ

�
,

(5.33)

where

gj :=
bj − ρσviu+ dj
bj − ρσviu− dj

and dj :=
�

(ρσviu− bj)
2 − σ2

v
(2wjiu− u2).

As the integrand of equation (5.26) has now been solved, one still needs to integrate to
finally obtain the pseudo probabilities Pj, j = 1, 2. In Appendix A it is outlined that Pj

has the following form

Pj(x, v, τ) =
1

2
+

1

π

� ∞

0

Re

�
1

iu
· ev̄C(u,τ)+vD(u,τ)+iux

�
du (5.34)

=
1

2
+

1

π

� ∞

0

Re
�
P̃j(St0 ,v,τ,u)

�
, (5.35)

hence, the call option in equation (5.20) is derived.

5.3. Volatility Surface in the Heston Model

Having derived the Heston model for pricing options, it is of interest to see how this
model performs in comparison to the BSM framework. As in Section 4.3 where the BSM
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Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 23/09/2009

Figure 5.2.: Calibrated Heston model to call prices of EUR-USD, t0 = 23/09/2009. Re-
sulting implied volatility σimpl denoted in % depending on the driftless delta
∆dl,t in % of the OTM option and maturity τ in years, c.f. Section 4.2.2

model is calibrated to the market prices, the squared differences of the market prices
to the Heston call prices are minimised with respect to the Heston parameters κ, vt,
λ, v̄, σv and ρ. Because the BSM model has only one parameter, i.e. the (implied)
volatility, to minimise this the squared differences, it is obvious that the Heston model
should perform better. Detailed results of the empirical analysis of the models are given
in Chapter 7, as well as the exact specification of the optimisation procedure.

Figure 5.2 shows the resulting volatility surface after calibrating the Heston model to
the market data on t0 = 23/09/2009. Again, the implied volatility on the vertical axis is
dependant on the respective driftless deltas ∆dl,t and the maturities τ , as acknowledged
in Section 4.2.2. It can be seen that the volatility surface “imitates” the structure of
the original data seen in Figure 4.1 to a large extent, especially when comparing it to
the BSM model equivalent in Figure 4.3. This is why the deviations of the Heston
prices relative to the spot St0 in Figure 5.3 are considerably smaller than the ones after
calibrating the BSM model in Figure 4.4. Before comparing the outcomes in more
details, another stochastic volatility model is introduced in the following chapter.
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 18/09/2009

Figure 5.3.: Deviation of Heston to market call prices relative to the stock price in per-
cent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless deltas ∆dl,t in % of
the OTM option and maturity τ in years, c.f. Section 4.2.2.
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6. The GARCH Model

Estimating the volatility by employing the GARCH model (Generalized Autoregressive
Conditional Heteroskedasticity ) is another way of capturing the stochastic nature of the
volatility as well as the correlation between the volatility and the spot returns, compare
[Heston00]. Furthermore, it also simultaneously encapsulates the path dependency of
the volatility being an autoregressive process. Although this model has a discrete (time)
structure, the single lag version includes Heston’s stochastic volatility approach as a
continuous-time limit and also provides similar results. Besides, it is often easier to
implement real data into this model.

6.1. The General GARCH Process

As mentioned, the GARCH model is generally motivated by similar arguments as Hes-
ton’s stochastic volatility model, namely acquiring the inconstant volatility over time,
as seen in Figure 6.1. The main differences of the GARCH in comparison to the Heston
model are the discrete structure and the ability of taking path dependencies of time se-
ries into account (high levels of volatility often follow similarly high levels). The latter is
done by examining conditional expectations and variances, given the history or filtration
of a price process, c.f. Appendix A.1.1. The subsequent section follows [Bollerslev86].

6.1.1. Definition of the GARCH(p,q) Process

Let �t denote a real-valued discrete-time stochastic process, and let Ft be the information
set (σ-field, c.f. Appendix A.1.1) of all information through time t ∈ T ⊂ N0. The
GARCH(p,q) process is then given by1

�t | Ft−1 ∼ N(0, ht), (6.1)

ht = α0 +
q�

j=1

αj�
2
t−j

+
p�

j=1

βjht−j

= α0 + A(L)�2
t
+B(L)ht , (6.2)

where p ≥ 0, q > 0, α0 > 0 αj ≥ 0, j = 1, ..., q, and βj ≥ 0, j = 1, ..., p.

1the conditional distribution of �t does not have to be normally distributed
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Simulated Price Process with Underlying GARCH Variance ht

date t

Figure 6.1.: Simulated price process with underlying GARCH variance ht. Parameters
are obtained from Table 7.5. The simulation has the same starting value
and time interval as in Figure 4.5. The simulated variance process ht is
inconstant and has similar characteristics as the time series in Figure 4.5.
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The error terms �t can be interpreted as some sort of innovation and the conditional2 vari-
ances3 ht can be seen as an adaptive learning mechanism, c.f. [Bollerslev86]. Note, for
p = 0 one obtains an ARCH(q) process and for p = q = 0 the �t’s are simply white noise.
Equation (6.1) implies that E[�t|Ft−1] = 0 and the conditional variance ht = E[�2

t
|Ft−1]

is a nontrivial positive-valued parametric function of Ft−1, c.f. [Teräsvirta06].

The sequence {�t} can either be observed directly, or it can be seen as a sequence of
errors or innovations of an econometric model, also compare [Teräsvirta06]. The latter
case is denoted by a dependent variable yt, a conditional mean of yt given Ft−1, i.e.
µ(yt) = E[yt|Ft−1], and the following equation

yt = µt(yt) + �t ⇔ �t = yt − µt(yt).

6.1.2. Properties of GARCH(p,q)

It can be shown that the GARCH(p,q) process is weakly stationary if and only if A(1)+
B(1) < 1 or, equivalently,

q�

j=1

αj +
p�

j=1

βj < 1. (6.3)

If a stationary GARCH(p,q) process is given, it is possible to simplify the model by
replacing α0 in (6.2) by

(1−
q�

j=1

αj −
p�

j=1

βj)σ
2

� �� �
=: α0

,

where σ2 = E[�2
t
] can be estimated by σ̂2 = T−1

�
T

t=1 �
2
t
before determining the other

parameters. This results in the convergence of the conditional variance towards the
long-run unconditional variance and having one less parameter to estimate.

6.1.3. Example: GARCH(1,1)

The GARCH(1,1) process is simple but very effective and popular. Setting p = 1 and
q = 1 from equation (6.2), with α0 > 0,α1 ≥ 0 and β1 ≥ 0, one obtains

ht = α0 + α1�
2
t−1 + β1ht−1 ,

2The conditional and the unconditional variance are not to be confused. The conditional variance
can, in this context, change over time as a function of the past errors, ht ∝ E[�2t |Ft−1]. However, the
unconditional variance stays constant: Var[�t] = E[�2t ] = σ2.

3It should be mentioned that in the GARCH framework one usually works with conditional variance
processes instead of conditional volatility (square root of the variance) processes.
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A GARCH(1,1) process is stationary (c.f. equation (6.3)) if and only if

α1 + β1 < 1.

The exchange rate example shown earlier on can be modelled with a GARCH(1,1) pro-
cess. The estimates are: α0 = 0.0109, α1 = 0.1546 and β1 = 0.8044

6.1.4. GARCH Extensions

Various extensions of the original GARCH framework have been derived in order to
increase the flexibility of the model. For Example, taking into account that shocks
can be asymmetric or letting the conditional variance follow an exponential GARCH
(EGARCH) process, can improve the fit significantly. These two amplifications are
outlined in this unit as they are particular relevant in the context of valuating op-
tions. Further extensions can be viewed in the Appendix A.5 and in [Bollerslev86] and
[Teräsvirta06].

The GJR-GARCH (G losten, Jagannathan and Runkle in 1993) model has an additional
indicator function I{�t−j>0} and a parameter γ in comparison to equation (6.2) to enable
asymmetric shocks

ht = α0 +
q�

j=1

[αj + γjI{�t−j>0}]�
2
t−j

+
p�

j=1

βjht−j.

The nonlinear GARCH (NGARCH) model developed by Engle and Ng shifts the centre
of symmetry away from zero, also using an extra parameter γ,

ht = α0 + α1(�t−1 − γ
�
ht−1)

2 + β1ht−1, γ �= 0. (6.4)

Another way to model asymmetric shifts can also be achieved by employing an exponen-
tial GARCH (EGARCH) process. In this framework, the positivity of the conditional
variance process is always given as opposed to the standard GARCH model, where pa-
rameter restrictions are needed to ensure this condition, i.e, p ≥ 0, q > 0, α0 > 0
αj ≥ 0, j = 1, ..., q, and βj ≥ 0, j = 1, ..., p, confer Section 6.1.1. Robert F. Engle in

[Engle82] assumes that �t can be decomposed by ζth
1/2
t , i.e.

�t = ζth
1/2
t , with ζt

i.i.d∼ D(0, 1). (6.5)

D denotes the applied distribution which is often considered to be the normal distri-

bution, so �t|Ft = ζth
1/2
t

!
= Zth

1/2
t ∼ N(0, ht). One can then define the EGARCH(p,q)

model by

lnht = α0 +
q�

j=1

gj(ζt−j) +
p�

j=1

βj lnht−j, (6.6)
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where gj(ζt−j) refers to some function of ζt. Ideally it is a function of both the magnitude
and the sign of ζt to capture the negative correlation between stock returns and volatility
changes, see [Nelson91]. In the following summary possible functions for gj(ζtj) and
further properties of EGARCH models are outlined, according to [Teräsvirta06].

• Nelson’s original EGARCH model is obtained by setting

gj(ζt−j) := αjζt−j + γj (|ζt−j|− E|ζt−j|) , j = 1, ..., q,

into equation (6.6). It can easily be seen from above that no parameter restrictions
are needed4.

• The logarithmic GARCH (LGARCH) model is acquired by

gj(ζt−j) := αj ln ζ
2
t−j

, j = 1, ..., q.

• Similar to the standard GARCH case, the first order EGARCH model is the most
popular model, i.e. EGARCH(1,1).

• Higher moments of the EGARCH process exist (under very weak conditions) and
are fairly easy to compute which lies in contrast to the standard GARCH model.

6.2. Valuating Options Applying the GARCH Model

6.2.1. Model Derivation and Specification

Steven L. Heston and Saikat Nandi in [Heston00] were able to derive a closed-form
GARCH model to valuate options. Various other attempts of pricing options with the
GARCH framework only deliver numerical solutions. In many ways, this model is similar
to Heston’s stochastic volatility model which was derived in Chapter 5, except for being
discrete instead of continuous. This is why the δ- as opposed to the d-notation is used
to express the discontinuity of the process.

Note that the first equation in (6.7) is again the logarithmic price process corresponding
to equations (3.1) and (5.1) in the BSM and the Heston model, respectively. Just as in
the Heston case, an additional process for the variance (volatility) is modelled to account
for the inconstant variance during time ∆t.

Let r be the continuously compounded interest rate for the unit time interval δt = const.,
ht be the conditional variance of the log return between t − δt and t, and λ be the

4After exponentiating equation 6.6, one attains ht on the LHS and an exponentiated term on the
RHS which is always positive.
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constant unit risk premium5. The model consisting of a logarithmic price process and a
GARCH(p,q) process for the conditional variance is given by

δ ln(St) = r + λht +
�

htZt , (6.7a)

ht = α0 +
q�

i=1

αi

�
Zt−i − γi

�
ht−i

�2
+

p�

i=1

βiht−i , (6.7b)

where Zt again denotes a standard normally distributed random variable, as defined in
the preceding chapters, respectively, Appendix A.1.12. Hence, one random variable is
drawn for one unit time interval δt, and no δ- or d-notation is needed for Zt as opposed
to the Wiener process. For p = q = 1 the conditional variance is stationary, i.e. mean
reverting, if β1 + α1γ2

1 < 1.

It can easily be seen that the conditional variance ht in (6.7) is very similar to the

NGARCH process depicted in Section 6.1.4, especially when recalling that �t = Zth
1/2
t

holds when assuming standard normal random variables Zt.

As the aim is to derive a GARCH option pricing model, one needs to generalize the
conventional risk-neutral valuation relationship to enable heteroskedasticity of the asset
return process, compare [Duan95]. This is done with the concept of the locally risk-
neutral valuation relationship (LRNVR) which is depicted in Appendix A.5.1. According
to [Heston00] it is equivalent to assume that the value of a call option with one period
to expiration obeys the Black-Scholes-Bubinstein formula6. After rewriting the formulae
in (6.7) to

δ ln(St) = r − 1

2
ht +

�
htZ

∗
t
,

ht = α0 +
p�

i=1

βiht−i +
q�

i=2

αi

�
Zt−i − γi

�
ht−i

�2
+ α1

�
Z∗

t−1 − γ∗
1

�
ht−1

�2
,
(6.8)

and by substituting

Z∗
t
= Zt +

�
λ+

1

2

��
ht ,

γ∗
1 = γ1 + λ+

1

2
,

with

Z∗
t

���
Q
∼ N(0, 1), t ∈ T ⊂ N0 ,

5According to [Heston00], option prices are very insensitive to this parameter. The functional form
of this risk premium, λht, prevents arbitrage by ensuring that the spot asset earns the risk-less interest

rate when the variance equals zero. Also note that the term r + λht corresponds to µ − σ2
t
2 in the

previous chapters and expresses the expected log return of an asset, i.e. er+λht when compounding
continuously for one period.

6Similar to the LRNVR concept, a single-period framework is used, so one does not have to hedge
continuously, c.f. [Wilmott07a], p.267-268
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one acquires a risk-neutral version of the original. Note that without the LRNVR as-
sumption from above, the latter statement does not need to hold and the substitutes Z∗

t

and γ∗ merely would depict simple rearrangements.

6.3. Pricing European Options in the GARCH
framework

The derivation of the call price applying Heston and Nandi’s GARCH model is compa-
rable to the procedure in Heston’s stochastic volatility model. Again, the call has to
satisfy the following equation, c.f. Appendix A.4.2,

C = e−rτEQ
t [max (ST −K, 0)]

= StP1 − e−r∆tKP2 , (6.9)

with EQ
t denoting the expectation at time t under the risk-neutral measure Q and P1

and P2 refer to the pseudo risk-neutral probabilities. Steven L. Heston and Saikat Nandi
in [Heston00] show that the pseudo probabilities have the subsequent form

P1 =
1

2
+

e−rτ

πSt

� ∞

0

Re

�
K−iϕfQ

(iϕ+1)

iϕ

�
dϕ,

P2 =
1

2
+

1

π

� ∞

0

Re

�
K−iϕfQ

(iϕ)

iϕ

�
dϕ,

(6.10)

where fQ
(iϕ) = EQ

t [Sϕ

T
] is the generating function under the risk-neutral measure. Note

that independent of the measure, the generating function of the price of the underlying
asset is also the moment generating function of the log price of the asset, Et [S

ϕ

T
] =

Et [ϕ lnST ], c.f. Appendix A. In [Heston00] it can be seen that the generating function
f (iϕ) in general (without a risk-free measure) takes on the log-linear form

f (iϕ) = Sϕ

t exp

�
At +

p�

k=1

Bk,tht+2−k +
q−1�

k=1

Ck,t

�
Zt+1−k − γk

�
ht+1−k

�2
�
, (6.11)

where

At = At+1 + ϕr +B1,t+1α0 −
1

2
ln (1− 2α1B1,t+1) , (6.12)

B1,t = ϕ (λ+ γ1)−
1

2
γ2
1 + β1B1,t+1 +

1
2 (ϕγ1)

2

1− 2α1B1,t+1
. (6.13)

When dealing with the single lag case (p = 1, q = 1), the preceding coefficients can be
computed recursively from the terminal conditions

AT = B1,T = 0. (6.14)
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6.4. Continuous Time Limit of the GARCH(1,1)
Process

It is often crucial for a model to include the well established original types as a special
case in order to be accepted, but also to be able to compare the models. Although
the model depicted in equations (6.7) and (6.8) contains discrete processes for the stock
price St and the conditional variance ht, the single lag version of the GARCH family,
i.e. GARCH(1,1) with p = 1 and q = 1, converges weakly to the Heston model given in
Section 5.1 in the continuous time limit, c.f. [Duan95]. Therefore, the BSM framework
is also received as a special case by additionally assuming the variance to be constant.
The GARCH(1,1) variance process ht is given by

ht = α0 + β1ht−1 + α1

�
Zt−1 − γ1

�
ht−1

�2
(6.15)

= α0 + β1ht−1 + α1

�
Z2

t−1 − 2Zt−1γ1
�
ht−1 + γ2

1ht−1

�
, (6.16)

with the conditional mean and variance of ht being, respectively,

E[ht+1|Ft] = α0 + α1 +
�
β1 + γ2

1

�
ht , (6.17)

Var[ht+1|Ft] = α2
1

�
2 + 4γ2

1ht

�
. (6.18)

There are different ways to acquire a continuous time limit for δt → 0. The following
shows the derivation according to [Heston00].

As ht is defined as the conditional variance over a time interval δt, it should converge
to zero for δt → 0. In order to measure the variance per time unit with a well defined
continuous time limit7, one defines

vt :=
ht

δt

Substituting vt for ht, the Heston-Nandi GARCH(1,1) process is then given by

vt+1 = α̃0 + β̃1vt + α̃1 (Zt − γ̃1
√
vt)

2 , (6.19)

with

α̃0 :=
α0

δt
, α̃1 :=

α1

δt
, β̃1 := β1 and γ̃1 := γ1

√
δt. (6.20)

7The well defined continuous time limit is similar to deriving a Wiener process as a continuous time
limit of a binomial random walk, compare Appendix A.
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After setting

α0(δt)
!
= (κθ − 1

4
σ2) · (δt)2,

α1(δt)
!
=

1

4
σ2(δt)2,

β1(δt)
!
= 0,

γ1(δt)
!
=

2

σδt
− κ

σ

λ(δt)
!
= λ

(6.21)

the δt-dependant variance process vt is given by

vt+1 =

�
κθ − 1

4
σ2

�
δt+

1

4
σ2δt

�
Zt −

�
2

σ
√
δt

− κ
√
δt

σ

�
√
vt

�2

=

�
κθ − 1

4
σ2

�
δt+

1

4
σ2δt



Z2
t
− 2

√
vt

�
2

σ
√
δt

− κ
√
δt

σ

�
Zt +

�
2

σ
√
δt

− κ
√
δt

σ

�2

vt



 .

The variance vt is observable and, therefore, non-stochastic, given the information set
Ft−1. Hence, the conditional expected value E[δvt+1|Ft−1] = E[vt+1 − vt|Ft−1] and the
conditional variance8 Var[δvt+1|Ft−1] = Var[vt+1|Ft−1] are

E[δvt+1|Ft−1] = α̃0 + α̃1



E
�
Z2

t
|Ft−1

�
� �� �

=Var[Zt|Ft−1]=1

− 2γ̃1
√
vt · E [Zt|Ft−1]� �� �

=0

+γ̃2
1vt



− vt

= α̃0 + α̃1

�
1 + γ̃2

1vt
�
− vt

= κ (θ − vt) δt+
1

4
κ2vt (δt)

2 , (6.22)

Var[vt+1|Ft−1]� �� �
=Var[δvt+1|Ft−1]

= α̃2
1




Var

�
Z2

t
|Ft−1

�
� �� �

9

=2, with Z
2
t
∼χ

2(k=1)

− 4γ̃2
1vt Var [Zt|Ft−1]� �� �

9

=1





= 2α̃2
1

�
1− 2γ̃2

1vt
�

= σ2vtδt+

�
σ4

8
+ σ2κvt +

σ2κ2

4
vtδt

�
(δt)2. (6.23)

8It is to be noted that vt is a constant.
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The conditional correlation between the variance process vt+1 and the continuously com-
pounded stock return is depicted by the following, c.f. Appendix A.5.2

Corr[vt+1, ln(St)|Ft−1] =
−sign(γ̃1)

�
2γ̃2

1vt�
1 + 2γ̃2

1vt
. (6.24)

Steven L. Heston and Saikat Nandi in [Heston00] argue that as the time interval δt
shrinks, the skewness parameter γ̃1(δt) approaches positive or negative infinity10. Conse-
quently the correlation in equation (6.24) approaches 1 (or10 negative 1 if σ ∈ R) in the
limit, c.f. [Heston00].

The variance process vt has a continuous time diffusion limit following [Foster94]. As the
observation interval δt shrinks, vt converges weakly to the square-root process of Feller
(1951), Cox, Ingersoll Ross (1985), and [Heston93]

d ln(St) = (r + λvt)dt+
√
vtdWt, (6.27)

dvt = κ(θ − vt)dt+ σ
√
vtdWt, (6.28)

with Wt being a Wiener process. It is to be noted that the same Wiener process drives
both the process of the asset’s spot values and the variance process which gives the model
its limiting behaviour. This is the substantial difference to other GARCH processes such
as the GARCH(1,1) model by [Bollerslev86] where two different Wiener processes are
given.

After deriving the well-defined continuous time limit of the data generating measure it
still has to be shown that the risk-neutral process also converges to a continuous time
limit when limiting the time intervals δt. Following Section 6.2.1, the risk-neutral version

9As Zt is standard normally distributed, Zt ∼ N(0, 1), the square of Zt is χ2-distributed, Z2
t ∼

χ2(k = 1), with the expected value being E
�
Z2
t

�
= k = 1 and the variance Var

�
Z2
t

�
= 2k = 2. Hence,

the variance of Z2
t δt is

Var
�
Z2
t δt

�
= (δt)2 Var

�
Z2
t

�
= 2 (δt)2 .

10It is to be noted that the parameter σ without any assumptions can take on any positive or
negative values, i.e. σ = R, and thus

γ̃(δt) = γ1δt =
2

σδt����
−→
δt→0

±∞

− κ

σ

√
δt

� �� �
−→
δt→0

0

−−−→
δt→0

±∞. (6.25)

If, however, σ is assumed to be the volatility of volatility, i.e. σ
!
= σv > 0, the parameter γ̃(δt) in the

limit approaches positive infinity, only,

γ̃(δt)

���
σ>0

−−−→
δt→0

+∞. (6.26)
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of the parameter γ is depicted by γ∗
1 = γ1 + λ + 1

2 which, for γ̃∗
1 (δt) = γ∗

1 (δt)
√
δt, results

in

γ̃∗
1 (δt) =

2

σ
√
δt

−
�
κ

σ
− λ− 1

2

�√
δt. (6.29)

This has an impact on the conditional expected value of δvt under the risk-neutral mea-
sure which differs to the corresponding equation (6.22) of the data generating measure,

EQ [δvt+1|Ft] =

�
κ (θ − vt) + σ

�
λ+

1

2

�
vt

�
δt+

1

4

�
κ+ σ

�
λ+

1

2

��2

vt (δt)
2 .

(6.30)

Again, by following [Foster94], one obtains the continuous time risk-neutral processes

d ln(St) =
�
r − vt

2

�
dt−

√
vtdW

∗
t
, (6.31)

dvt =

�
κ (θ − vt) + σ

�
λ+

1

2

�
v

�
dt+ σ

√
vtdW

∗
t
, (6.32)

where W ∗
t
denotes a Wiener process under the risk-neutral measure. In analogy to

the previous equations (6.27) and (6.28), both, the asset returns and the variance, are
driven by the same Wiener process where the only difference is the specific measure.
The risk-neutral stock price and variance process from above are equivalent to the risk-
neutral processes in [Heston93] where the two underlying Wiener processes are perfectly
correlated. This conclusion has also been asserted numerically, c.f. [Heston00].

6.5. Volatility Surfaces Containing NGARCH
Processes

There are different ways to apply the NGARCH processes of the Heston-Nandi model
in order to price options. Three of these are outlined in the following sections and are
reviewed in more detail in Chapter 7. It is to be noted that there is a considerable
difference between estimating the parameters of a (NGARCH) process via maximum
likelihood estimation using historic data and calibrating a pricing model to the current
market prices. The latter means that at a specific point of time t, the model parameters
are adjusted until the (global) minimum of the squared differences between the model’s
call prices and the market’s call prices is found. Whereas, parameter estimation refers
to the maximum likelihood approach of finding the most likely parameters when fitting
the model to a given time series. After this, the parameters are employed into the
pricing model of [Heston00] which means that the parameters are not optimised to fit
the current market assumptions.
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6.5.1. Maximum Likelihood Estimation of the NGARCH Process

The first way to acquire the NGARCH parameters for pricing options with the Heston-
Nandi model is to simply estimate these parameters by a maximum likelihood estimation
(MLE). It is, therefore, assumed that the variance process of the underlying’s historic
returns is an NGARCH process. The formula of the process is defined by (6.4) in Section
6.1.4. The exact procedure of estimating the parameters via MLE is explained in Section
7.2.3.

As a result of not calibrating the model to the current market expectations, it is obvious
that the volatility surface generated from the estimated parameters cannot match the
results as in Section 5.3. It is quit remarkable though that the resulting volatility
surface in Figure 6.2 is not too far from the actual market volatility surface at time
t0 = 23/09/2009 which is shown in Figure 4.1. Again, the implied volatility is depicted
on the vertical axis and the respective driftless deltas ∆dl,t and the maturities τ are on
the horizontal axes, as acknowledged in Section 4.2.2. The deviations of the call prices
relative to the spot St0 can be seen in Figure 6.3.

6.5.2. Applying Implied Volatilities for Fitting the NGARCH
Process

Another possibility of obtaining the NGARCH parameters for the Heston-Nandi model
is to use an implied volatility index and fit the NGARCH process to this index. This
is an interesting approach as it combines the idea of estimating and calibrating the
parameters. On the one hand it uses a time series and not current market prices, on
the other it minimises the sum of squared differences between the index values and the
volatility (i.e. the root of the variance) of the NGARCH process with respect to the
parameters. This procedure could be referred to as “calibrating the NGARCH process
to the implied volatility index time series”, raising the question whether this approach
is sensible because the parameters are not optimised to the quantity of interest. This
ambiguity is strengthened by the fact that the volatility index is also not the implied
volatility of the currency pair but an indicator for the implied volatility of the entire
forex market.

The results are not as close to the market volatility surface as in the preceding case.
c.f. 6.3. This observation suggests that one needs to be able to calibrate to the implied
volatility of the currency pair to give this approach further consideration. The deviation
can be seen in Figures 6.4 and 6.5 when comparing the volatility surface of the model
to that of the market in Figure 4.1. More details concerning the results of the models
are found in Chapter 7 and 8.
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Heston-Nandi Volatility Surface with ML Estimated Parameters for EUR-USD,
t0 = 23/09/2009

Figure 6.2.: Heston-Nandi Volatility Surface with ML Estimated Parameters for EUR-
USD, t0 = 23/09/2009. Resulting implied volatility σimpl denoted in %
depending on the driftless delta ∆dl,t in % of the OTM option and maturity
τ in years, as stated in Section 4.2.2
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 18/09/2009

Figure 6.3.: Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call
prices to the market call prices relative to the stock price in percent, i.e.
Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated NGARCH Parameters to a Volatility Index,
t0 = 23/09/2009

Figure 6.4.: Volatility Surface of Calibrated NGARCH Parameters to a Volatility Index,
t0 = 23/09/2009. Resulting implied volatility σimpl denoted in % depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
as stated in Section 4.2.2
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Deviation of Heston-Nandi with Calibrated Volatility Index Parameters to Market Call
Prices: EUR-USD, t0 = 18/09/2009

Figure 6.5.: Deviation of Heston-Nandi with Calibrated Volatility Index Parame-
ters to Market Call Prices relative to the stock price in percent, i.e.
Cmodel−Cmarket

St

[%], depending on the driftless deltas ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated Heston-Nandi Model for EUR-USD, t0 = 23/09/2009

Figure 6.6.: Calibrated Heston-Nandi model to call prices of EUR-USD, t0 =
23/09/2009. Resulting implied volatility σimpl denoted in % depending on
the driftless deltas ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2

6.5.3. Calibration of the Heston-Nandi Model

The third approach to obtain the parameters of the volatility process for the Heston-
Nandi pricing representation is to calibrate the model to the respective market volatility
surfaces just as in the case of Section 5.3. Although the procedure is practically equal
to the one described in the Heston case, it is not recommended in this framework. The
reasons for this outcome are explained in Chapter 7. An example of calibrating the
Heston-Nandi model to the market volatility surface is found in Figure 6.6.
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7. Empirical Analysis

The empirical analysis examines the derived models when fitted to real data. Thereby,
the emphasis is laid on how the individual models are estimated, respectively calibrated,
and what the results of the models and their parameters are. Summaries of the results are
presented as tables and figures in this chapter, further graphical details of all presented
models are found in the Appendix B. Moreover, the data used in these sections is
described in the following unit.

7.1. Description of the Data

As the main focus of this thesis is laid on the forex market, c.f. Chapter 2 and 4, the
models described in the preceding chapters are fitted to forex data. However, it is to be
noted that these models are used for numerous different markets and asset classes such
as equities but also weather and energy derivatives.

Section 2.1 also states that the forex market is particularly suitable for comparing dif-
ferent models and derivatives as it is one of the most liquid financial markets. For a
similar reason the empirical analysis concentrates on the currency pair USD-EUR which
is the most traded pair, as stated in Table 4.1. However, other exchange currencies have
been examined with similar outcomes.

All the data applied in this research is obtained from [Bloomberg10], i.e. market volatil-
ity surfaces with the respective exchange and forward interest rates, as well as historic
time series of exchange rates, volatility indices and LIBOR-rates which are used for his-
toric interest rates, c.f. Section 2.3.4. The data is always given by the closed values of
the respective trading day.

The starting point of all model fitting is, of course, the individual volatility surface
implied by the market at a specific date t. These are given by [Bloomberg10] in the same
way as the volatility surfaces are depicted in Section 4.2.2. The introduced notations
are also conform with most market conventions as described for example in [Wystup07],
ch.1. This means that the volatility surface is displayed as a three dimensional plot with
the implied volatility on the vertical axis depending on the maturity τ and the (dirftless)
delta ∆(dl),t on the horizontal axes. The collected market volatility surfaces are pretty
much arbitrarily chosen throughout the time interval 23/09/2009-20/10/2010 with no
more than 14 days (approximately 10 trading days) in between.
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The implied volatility being the wrong quantity inserted into the BSM call price formula
(4.5) to obtain the right price and applying the wrong formula, c.f. Section 4.3.1, is
unambiguously defined just as the maturity τ . However, there are various different
deltas for a number of different purposes, e.g. hedging, pricing etc. Amongst others,
there are driftless, forward, dual and spot deltas, c.f. [Wystup07] ch.1. The latter is the
usual textbook definition seen in [Hull02] p.304 and has been introduced in Section 3.4
and is reviewed in Section 4.2.2. It is, however, an inconvenience that [Bloomberg10]
fails to clearly state which of these deltas are given. It is strongly assumed and also
partly verified that the deltas employed by [Bloomberg10] have to be driftless deltas
∆dl,t in this context which is also concluded by [Wilmott10]. Furthermore, it can be
shown that the given deltas must be driftless by calculating the strike K from equation
(4.25) and inserting the values back into the BSM formulae to acquire the delta.

Each examined volatility surface has 11 · 15 = 165 data points with 11 different driftless
deltas ∆dl,t including the ATM price and 15 different maturities τ . The series of driftless
deltas is given by
�
5P-∆t , 10P-∆t , 15P-∆t , 25P-∆t , 35P-∆t , ATM , 35C-∆t , 25C-∆t , 15C-∆t , 10C-∆t , 5C-∆t

�

and the maturities are
�
1w, 2w, 3w, 1m, 2m, 3m, 6m, 9m, 1y, 18m, 2y, 3y, 5y, 7y, 10y

�
,

where w denotes a week, m a month and y a year.

The domestic and foreign forward interest rates which are needed to calibrate the models
and to compute K, are given by the currencies’ deposit rates and can be obtained from
[Bloomberg10] together with the respective volatility surfaces. The spot St for the
volatility surface at t is obtained from exchange rate time series. With these values it is
possible to retrieve the strike K from (4.25).

[Bloomberg10] offers different volatility surfaces with different amounts of data points.
For example, there is also a volatility surface with the additional maturities 4m and 4y
and with equidistant (driftless) delta points in 5% intervals. However, it is believed that
these supplementary points are only interpolations of the surrounding points. This is
why the volatility surfaces used in this research are the ones with less data points, as
the models should only be calibrated to real existing data.

Another reason for working with this data set is the fact that the calibration is a very
computational-intensive process which is seen in the following sections. Moreover, the
differences between calibrating the “larger” volatility surfaces and the “smaller” ones
turned out to be minor and can be neglected. Though, it should be noted that there is
one disadvantage when employing the surfaces with less data points, as the points are
not equidistant which automatically give the optimisation a certain loading or weighting,
c.f. Section 10.1.1.
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For the Maximum Likelihood estimation of the GARCH process further data is needed.
Next to the already mentioned time series of the exchange rates, also the respective
historic interest rates and implied volatility indices are needed. The historic interest
rates are LIBOR-rates as seen is Section 2.3.4. [Bloomberg10] offers various implied
volatility indices for the forex market. Many of them measure the implied volatility of
the most traded currency pairs with some kind of weighting to account for the different
volumes of the respective pair, c.f. for example [DB07]. The volatility indices, therefore,
do not specify the implied volatilities of a specific currency pair but rather indicate the
implied volatility of the entire forex market. For the data analysis in this research, the
“BNP Paribas FX Realised Volatility Index” is used, because it has a similarly long time
series as the currency pair USD-EUR.

The particular time series of the currency pair, the interest rate and the implied volatility
index are perfectly consistent except for specific holidays which accumulate to about 5
days in the year and are treated the same way as weekends for all time series. These
holidays are, therefore, assumed to be nonexistent and the next trading day follows the
previous. This results in the year having approximately 253 trading days. The time
horizon of the applied data starts from 04/01/1999 and ends 20/01/2010. Again, the
data-sets consist of closed values only and are all acquired from [Bloomberg10].

7.2. Estimating and Calibrating the Models

The basic idea of how to calibrate a (BSM) model to the data has been introduced
in Section 4.3.1. The subsequent sections give an exact description of how the models
are calibrated and estimated in detail. Section 6.5 already describes how the terms
estimation and calibration are used in this context. Estimation refers to a maximum
likelihood maximisation with the data being obtained from a time series. Calibration
denotes the parameter fit which is acquired when minimising the model results to current
market data.

A major difference between these two approaches is that the MLE over an entire time
series delivers global parameters which are used for all examined volatility surfaces. Cal-
ibrated parameters, however, are only fitted to the respective current volatility surfaces
and are, therefore, different for each set.

7.2.1. Calibrating the BSM Model

As mentioned in Section 4.3.1, calibrating the BSM model to the given market data only
involves a one dimensional minimisation problem. The starting point is the volatility
surface given by [Bloomberg10] as depicted in Section 4.3.1 and 7.1, and seen for example
in Figure 4.1. The surface is given by a [11× 15]-matrix with 165 points where the rows
denote the different deltas and the 15 columns symbolise the maturities.
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From this matrix, together with the values of the respective interest rates (foreign and
domestic), maturities, deltas and also the price of the underlying stock, the strike values
of every volatility data point is calculated by equation (4.25). The individual strike
values are again stored in another matrix of the same dimension. Now the matrix of
all call (and/ or put) prices anticipated by the market can be calculated, as all of the
needed parameters are given to apply the BSM formulae (4.5) and (4.6) in Section 4.1.2.
It is to be remembered that the volatility surfaces given by [Bloomberg10] are in fact
implied volatilities of the market call prices. All what is done in the preceding procedure
is to retrieve the original market call prices from the collected implied volatilities from
[Bloomberg10]. It is irrelevant what currency is used as the numéraire, because the
implied volatility is the same for both, c.f. Section 4.2.1. It is, however, vital to stay
consistent once the foreign and domestic currency have been chosen.

Once the market call price matrix has been computed, it is possible to calibrate the
model call prices to the market call prices. This is done by the least squared error (LSE)
method. Let Cm,n be market call price of the m-th delta and n-th maturity and Ĉm,n(σ̂)

the corresponding call price of the BSM model, m = 1, . . . ,M and n = 1, . . . , N . The
LSE function is minimised w.r.t. the only free parameter σ̂ which means that only one
volatility exists for the whole “surface”. It is to be remembered that the BSM model
assumes constant volatility, c.f. Chapter 3. The least squared error function LSE(σ̂) is,
thus, depicted by

LSE(σ̂) = argmin
σ̂

M�

m=1

N�

n=1

�
Cm,n − Ĉm,n(σ̂)

�2
. (7.1)

In Section 4.3 the implied volatility which minimises the LSE function in Figure 4.3 is
σ̂impl,t = 10.63%. The results of calibrating the parameters, i.e. the implied volatilities,
for the respective volatility surfaces during the period of 23/09/2009 and 20/01/2010
can be found in Table 7.1 and Figure 7.1. It is to be remembered that the BSM model
assumes constant volatilities and that the volatility surfaces are planes. This is why
these “surfaces” all more or less look like the one in Figure 4.3 and the deviations seen
in Figure 4.4 are relatively similar, too, and no further graphical analyses are, therefore,
undertaken. Instead, the differences to the market volatility surfaces are examined by
statistical measures in Chapter 8.

In the case of the BSM model calibration any minimisation algorithm can be used as it is
a simple one dimensional optimisation problem with one global minimum. For example
the Newton-Raphson method can be applied. Nevertheless, as especially the Heston
model needs to be minimised differently, another algorithm is used and employed in all
implementations to be able to compare the models more consistently1. This is why a

1Generally, the Newton-Raphson method is more precise than the simulated annealing method which
only gives the an acceptable good solution rather than the best possible solution, c.f. [Wikipediary]. In
this context and especially with any one dimensional optimisation problem the error can be neglected,
since the error can also be minimised.
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Calibrated BSM Implied Volatilities

date t 23/09/09 07/10/09 21/10/09 04/11/09 18/11/09
σ̂impl 0.1063 0.1071 0.1098 0.1164 0.1148

date t 02/12/09 16/12/09 30/12/09 06/01/10 20/01/10
σ̂impl 0.1149 0.1147 0.1163 0.1126 0.1103

Table 7.1.: Resulting BSM implied volatility of the calibrated BSM model for each ex-
amined market volatility surface, c.f. Section 7.2.1. With these parameters
the calibrated volatility surfaces as seen in Appendix B are calculated. The
results are also shown in Figure 7.1.

Progression of the Calibrated BSM Implied Volatilities

t

Figure 7.1.: The progression of the calibrated BSM implied volatility is shown as depicted
in Table 7.1.
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simulated annealing minimisation method is applied which is explained in more detail
in the following section. In Octave, which is the open source version of Matlab, the
function is given by samin().

7.2.2. Calibrating the Heston Model

The underlying calibration idea for the Heston model is practically the same as for the
BSM model. Again the strikes are acquired from equation (4.25) to calculate the market
call prices. The big difference between the BSM and the Heston calibration is that six
parameters κ, vt, λ, v̄, σv and ρ instead of one parameter are used to minimise the LSE
function which is due to the Heston volatility being a process instead of a constant, c.f.
equations (5.2) and (5.3) in Section 5.1 and also (5.19) in Section 5.2.2. It should be
noted that in the Heston framework it is more or less irrelevant whether the parameter
λ is estimated with the model, or set to be 0 assuming to be in the risk-less world, as
the risk-neutral parameters can be retrieved by, c.f. [Heston93] p.335,

κ∗ = κ+ λ and v̄∗ =
κv̄

κ+ λ
(7.2)

This phenomena can be seen in Figure 7.2 where the calibrated values κ̂ and λ̂ take on
diverging values, i.e. when κ̂ is relatively large then λ̂ is comparatively small and vice
versa. Let Θ̂H denote the vector of the Heston parameters, Θ̂H = [κ, vt,λ, v̄, σv, ρ]�, the
LSE function to be minimised is thus given by

LSE(Θ̂H) = argmin
Θ̂H

M�

m=1

N�

n=1

�
Cm,n − Ĉm,n(Θ̂H)

�2
. (7.3)

In Section 5.1 it is mentioned that the parameter restriction 2κv̄ > σ2
v
is needed to

guarantee a positive volatility process. When minimising the LSE function w.r.t. the
Heston parameters, this constraint has to be considered. There are different ways to
take this restriction into account, one is to give the LSE function some sort of penalty
when optimising the problem. In this case, the LSE is multiplied by some factor if the
restriction is violated. It is found that the resulting solutions often just about fulfil the
parameter constraint. The formulae for the adjusted minimisation can be given by

LSE∗
(Θ̂H) =

�
LSE(Θ̂H) , 2κv̄ > σ2

v

LSE(Θ̂H) · pf , 2κv̄ ≤ σ2
v

, (7.4)

where pf denotes some kind of penalty factor, e.g. pf = 10.

As the optimisation problem is no longer one dimensional, more complex minimisation
algorithms need to be employed. It is, however, a nontrivial problem to find the global
minimum. In fact most minimisation algorithms fail, as the LSE function has a large
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number of local minimums and these algorithms get stuck in one of them. One way out
of this problem is to implement the simulated annealing algorithm which is a generic
probabilistic metaheuristic for global optimisation, c.f. [Wikipediary].

The basic idea behind this method is that the current point is compared to a different
point in the search space. This point is accepted either because it lowers the function
value or it is chosen with a certain probability regardless of the function value. The
probability can be influenced by a so called temperature parameter. The probability is
also dependant on the amount of steps taken and decreases by the increasing number
of steps. Because of this probability the next point can jump to an “arbitrary” location
in the search space and the algorithm does not get stuck in some local minimum so
easily. For the same reason the precision of the optimisation result is only finite and
also identical results cannot be reproduced when repeating the minimisation procedure.
This is only a very basic idea of the functionality. A good summary of this procedure
is found in [Wikipediary]. As mentioned, the octave command for this optimisation is
samin().

Even though the simulated annealing algorithm is a very powerful tool to find a minimum
which is bordering on the global minimum, it is still possible to get stuck in a local
optimum. In order to cancel out this probability, it is recommended to choose different
starting regions and to alter the lower and upper bounds of the search space. This should
guarantee finding a very accurate optimum eminently close to the global minimum.

Instead of minimising the difference between the market call price and the model’s call
price, the differences between the market volatility surface and the model’s implied
volatility surface can be minimised. Even though this is another possibility of obtaining
a calibrated model, it has the computational disadvantage of having to calculate the
implied volatility to each Heston call price. It is to be remembered that the implied
volatility can only be obtained by another minimisation problem, c.f. Section 3.3 and
that the calculation of a matrix of Heston call prices in each step of the simulated
annealing algorithm already is a computational-intensive process.

The calibration of the Heston model in Figure 5.2 delivers the parameters κ̂ = 0.1489,
λ̂ = 0.0663, v̂t = 0.0158, ˆ̄v = 0.0064, σ̂v = 0.0438 and ρ̂ = −0.0486. The results of
the parameters from all calibrated volatility surfaces during the period of 23/09/2009
and 20/01/2010 can be found in Table 7.2 and Figure 7.2. The figures of the individual
calibrated surfaces can be found in Appendix B.

7.2.3. Maximum Likelihood Estimation of the NGARCH Process

Section 6.5.1 describes the underlying idea of this approach to obtain the parameters for
the Heston-Nandi model. Before being able to estimate the parameters of the NGARCH
process it is necessary to collect a consistent time series containing the level values of
the underlying and the respective foreign and domestic interest rates to the same dates.
As mentioned in Section 7.1 the data often has to be adjusted on certain holidays which
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Calibrated Heston Parameters

date t 23/09/09 07/10/09 21/10/09 04/11/09 18/11/09
κ̂ 0.1489 0.0928 0.0581 0.0366 0.0667
λ̂ 0.0663 0.1383 0.1586 0.2307 0.1460
v̂t 0.0158 0.0158 0.0177 0.0215 0.0198
ˆ̄v 0.0064 0.0142 0.0135 0.0304 0.0117
σ̂v 0.0438 0.0514 0.0397 0.0472 0.0396
ρ̂ −0.0486 −0.0838 −0.1194 −0.2013 −0.3187

date t 02/12/09 16/12/09 30/12/09 06/01/10 20/01/10
κ̂ 0.2007 0.1213 0.0194 0.0847 0.0370
λ̂ 0.0323 0.1145 0.2271 0.1338 0.1691
v̂t 0.0201 0.0194 0.0202 0.0177 0.0167
ˆ̄v 0.0053 0.0106 0.0661 0.0151 0.0314
σ̂v 0.0460 0.0507 0.0506 0.0506 0.0482
ρ̂ −0.3688 −0.4098 −0.3970 −0.3846 −0.3682

Table 7.2.: Resulting parameters of the calibrated Heston model for each examined
market volatility surface, c.f. Section 7.2.2. With these parameters the
calibrated volatility surfaces as seen in Appendix B are calculated. Due to
rounding the parameters it is possible that the restriction 2κv̄ > σ2

v
as seen

in 5.1 is not fulfilled. The results are also shown in Figure 7.2.
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Progression of the Calibrated Heston Parameters

t

Figure 7.2.: The progression of the calibrated Heston parameters is shown as depicted
in Table 7.2, with κ̂ —, λ̂ —, v̂t —, ˆ̄v —, σ̂v — and ρ̂ —

is achieved by leaving out the extra days. The historic interest rates are given by the
LIBOR rates of the respective country which need to be annualised, i.e. divided by the
number of trading days in one year. In the given data sets this is approximately 253
days.

Once the time series is homogeneous, the maximum likelihood estimation can be under-
taken, with the log-likelihood function l being

argmax
Θ̂ML

l(Θ̂ML) =
�

t

−0.5
�
log

�
ht(Θ̂ML) + Z2

t

��
. (7.5)

The values ht and Zt are defined as in the formulae of (6.7) in Section 6.2.1, with
p = q = 1. The error variable Zt is retrieved by inverting the first of these equations.
Θ̂ML is the vector of all the NGARCH parameters to be estimated by the likelihood
maximisation, i.e. Θ̂ML = [α0,α1, β1, γ1]�. Subsequently, the variable λ is estimated
by minimising the sum of squared errors of the underlying asset’s level values St and
the values resulting from the price process (6.7a) with the ML-estimated variance ht

from the first step, i.e. Ŝt(λ,ht). This approach is also consistent with the one found in
[Heston00] p.597. The sum in equation (7.5) and (7.6) is over all dates t in the time
series. The latter shows the minimisation formula to estimate the parameter λ which is
given by

argmin
λ̂

�

t

�
St − Ŝt(λ̂,ht)

�2
(7.6)
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Estimated Heston-Nandi Parameters by MLE

α̂0 5.079e− 20
α̂1 9.394e− 07
β̂1 0.9728
γ̂ 73.0832
λ̂ −0.4520

Table 7.3.: Heston-Nandi Parameters are obtained by estimating the NGARCH process
via maximum likelihood estimation (MLE), c.f. Section 7.2.3.

The Heston-Nandi process is also subject to a parameter restriction which is given by
β1 + α1γ2

1 < 1, as seen in Section 6.2.1. In order to consider this constraint in the
log-likelihood function, again a penalty factor is added to the maximisation problem. In
this case the log-likelihood function is simply set to a small number pc if the restriction
is violated, e.g. pc = 0. The log-likelihood function is then depicted by

l∗(Θ̂ML) =

�
l(Θ̂ML) , β1 + α1γ2

1 < 1

pc , β1 + α1γ2
1 ≥ 1

. (7.7)

As a result of estimating the parameters to the time series, the parameters are constant
for all volatility surfaces which is another major difference between estimating the pa-
rameters from a time series and calibrating the pricing model to current market prices.
In Section 6.2.1 it is mentioned that the prices are very sensitive to the parameter λ.
This statement is also observed in this research.

After estimating the parameters from the MLE and the second step minimisation pro-
cedure, the Heston-Nandi model as in Section 6.3 is used to price the options. Again,
a matrix of all call prices dependent on the respective driftless deltas and maturities is
generated to obtain the implied volatilities of the surface as seen in Figure 6.2 in Section
6.5.1. The results of the parameter estimation according to this approach can be found
in Table 7.3 which are also used in every volatility surface to be computed, as shown
in the mentioned figure for t0 = 23/09/2009. The variance is of course given by the
respective values of the variance process ht at each date t as seen in Table 7.4.

7.2.4. Fitting the NGARCH Process to an Implied Volatility Index

As stated in Section 6.5.2, fitting an NGARCH process to a time series of implied volatil-
ities is another possibility to obtain the parameters in order to price options with the
Heston-Nandi model. The idea is to minimise the squared differences of the NGARCH
process to the implied volatility index. The values of this index need to be squared
and annualised (i.e. divided by the amount of days in a year) for this procedure, as
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Values of the NGARCH Variance Process at Specific Dates

date t 23/09/09 07/10/09 21/10/09 04/11/09 18/11/09

ĥt 2.935e− 05 2.867e− 05 2.579e− 05 3.182e− 05 3.367e− 05

date t 02/12/09 16/12/09 30/12/09 06/01/10 20/01/10

ĥt 3.331e− 05 4.038e− 05 4.038e− 05 3.811e− 05 3.749e− 05

Table 7.4.: Estimated values at the respective date t of the NGARCH process ĥt gen-
erated from the parameters in Table 7.3.

the NGARCH process delivers variances at certain points of time which in this case
are the closing times of the individual trading days. Let σ2

IV,t
denote the implied annu-

alised variances of the index. The NGARCH parameters are again stored in a vector
ΘIV = [α0,α1, β1, γ1]� which underlie ht(ΘIV ). Thus, the minimisation is given by

argmin
Θ̂IV

�

t

�
σ2
IV,t

− ht(Θ̂IV )
�2

. (7.8)

Again, the sum applies to all given dates t in the time series. It is to be noted that the
parameter λ being the variable for the risk premium does not have to be estimated in this
framework and is set to λ = −0.5 as the implied volatilities already contain this premium.
This is why implied volatilities are normally higher than the estimated volatilities in the
time series. During the financial crises in 2008-2009, the implied volatility index was so
high that the NGARCH process cannot fit the index values appropriately during this
period. This can be seen in Figure 7.3 where the peaks of σ2

IV,t
are more than twice as

high as the estimated NGARCH variances.

In Section 6.5.2 it is mentioned that this approach is questionable, as the model is fitted
to the wrong quantity. The implied volatility, or variance, is not that of the respective
currency but that of the entire market. Figure 7.3 also shows large discrepancies between
the actual time series and the fitted NGARCH process. Also, the differences between
the relative market prices of an option to the prices of the model are larger than in the
previous solution which is discussed in more detail in Chapter 8. The results should be
somewhat more sophisticated, if the implied volatility index were more adequate. The
parameters which are obtained from this particular calibration are given in Table 7.5.

7.2.5. Calibrating the Heston-Nandi Model

It has been shown in Section 6.5.3 that the calibration of the Heston-Nandi model does
not deliver satisfying results, c.f. Figure 6.6. It can be seen from the preceding attempts
to produce volatility surfaces with the NGARCH process that the volatilities become
very flat for long termed options. This should be the reason why it does not seem to
be possible to calibrate this approach to the market data properly as the approximate
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Comparison of the Implied Volatility Index to the Fitted NGARCH Process, during
04/01/1999− 20/01/2010

date

Figure 7.3.: During the financial crises in 2008-2009, the squared implied volatility σ2
IV,t

index was so high that the NGARCH process cannot fit the index values
appropriately during this period. The peaks of σ2

IV,t
are more than twice as

high as the fitted NGARCH variances ht.

Calibrated NGARCH Parameters to a Volatility Index

α̂0 1.126e− 21
α̂1 8.773e− 07
β̂1 0.9790
γ̂ 70.0852

Table 7.5.: Heston-Nandi Parameters are obtained by fitting the NGARCH process to
a volatility index, c.f. Section 7.2.4.
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Values of the NGARCH Variance Process at Specific Dates

date t 23/09/09 07/10/09 21/10/09 04/11/09 18/11/09

ĥt 3.587e− 05 3.454e− 05 3.128e− 05 3.577e− 05 3.716e− 05

date t 02/12/09 16/12/09 30/12/09 06/01/10 20/01/10

ĥt 3.685e− 05 4.336e− 05 4.388e− 05 4.204e− 05 4.159e− 05

Table 7.6.: Estimated values at the respective date t of the NGARCH process ĥt gen-
erated from the parameters in Table 7.5.

plane as from the middle of the surface takes too much weight in the minimisation.
However, it may also be possible that the outcome of the minimisation is stuck in some
local minimum. In either of the cases, without further restrictions the results do not
perform well.

Apart from the fact that the optimisation process seems to need further adjustments,
this approach to obtain the NGARCH parameters is not feasible in practice. This
statement is due to the fact that the computational expenditure is very large to obtain
just one matrix of call prices when applying the Heston-Nandi model. With relatively
fast hardware it took a few minutes to calculate one call matrix and over one week for
the calibration to deliver some output. In comparison, the Heston model, which is based
on similar characteristic functions and a totally equal optimisation procedure, takes an
instant to deliver one matrix of option prices and approximately four hours to present a
calibrated model.

As the LSE function is minimised by six parameters in both frameworks with similar
parameter ranges, this possibility obviously is not the cause for the differences. However,
some explanations are found in the specific properties of the Heston-Nandi characteristic
functions. The main reason for the extensive computational expenditure is the recursive
computation of At and B1,t seen in Section 6.3 which has to be computed for each
integrand and each φ. In order to have a certain precision for the numeric integration,
the number of φ’s is relatively large.

If the computational effort is of no importance, the calibration of the Heson-Nandi
framework can be carried out the same way as described in Section 7.2.2 for the Heston
model. The strikes are acquired from equation (4.25) and the market call prices are
retrieved by the BSM formulae (4.5). The Heston-Nandi model is then calibrated to
the market call prices by minimising the LSE function w.r.t. the parameter vector
Θ̂HN = [α0,α1, β1, γ, ht,λ]�,

LSE(Θ̂HN ) = arg min
Θ̂HN

M�

m=1

N�

n=1

�
Cm,n − Ĉm,n(Θ̂HN )

�2
. (7.9)
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Calibrated Heston-Nandi Model at t0 = 23/09/2009

α̂0 7.818e− 06
α̂1 2.301e− 06
β̂1 0.6708
γ̂ 0.1001
λ̂ −0.4932
ĥt 6.586e− 05

Table 7.7.: Resulting parameters of the calibrated Heston-Nandi model at t =
23/09/2009. λ̂ is close to the value −0.5 which is expected as the model
is calibrated to the (implied) market volatility surface. The calibration does
not seem to feasible without further assumptions, c.f. Section 7.2.5.

The parameter results of the calibration from Figure 6.6 are given in Table 7.7. However,
because the computational effort is so large and the results are not convincing the model
is not calibrated to all the examined market volatility surfaces like in the Heston case.
The Heston-Nandi model does not seem to be able to represent the prices adequately
which have long termed maturities. In all the examined Heston-Nandi/ NGARCH ap-
proaches, no matter how the parameters are estimated, the volatility surface becomes
very flat for options expiring in the far future. The characteristics of the outcomes from
all the different models are examined in the following chapter.

92



8. Valuations and Comparisons of the
Different Models

Having introduced, and fitted the Heston and the Heston-Nandi model to data, the lat-
ter also in some variations, it is of interest to analyse the differences of the individual
models and their modifications. Their performance is valuated by graphical compar-
isons, statistical measures and by examining the underlying processes of the respective
concepts.

8.1. Model Valuations

8.1.1. Graphical Comparison

It can easily be determined how well the models’ option prices perform by simply cal-
culating the deviations to the real market prices. However, instead of considering the
level differences, it is useful to investigate the relative difference of the option prices to
the price of the underlying asset. This makes sense as the level differences of highly
priced options are naturally larger than lower priced options and the price of an option
is generally only of interest relative to the price of its underlying asset. Therefore, the
errors should also be expressed in this relative quantity which is depicted in percent.
The graphical version of this procedure has already been in introduced in Section 4.3
and is also seen in many textbooks, see for example Figure 4.4.

Examining the results of these graphical comparisons and also the models’ volatility sur-
faces with the given market volatilities, it can generally be concluded that the calibrated
Heston model fits the best even though it has deficiencies for short termed options which
are reviewed in Section 10.1.3. The model “imitates” the basic structure of the market
volatility surface which is one main aim of the model constructions. In comparison, the
Heston-Nandi framework, regardless of which procedure is used, seems to be able to fit
the options with short termed maturities better but with the disadvantage of approxi-
mately constant volatilities for middle and long termed maturities. These observations
can be seen throughout all the volatility surfaces and deviation plots which are presented
in Appendix B.
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MSE Values of the Examined Models

t

Figure 8.1.: The chart shows the mean squared errors (MSE) of the respective models
which are given by the calibrated Heston framework (—), the ML estimated
parameters of Heston-Nandi model (—), the Heston-Nandi version with cal-
ibrated NGARCH process to the implied volatility index (—) and, as a
comparison, the calibrated BSM model (—). The MSE is computed by the
mean squared difference of each calculated call price to every market call
price w.r.t. all maturities and (driftless) deltas is computed. It can be seen
that the options priced by the Heston approach have the smallest mean
squared errors, c.f. Table 8.1.

8.1.2. Mean Square Error

The mean square error (MSE) is a widely used statistical measure which specifies how
close an estimator is to the true value. In this case, it is irrelevant whether the mean
or the simple sum of squares is examined, as the volatility surfaces all have the same
amount of data points. In this context, the MSE of the same call price matrix as in
Chapter 7 is calculated. This means that the difference of each calculated call price to
every market call price w.r.t. all maturities and (driftless) deltas is computed.

It should be mentioned that it is not surprising that the calibrated Heston model per-
forms the best as the sum of squared errors is also used to calibrate the model to each
examined volatility surface. The mean square error of each model and volatility surface
can be seen in Table 8.1 and also in Figure 8.1 where the progression throughout the
time is visualised.
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MSE Values of the Examined Models

date t 23/09/09 07/10/09 21/10/09 04/11/09
Heston, calibration 6.904e− 06 6.205e− 06 9.639e− 06 1.016e− 05
NGARCH, MLE 9.844e− 05 9.068e− 05 9.065e− 05 7.741e− 05
NGARCH, fitted vola index 2.520e− 04 2.430e− 04 2.236e− 04 1.665e− 04
BSM, calibration 3.023e− 05 2.757e− 05 4.464e− 05 6.155e− 05

date t 18/11/09 02/12/09 16/12/09 30/12/09
Heston, calibrated 1.369e− 05 1.386e− 05 1.320e− 05 1.061e− 05
NGARCH, MLE 7.676e− 05 7.903e− 05 7.079e− 05 6.388e− 05
NGARCH, fitted vola index 1.820e− 04 1.872e− 04 1.767e− 04 1.549e− 04
BSM, calibration 5.800e− 05 6.053e− 05 5.124e− 05 5.082e− 05

date t 06/01/10 20/01/10
Heston, calibrated 9.250e− 06 5.415e− 06
NGARCH, MLE 6.608e− 05 7.000e− 05
NGARCH, fitted vola index 1.814e− 04 1.995e− 04
BSM, calibration 3.729e− 05 2.962e− 05

Table 8.1.: The table shows the mean squared errors (MSE) of the respective models
which are given by the calibrated Heston framework, the ML estimated pa-
rameters of Heston-Nandi model, the Heston-Nandi version with calibrated
NGARCH process to the implied volatility index and, as a comparison, the
calibrated BSM model. The MSE is computed by the mean squared dif-
ference of each calculated call price to every market call price w.r.t. all
maturities and (driftless) deltas is computed. It can be seen that the op-
tions priced by the Heston approach have the smallest mean squared errors,
c.f. Figure 8.1.
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It can be concluded that the calibrated Heston model always outperforms the other
concepts clearly. It can also be seen that the Heston-Nandi approach with the NGARCH
process fitted to the volatility index has the largest MSE at all times and thus delivers
worse results than the BSM options pricing scheme.

8.2. Comparing the Return Densities of the Individual
Models

Another way to analyse the different models is to examine how close the driving processes
are in comparison to the observed market returns of the underlying asset. This can be
done by comparing the returns of the given time series with the ones produced by a Monte
Carlo (MC) simulation from the processes of the respective model. This is an interesting
approach as the basic characteristics of the model are analised, i.e. it is checked whether
the price process of the underlying asset delivers the same characteristics as the market.
As seen in Section 4.7, the market returns are not normally distributed as the given
data has fat tails, a higher frequency around the mean and also seems to have a skew.
This also means that the standard BSM model fails to meat these occurrences as the
underlying process is normally distributed, c.f. equation (3.2) in Section 3.1.1.

It is, therefore, a good indicator of the model’s performance to see whether the model
suffices the basic asset path and return characteristics. Moreover, a good and consistent
comparison to the BSM model is given because it assumes normally distributed returns.
In order to have the same conditions for all the models and to be able to compare
the results with the collected time series, an equally long time period with the same
amount of level values is produced for the MC simulations of each model. Also, the
estimated parameters from Chapter 7 are used as these parameters have been used to
fit the respective models to the given market data.

The returns of the simulated price paths are shown in the resulting histograms in the
Figures 8.2-8.4. It can be seen that the underlying processes also differ from the normal
distribution in a similar way as the original data seen in Figure 4.6 in Section 4.7. Hence,
it can be stated that these underlying processes are more realistic and closer to reality
than the price process given by the BSM model.
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Return Histogram of MC Simulation Generated by Calibrated Heston Parameters

returns Rt

Figure 8.2.: Histogram of discrete returns Rt generated from the processes in equations
(5.1)-(5.3) and the same starting value as the original time series in Figure
7.3. The parameters for the Heston model are obtained from the calibrated
parameters of t = 20/01/2010 in Table 7.2. The histogram differs from the
normal density is a similar way as the market returns in Figure 4.6.
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Return Histogram of MC Simulation Generated by NGARCH Parameters from MLE

returns Rt

Figure 8.3.: Histogram of discrete returns Rt generated from the processes in equation
(6.7) and the same starting value as the original time series in Figure 7.3.
The parameters of the NGARCH process are obtained from the maximum
likelihood estimated (MLE) parameters in Table 7.3. The histogram differs
from the normal density in a similar way as the market returns in Figure
4.6.
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Return Histogram of MC Simulation Generated by NGARCH Parameters from Fitting
the Volatility Index

returns Rt

Figure 8.4.: Histogram of discrete returns Rt generated from the processes in equa-
tion (6.7) and the same starting value as the original time series in Fig-
ure 7.3. The parameters of the NGARCH process are obtained from the
fitted NGARCH process to the implied volatility index in Table 7.5. The
histogram differs from the normal density in a similar way as the market
returns in Figure 4.6.
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9. Pricing Exotic Options

The topic of pricing exotic options is continued in this Chapter, as seen in Section 4.6.
This issue is one of the reasons for using stochastic volatility models as the BSM model
does not seem to be able to deliver convincing prices for exotics. Different possibilities
of pricing barrier options are outlined and an approach for valuating cliquet options is
described in the following units.

9.1. Pricing Barrier Options with Stochastic Volatility
Models

The basics of barrier options are explained in Section 4.6.1 as well as the formulae to
price these options in the BSM framework. [Cont04] illustrates different ways of pricing
barriers for different kinds of processes. The theory of pricing barrier options is vast
and is beyond the scope of this research. However, one possibility is always given by
a simple Monte Carlo simulation which is easily implemented by simulating the price
processes with Heston or GARCH volatilities. At the end of the path, each simulation is
examined to determine the respective payoff function from the min and max terms. By
repeating this procedure sufficiently often, a good estimate of the barrier price is given.
This approach of determining the price of an (exotic) option is performed in the next
section.

The reason why it is necessary to price barrier options with stochastic volatility or similar
models is given by the fact that the BSM model underestimates the probability of hitting
the barrier. Further explanations for why it is essential to use more sophisticated models
other than the BSM model are found in Section 4.7 and in [Cont04].

Even if the prices of barrier options are only estimated by MC simulations, the results
should be more trustworthy than the BSM closed form prices. The accuracy can be
improved by various variance reduction methods such as mirroring the paths and control
variate. Nevertheless, it should be emphasised that the prices of barrier options is very
model dependent and further investigations have to be undertaken to obtain consistent
prices, c.f. [Gatheral06] ch.9. In fact the barrier prices differ considerably which is
possibly the reason why bid and ask prices of market participants also differ to a large
extent. These analyses are not the focal point of this research and can be observed in
the latter citations.
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9.2. Pricing Cliquets with Stochastic Volatility Models

The basic concept of pricing options with MC simulations has been outlined in the
preceding section. This section shows an example of this procedure by pricing call
cliquets with the payoff function (4.48) as seen in Section 4.6.3. The reason why these
specific options have been chosen to be analysed is that it is also not possible to price
these options with a closed form solution in any model so the comparisons have the same
precision. The results of this pricing example can be viewed in Table 9.1. As stated in
[Gatheral06] ch.9, the obtained prices are very model dependant.

Example of Pricing Cliquets with Stochastic Volatility Models

Model Cliquets Call Price
BSM 2.213
Heston 2.316
Heston-Nandi 6.266

Table 9.1.: Fictive example of pricing Cliquets with Stochastic Volatility Models. The
parameters are chosen from the fitted models of the Sections 7.2.1, 7.2.2 and
7.2.3 with t = 20/01/2010. The prices are calculated by Monte Carlo (MC)
simulation with 10000 different paths, 253 trading days, total maturity of
10 years, 10 individual cliquets and ν = 1, c.f. Section 4.6.3.
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10. Extensions of the Models

This chapter gives an outlook on extensions of the models examined in the preceding
chapters and presents further approaches. It is shown that some extensions are only
relevant in theory and do not have a practical value, e.g. it is not possible to hedge the
resulting option prices properly, or the model loses its initial purpose. The main focus
lies on Heston model extensions, also because there is more literature available and it is
the more established model for pricing options.

10.1. Heston Model Extensions

10.1.1. Adjustment of the Least Squared Error Function

It has been shown that the Heston Model seems to be the most feasible model which is
why extensions of this approach will be discussed first. The simplest form of improving
the fit of the model is to employ weights wm,n into the least square error function in
equation (7.3) resulting in

LSE(Θ̂H) = argmin
Θ̂H

M�

m=1

N�

n=1

wm,n

�
Cm,n − Ĉm,n(Θ̂H)

�2
. (10.1)

Weights enable one to focus the optimisation on a “relevant” or more important area of
the volatility surface, such as options being close to ATM because they are traded more
frequently. This would also account for the higher accuracy of the markets’ option prices
(or implied volatilities) when being closer to ATM as when options are far OTM or ITM
they are usually not so liquid and vary to a greater extent. Another adjustment which
can be undertaken to improve the fit is to alter the measure of the price differences.
This is done by replacing the square with another value q > 0 and applying absolute
differences

LQE(Θ̂H) = argmin
Θ̂H

M�

m=1

N�

n=1

���Cm,n − Ĉm,n(Θ̂H)

���
q

. (10.2)

Also, a general penalty function pen(ΘH ,Θ0), as seen in [Nögel03] p.4, can be added to
favour parameters that lie close to each other or to a initial parameter value Θ0. This
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has the advantage that parameters are not likely to suddenly “jump” to a somewhat
different scale. The least squared error function can thus be given by

LSE�
(Θ̂H) = argmin

Θ̂H

M�

m=1

N�

n=1

�
Cm,n − Ĉm,n(Θ̂H)

�2
+ pen(Θ̂H ,Θ0). (10.3)

Various combinations of the latter adjustments are possible.

10.1.2. Time Dependant Parameters

The latter extensions are very easy to implement and offer a simple way to improve the fit
but also parameter consistency. A very different approach is given by making the Heston
parameters dependant on the time in some way. One example is given by making the
mean reversion parameter v̄ time dependent, i.e. v̄t, for example v̄t = m+ (v̄0 −m) e−ot

as seen in [Overhaus07] p.46.The Heston variance process vt in equation (5.2) is then
given by

dvt = κ (v̄t − vt) dt+ σv

√
vtdW2,t . (10.4)

A similar idea is to make all the parameters piecewise constant, i.e. κδtj
, v̄δtj σδtj

and
ρδtj . This results in

dvδtj = κδtj

�
v̄δtj − vt

�
dt+ σδtj

√
vtdW2,t (10.5)

and

ρδtj = Corrδtj [W1,t,W2,t] . (10.6)

In [Nögel03] and [Overhaus07] ch.2 it is shown that these extensions can be solved prac-
tically the same way already described in Chapter 5 with minor alterations. Therefore,
these are also closed form solutions. It is obvious that the fit of the model increases the
more parameters are included in the model. However, there is a considerable trade-off
involved when applying these proposals which is also outlined in [Overhaus07] ch.2. By
employing piecewise constant time dependant parameters the model’s structure gets lost
which defeats the purpose of the whole model. The model is practically turned into an
“arbitrage-free interpolation of market data” instead of giving a “view” on the build of
the volatility, c.f. [Overhaus07] p.47. Additional parameter restrictions similar to the
ones seen in equation (10.3) can again be used to smooth the parameters over the time
period.

Another drawback of such models for practitioners is the problem of hedging. When
inserting time dependant parameters into the model one needs to additionally hedge
against movements of the parameters, c.f. [Overhaus07] ch.2. Therefore, the less con-
sistent the parameters are and the more parameters involved, the less dependable the
model gets which is a good reason to continue with the original model. whether the
extension is reasonable.
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10.1.3. Jumps

A very popular way of extending stochastic volatility models and, in particular the
Heston stochastic volatility model, is to add jumps to the models. The idea of jumps
arises when noticing that a certain amount of the volatility is due to overnight and
also weekend shifts which is not explicitly modelled by ordinary stochastic volatility
processes. Adding jumps can improve the fit considerably which is seen in [Gatheral06]
ch.5 and [Cont04]. It is shown that adding jumps particularly helps to improve the
short term volatility structure, i.e. options with close expiry dates. In this research,
c.f. Chapter 8, it is also observed that the volatility surfaces of the Heston model is
comparatively poor which is why jumps seem to be a promising solution.

[Gatheral06] argues that it is not without reason why stochastic volatility models per-
form badly for short term options as the volatility process does not vary much during
short time periods. This is why the returns from the Heston model should be close to
the normal distribution and the volatility smiles consequently are relatively flat. The
proposed approach can work against this behaviour by adding jumps to the price pro-
cess

dSt = µSt dt+ σStdWt + (J − 1)Stdq , t > 0. (10.7)

where dq denotes a Poisson process

dq =

�
0 , with probability 1− λ(t)dt

1 , with probability λ(t)dt
. (10.8)

The price process is equivalent to equation (3.1) in Section 3.1.1, except for the additional
jump process. λ(t) depicts the hazard rate of the Poisson process which can be interpreted
as the “pseudo-probability” per unit time for a jump to occur, c.f. [Fahrmeir05] ch.5.
and [Gatheral06] p.54. The Heston version of the price process from equation (5.1) is

dSt = µStdt+
√
vtStdW1,t + (J − 1)Stdq , t > 0. (10.9)

In [Gatheral06] ch.5 it is shown that the derivation of the PDE is very similar to the
one shown in Section 5.2.1 and, therefore, has a closed form solution. It is also shown
in a worked example that the Heston stochastic volatility process with added jumps to
the price process is superior to the standard Heston model as seen in Chapter 5. There
are also different versions of jump processes which can be supplemented.

Again, one can argue that because there are more parameters, the model should per-
form better. Moreover, the same problems arise as in Section 10.1.2, i.e. difficulties of
assigning consistent and reproduceable parameters when calibrating the model. This is
because both the volatility process and the jump process both model a certain amount
of the varying volatility. However, the jumps are included for a convincing reason and do
not simply “over-fit” the model. Besides, the problems of calibrating seem to be minor,
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as the Table 5.4 in [Gatheral06] indicates where the Heston model is fitted by different
authors with different data. The result is that the Heston parameters only differ to a
certain extent which speaks for this approach.

10.1.4. Further GARCH Models

As the Heston-Nandi model has not become as established as the Heston model, there are
also fewer attempts (practically none) of extending it. At least for the calibrated version
of the Heston-Nandi model, c.f. Section 6.5 and Chapter 7, some of the approaches
outlined in the previous subsections can be taken into consideration to improve the
fit.

However, there are various attempts of non-closed form solutions by using Monte-Carlo
(MC) simulations and exploiting all possible GARCH extensions. In fact, these ap-
proaches have existed before the closed form frameworks due to the simpler implemen-
tation (no characteristic functions are involved). Especially [Duan95] shows how this
approach can be applied for pricing options using a basic GARCH(p,q) process for the
variance. This is enabled by the LRNVR concept which is described in Chapter 6.

It has been stated that there are numerous GARCH extensions which can improve the
fit of the variance process considerably. For example the EGARCH process as depicted
in Section 6.1.4 has some distinctive advantages over the standard GARCH model which
also seem to improve the fit volatility smiles and skews, c.f. [Schmitt96]. Nevertheless,
the advantages of closed form solutions are considerable especially as one is able to price
an option with the highest possible accuracy.
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11. Conclusions and Summary

In the preceding chapters a detailed analysis on option pricing in the context of stochastic
volatility models has been given. Concentrating on the foreign exchange market, the
general theory has been derived as well as showing examples and further specifics of this
particular market. The drawbacks and failures of the Black-Scholes-Merton framework
and also pricing more complex option strategies motivate the necessity of using stochastic
volatility models which do not wrongly assume constant volatility. Two of these concepts
are introduced, both having the unique advantage of possessing closed form solutions to
price plain vanilla options, i.e. the Heston and the Heston-Nandi model.

An interesting relationship between the models is that the Black-Scholes-Merton pric-
ing scheme is a special case of the Heston framework which in turn is a special case
of the Heston-Nandi pricing approach when limiting the time lags to zero. However,
the empirical results after calibrating the respective models are quite different which is
mainly due to the different assumption made in the respective models. This is partly
seen when the underlying price processes are compared to each other, c.f. Section 8.2.
Moreover, further dissimilarities are found after comparing the volatility surfaces which
are a direct result of the different underlying processes as well as investigating the ac-
tual path of these processes which is continuous for BSM and Heston and discrete for
Heston-Nandi. The characteristic functions of the two latter models also differ which
particularly have a large effect on the empirical analysis where it turns out that the
Heston-Nandi framework is not suitable for efficient calibration results.

The main conclusion to be made after comparing the different models as well as several
sub-models is that the Heston framework generates a volatility surface which is closest
to the market conditions and delivers the most accurate option prices, c.f. Section 8.1.2.
This approach is also applicable to calibrate the model to the market. Although this
characteristic might seem natural at first, it is shown that the Heston-Nandi approach
is not suitable for this procedure due to a considerably high computational expenditure.
Instead, this model can be fitted either by the maximum likelihood estimation or to an
implied volatility index. It turns out that only the former operation delivers satisfying
results and outperforms the original BSM option pricing scheme.

Although the Heston-Nandi model provides more precise prices for short termed options,
overall the Heston framework can be declared to be the most consistent. Especially when
taking possible improvements and extensions into consideration to correct the weaknesses
in the short term, the Heston model can be considered to be the best performing ap-
proach. Together with the fitted parameters of the respective framework, plain vanilla
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and exotic options can thus be priced under more realistic assumptions than the original
BSM pricing scheme.
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A. The Statistical Basis

This chapter reviews the statistical basis for some techniques applied in the preceeding
chapters following [Cont04], [Fahrmeir05] and [Grimmett01].

A.1. Stochastic Processes

A.1.1. Theory and Notation

A family of random variables {Xt, t ∈ ∆t = [t0, T ]}, where t denotes the time index, is
referred to as a stochastic process, or random process. The codomain of the random
variable is the set S.

More precisely (see also [Cont04]), one needs to define a probability space (Ω,F ,P),
where Ω specifies a set of scenarios and P denotes the probability measure which assigns
a probability between 0 and 1 to each event (scenario) A ∈ F :

P : F → [0, 1]

A �→ P(A) .
(A.1)

F is the σ-algebra which is a collection of the subsets, satisfying:

• F contains the empty set: ∅ ∈ F ,

• is stable under unions:

An ∈ F , (An)n≥1 disjoint ⇒
�

n≥1

An ∈ F ,

• contains the complementary of every element: ∀A ∈ F , Ac ∈ F .

Applying the notation of [Fahrmeir05], a family of random variables {Xt, t ∈ ∆t} is a
measurable function, with the codomain S, and σ-algebra S,

Xt : (Ω,F ,P) → (S,S) . (A.2)

S is in general equal to Rd, however, often applied in the one dimensional space, R.
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Definition A.1.1 (Stochastic Process) A stochastic process is the quadruplet

X = (Ω,F ,P, (Xt, t ∈ ∆t)) , (A.3)

where ∆t denotes the parameter space and S the codomain space, cf. [Fahrmeir05].

The Wiener process (Wt ≡ Xt) in Section A.1.12 is an example of a stochastic process
with continuous paths.

Definition A.1.2 (Finite-Dimensional Distributions and Distribution Families)
Let X be a stochastic process and let {t1, . . . , tn, n ∈ N} ⊂ ∆t be arbitrary. Then,

Pt1,...,tn(A1 × · · ·× An) = P (Xt1 ∈ A1, . . . , Xtn
∈ An) (A.4)

are the finite-dimensional distributions of the stochastic process with the events A1, . . . , An ∈
B, and B being the Borel σ-algebra (the σ-algebra generated by all open subsets). For
real valued random variables, one obtains the finite-dimensional distribution functions
of the stochastic process S:

Ft1,...,tn(x1, . . . , xn) = P (Xt1 ≤ x1, . . . , Xtn
≤ xn). (A.5)

The set of all finite-dimensional distributions (distribution functions) is called the family
of the finite dimensional distributions (distribution functions).

Definition A.1.3 (Consistent Distribution Families) A finite-dimensional distri-
bution family is consistent if and only if the following equations hold:

Ftk1
,...,tk1

(xk1 , . . . , xkn
= Ft1,...,tn(x1, . . . , xn), (A.6)

for every permutation k1, . . . , kn of 1, . . . , n

Ft1,...,tk
(x1, . . . , xk) = Ft1,...,tn(x1, . . . , xk,∞, . . . ,∞), (A.7)

∀1 ≤ k < n and x1, . . . , xk ∈ R

Definition A.1.4 (Path, Trajectory, Realization) For every (fixed) ω ∈ Ω, the
function

X(ω) : T → S

t �→ Xt(ω)
(A.8)

is called path, trajectory or realization of a stochastic process X.

109



In many cases the probability space (Ω,F ,P) cannot be explicitly specified, e.g. when
applying stock prices. The Kolmogorov existence theorem shows it is sufficient to estab-
lish a finite-dimensional distribution in a consistent way.

Definition A.1.5 (Kolmogorov Existence theorem) Let {Ft1,...,tn}, or {Pt1,...,tn} be
a consistent system of finite-dimensional distribution (functions). Then a probability
space (Ω,F ,P) and a stochastic process

X = {Ω,F ,P, (Xt, t ∈ ∆t)} (A.9)

exist, with Ft1,...,tn being a system of finite-dimensional distributions, i.e.,

Ft1,...,tn(x1, . . . , xn) = P (Xt1 ≤ x1, . . . , Xtn
≤ xn). (A.10)

Note, the stochastic process is not uniquely specified by the existence theorem. However,
it ensures the existence of a probability space (Ω,F ,P) to a given joint distribution
F (x1, . . . , xp), with

F (x1, . . . , xp) = P (Xt1 ≤ x1, . . . , Xtp
≤ xp). (A.11)

Because the Kolmogorov existence theorem only ensures a stochastic process St which
allows discontinuous paths, a version with continuous paths has to be constructed when
applying a Wiener process Wt [Fahrmeir05].

Definition A.1.6 (Cadlag function) A function f : ∆t → R is said to be cadlag
(compare [Cont04]) if it is right-continuous with left limits: for each t ∈ ∆t the limits

f(t−) = lim
s�t

f(s) f(t+) = lim
s�t

f(s) (A.12)

exist and f(t) = f(t+).

A cadlag function, therefore, does not have to be continuous at every point of its domain,
allowing a countable amount of certain discontinuities of the form:

δf(t) = f(t)− f(t−). (A.13)

The left-continuous analogon is referred to as caglag.

To account for the time dependent information given to a certain time t > 0, the
concept of filtration is applied, which can be interpreted as a sequence of non-declining
information sets in the notation of σ-algebras, Ft0 ⊆, . . . ,⊆ Ft ⊆, . . . ,⊆ FT ⊆ F .

Definition A.1.7 (Filtration) A filtration or information flow on (Ω,F ,P) is an in-
creasing family of σ-algebras (Ft)t∈∆t : ∀t ≥ s ≥ 0, Fs ⊆ Ft ⊆ F .
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A stochastic process is referred to as being adapted or non-anticipating if and only if the
value Xt is revealed at time t by the information Ft. Therefore, it cannot “see into the
future”.

Definition A.1.8 (Non-Anticipating Process) A stochastic process (Xt)t∈∆t is said
to be non-anticipating with respect to the information structure (Ft)t∈∆t or Ft-adapted
if, for each t ∈ ∆t, the value of Xt is revealed at time t: the random variable Xt is
Ft-measurable.

Definition A.1.9 (Previsible Process) A process (Xt)t∈∆t is called previsible if, for
each t ∈ ∆t, Xt is Ft−1-measurable.

The information is said to be the natural history or its history if it only depends on the
past values of the stochastic process X.

Definition A.1.10 (History of a Process) The history of a process X is the filtra-
tion (FX

t
)t∈∆t, where (FX

t
) is the σ-algebra generated by the past values of the process,

completed by the null sets N :

FX

t
= σ (Xs, s ∈ [0, t]) ∨N (A.14)

The random time (positive random variable) at which an event has taken place is called
the stopping time τ and only depends on its history Ft (and not its future).

{τ ≤ t} ∈ Ft (A.15)

Definition A.1.11 (Martingale) A cadlag process (Xt)t∈∆t is said to be a martingale
if X is nonanticipating (adapted to Ft), E[|Xt|] is finite for any t ∈ ∆t and

E [Xs|Ft] = Xt, ∀s > t. (A.16)

Theorem A.1.1 (Sampling Theorem) If (Mt)t∈∆t is a martingale and T1, T2 are
nonanticipating random times (stopping times) with T ≥ T2 ≥ T1 ≥ 0 a.s. then

E [MT2 |FT1 ] = MT1 . (A.17)
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A.1.2. Examples of Stochastic Processes

Definition A.1.12 (Wiener Process) A stochastic process W = {Wt, t ∈ R+}, tak-
ing values in R, is called a Wiener process, if [Fahrmeir05]:

• increments are normally distributed and stationary:

Wt+s −Ws ∼ Wt −W0 ∼ N(0, σ2t), for all s, t ≥ 0,

• for all 0 ≤ t1 < t2 < ... < tn, n ≥ 3 the increments are independent:

Wt2 −Wt1 , ...,Wtn
−Wtn−1 ,

• Wt0 = 0,

• paths are continuous.

Note, that the initial condition Wt0 = 0 can be extended by W ∗
t
= Wt + c, with W ∗

t0
.

Further properties of the Wiener process and normally distributed variables:

• The process W̃ is called a standard Wiener process if σ2 = 1 and Wt0 = 0, if
the process W is non-standard, then W̃t = (Wt − Wt0)/σ is standard normally
distributed, c.f. [Grimmett01].

• A constant c multiplied to a standard normally distributed random variable Zt ∼
N(0, 1) delivers: Zt · c ∼ N(0, c2).

• When dealing with transformations of the variance, such as σ2dt, one also obtains:
Zt · σ

√
dt ∼ N(0, σ2dt).

Definition A.1.13 (Itô Process) A generalized Wiener process using an additional
drift µ(St, t) and a multiplier σ(St, t) on the standard normal Wiener process is referred
to as an Itô Process (see, [Hull02]). Both variables are dependant on time t and the
underlying variable, St

1. When assuming the drift rate and the volatility are constant,
µ(St, t) := µSt and σ(St, t) := σSt, then equation (A.19) also holds,

dSt = µ(St, t)dt+ σ(St, t) dW̃t����
=Zt

√
dt

(A.18)

dSt

!
= µStdt+ σStdW̃t, (A.19)

1Here, the stock price St and the time t are the depending variables. In general, the Ito process can
be applied by any variables x and y.
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and when dealing with time periods of arbitrary length δt = t2−t1, ∀ t2 ≥ t1 ≥ 0∧t1, t2 ∈
R+

0 , one obtains,

δSt = µ(St, t)δt+ σ(St, t) δW̃t����
=Zt

√
δt

. (A.20)

More precisely (compare [Grimmett01]), the general notation of the Ito process is given
by:

dSt =

�
t

0

µ(Ss, s)ds+

�
t

0

σ(Ss, s)dW̃s, (A.21)

Definition A.1.14 (Ornstein-Uhlenbeck (OU) Process) The Ornstein-Uhlenbeck
(OU) process has the following form, c.f. [Cont04],

dSt = −βStdt+ σ2dW̃t. (A.22)

Definition A.1.15 (Cox-Ingersoll-Ross (CIR) Process) The solution of the fol-
lowing stochastic differential equation is referred to as the Cox-Ingersoll-Ross (CIR)
or square root process:

Stj
− Sti

= λ

�
tj

ti

(η − Ss) ds+ θ

�
tj

ti

�
SsdWs , (A.23)

for all ti > tj ≥ 0 and λ, η, θ > 0.

The CIR process is continuous and positive. The latter can easily be seen as when the
value of the process St becomes small (close to 0), then 2λη > θ. Therefore, the drift
rate λ (η − St) is larger than the amplitude of the diffusion term. The instantaneous
version of the CIR process is

dSt = λ (η − Ss) ds+ θ
�
SsdWs . (A.24)

It can easily be seen that the OU process and the CIR process are special cases of the
Itô process with the parameters being µ(St, t) = −βSt, σ(St, t) = σ2 and µ(St, t) =
λ (η − Ss), σ(St, t) = θ

√
Ss, respectively.

A.2. Change of the Measure & Numeraire

A.2.1. Measure

A basic introduction into measure theory is given by [Wilmott07a].
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Theorem A.2.1 (Girsanov’s Theorem) Let Wt be a Wiener process with measure P
and sample space Ω. If ut is a previsible process satisfying the constraint EP

�
e

1
2

�
T

0 u
2
t

�
<

∞ then there exists an equivalent measure Q on Ω such that

W ∗
t
= Wt +

�
t

0

usds (A.25)

is a Wiener process.

Another way of writing the above is in differential form, compare [Wilmott07a],

dW ∗
t
= dWt + utdt . (A.26)

A.2.2. A Numéraire

In general, a numéraire is a standard by which values are measured [Wikipediaerc]. The
most present numéraires are currencies which are used to valuate other goods relative to
its monetary worth. However, many other assets, e.g. gold, can be used for this purpose
which is a key tool in finance, c.f. [Henry-Labordère08], p. 34.

Definition A.2.1 (Numéraire) A numéraire is any positive continuous asset.

A.2.3. Change of the Numéraire

The technique of changing the numéraire is a key tool in finance which simplifies calcu-
lations to a great extent, as one can constrain an asset to be the instantaneous interest
rate rt under a risk-neutral measure Q, c.f. [Henry-Labordère08], p 34. Following

[Wikipediaerc], let pt0,t(ri) = exp
��

t

t0
rtdt

�
be the price of one monetary unit which

is invested at time t0 and compounded in the money market to time t ∈ [t0, T ]. After
applying the risk-neutral measure Q, all money market priced assets St are martingales,
so

St

pt0,t
= EQ

�
ST

pt0,T

���Ft

�
∀t ≤ T. (A.27)

Supposing that mt0,t is another strictly positive traded asset (and hence a martingale
when priced in terms of the money market), then one can define a new probability
measure Qm

dQm

dQ =
pt0,t0mt0,T

pt0,Tmt0,t0

. (A.28)
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After applying the Bayes’ rule, one obtains a martingale St priced in terms of the new
numéraire mt0,t

EQN

�
ST

mt0,T

���Ft

�
= EQ

�
ST

mt0,T

pt0,t0mt0,T

pt0,Tmt0,t0

���Ft

��
EQ

�
pt0,t0mt0,T

pt0,Tmt0,t0

���Ft

�

=
pt0,t
mt0,t

EQ

�
ST

pt0,T

���Ft

�
=

pt0,t
mt0,t

St

pt0,t

=
St

mt0,t

. (A.29)

A.3. Characteristic Functions and Fourier
Transformation

The Characteristic function is the Fourier transform analogon to the distribution of a ran-
dom variable. As stated in [Cont04], many probabilistic properties of random variables
can be obtained by computing the analytical accessible properties of the corresponding
characteristic functions, which simplifies many calculations. Moreover, some properties
can only be obtained using characteristic functions and in some cases, the distribution
of a random variable does not exist, whereas the characteristic function always exists
(compare [Held06]).

Definition A.3.1 (Characteristic function) The characteristic function of the Rd-
valued random variable X is the function ϕX : Rd → C defined by:

ϕX(u) = E [exp (iuX)] =

�

Rd

eiuxdµF ∀u ∈ Rd, (A.30)

where i =
√
−1, and µF denotes the probability measure on the Borel sets of R.

The second term in the above equation,
�
Rd eiuxdµF , reveals the relatedness to Fourier

transforms. Further properties of the characteristic function ϕX are:

• ϕX(0) = 1, |ϕ(u)| ≤ 1 ∀u,

• ϕX is uniformly continuous in R,

• ϕX is non-negative definite, which is to say that
�

j,k
φ (uj − uk) zj z̄k ≥ 0 for all

t1, . . . , tn ∈ R, z1, . . . , zn ∈ C, and z̄k denotes the complex conjugate of zk,

• applying complex analysis, one obtains: ϕX(u) = E [exp (iuX)] = E [cos (uX)] +
iE [sin (uX)],

• two random variables the with same characteristic function are identically dis-
tributed.
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• given a sequence of independent random variables (Xi, i = 1, . . . , n), then the
characteristic function of Sn = X1 + · · · + Xn is the product of the individual
random variables’ characteristic functions,

ϕSn
(u) =

n�

i=1

ϕXi
(u) . (A.31)

The nth moment of a random variable X on R, mn(X) = E [Xn], the nth absolute
moments, mn(|X|) = E [|X|n] and the n th centered moment, µn(X) = E [(X − E[X])n],
can be calculated by taking the derivatives at 0 of the underlying characteristic function.
The moments do not have to exist, depending on how fast the distribution µF decays at
infinity.

Theorem A.3.1 (Moments of Character Function)

• If E [|X|n] < ∞ then ϕX has n continuous derivatives at u = 0 and

mk ≡ E
�
Xk

�
=

1

ik
∂kϕX

∂uk
(0) , ∀k = 1, . . . , n . (A.32)

• If ϕX has 2n continuous derivatives at u = 0 then E [|X|2n] < ∞ and

mk ≡ E
�
Xk

�
=

1

ik
∂kϕX

∂uk
(0) , ∀k = 1, . . . , 2n . (A.33)

• X possesses finite moments of all orders if u �→ ϕX(u) is C∞ at u = 0. Then the
moments of X are related to the derivatives of ϕX by:

mn ≡ E [Xn] =
1

in
∂nϕX

∂un
(0). (A.34)

Moments of order n can be often computed by applying moment generating functions
which, however, are not always defined.

Definition A.3.2 (Moment Generating Function) The moment generating func-
tion of Rd-valued random variable X is the function MX defined by

MX(u) = E [exp(uX)] ∀u ∈ Rd. (A.35)

If the moment generating function MX is well defined, the relateness to the underlying
characteristic function ϕX is given by:

MX(u) = ϕX(−iu) . (A.36)
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If MX(u) is finite on an open interval which contains zero, then it can be shown that:

mn =
∂nMX

∂un
(0) . (A.37)

The following theorems allow one to obtain density and distribution functions from the
characteristic functions. The first only refers to continuous random variables.

Theorem A.3.2 If X is continuous with density function f and characteristic function
ϕ then

f(x) =
1

2π

� ∞

−∞
eiuxϕ(u)du (A.38)

at every point x at which f is differentiable.

A sufficient, but not necessary condition (cf. [Grimmett01]) that a characteristic function
ϕ be the characteristic function of a continuous variable is that

f(x) =

� ∞

−∞
|ϕ(u)|du < ∞ . (A.39)

The general case, i.e. X is not continuous, can be seen below, however, it is more
complex.

Theorem A.3.3 (Inversion Theorem) Let X have distribution function F and char-
acteristic function ϕ. Define F̄ : R → [0, 1] by

F̄ (x) =
1

2

�
F (x) + lim

y�x

F (y)

�
. (A.40)

Then

F̄ (b)− F̄ (a) = lim
N→∞

�
N

−N

e−iau − e−ibu

2πiu
ϕ(u)du . (A.41)

In the case of a continuous distribution one has F̄ (x) = F (x).

Theorem A.3.4 Random variables X and Y have the same characteristic function if
and only if they have the same distribution function.

Theorem A.3.5 (Continuity Theorem) Suppose that F1, F2, . . . is a sequence of dis-
tribution functions with corresponding characteristic functions ϕ1,ϕ2, . . .

• If Fn → F for some distribution function F with characteristic function ϕ, then
ϕn(u) → ϕ(u) for all t.

• Conversely, if ϕ(u) = limn→∞ ϕn(u) exists and is continuous at u = 0, then ϕ is
the characteristic function of some distribution function F , and Fn → F .
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A.4. Heston

A.4.1. Boundary Conditions of the Heston Model

It can easily be seen that a European call option maturing at T with a strike price K
has the subsequent boundary conditions, c.f. [Heston93] and [Desmettre07],

V (St,v,T ) = max (0, St −K) , (A.42a)

V (0,v,t) = 0, (A.42b)

∂V (∞,v,t)

∂St

= 1, (A.42c)

rSt

∂V (St,0,t)

∂St

+ κv̄
V (St,0,t)

∂v
− rV (St,0,t) + V (St,0,t) = 0, (A.42d)

V (St,∞,t) = St. (A.42e)

A.4.2. Deriving the Call Equation by Changing the Numéraire

Following [Heston93] and [Desmettre07], one can derive equation (5.20) by changing
the numéraire of the subsequent formula. Note that K is a constant and pT,T = 1 is
the δt = 0 discount factor as seen in Appendix A.2.3. Assuming that

�
St

�
pT,t

�
t≥0

is a

Qs-martingale and that
�
pT,t

�
pT,t

�
t≥0

is a Qp-martingale, one obtains

Ct0,T (ST ,v) = pT,t · EQ

�
max (ST −K, 0)

pT,T

�

= pT,t · EQ

�
ST

pT,T
1{ST>K}

�
− pT,tK · EQ

�
1

pT,T
1{ST>K}

�

= St · EQs

�
ST

ST

1{ST>K}

�
− pT,tK · EQp

�
1

pT,T
1{ST>K}

�

= St · EQs

�
ST

ST

1{ST>K}

�
− pT,tK · EQp

�
1

pT,T
1{ST>K}

�

= St · EQs

�
1{ST>K}

�
− pT,tK · EQp

�
1{ST>K}

�

= St · P1 (ST > K)− pT,tK · P0 (ST > K) (A.43)

The preceding is a general result which can be used for any equity price model (c.f.
[Desmettre07]), but also, to derive the BSM-PDE which is shown e.g. in [Wilmott07a]
in a similar form.
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A.4.3. Deriving the Pseudo-Probability PDE

To be able to derive equation (5.21) from (5.14), the partial derivatives need to be
calculated. As the variables x = ln(Ft,T/K) = ln(Ster(T−t)/K) and τ = T − t in PDE
(5.21) are functions of the original variables St and t in (5.14), the subsequent relations
are necessary

∂Vop

∂t
=

∂Vop

∂τ
· ∂τ
∂t

=
∂Vop

∂τ
· (−1)

∂Vop

∂St

=
∂Vop

∂x
· ∂x

∂St

=
∂Vop

∂x
· 1

St

A.5. GARCH

A.5.1. Locally Risk-Neutral Valuation Relationship

Compare [Duan95]:

Definition A.5.1 (Locally Risk-Neutral Valuation Relationship (LRNVR)) A
pricing measure Q is said to satisfy the locally risk-neutral valuation relationship (LRNVR)
if measure Q is mutually absolutely continuous with respect to measure P, with lognormal
distribution of St

St−1
|Ft−1 (under Q),

EQ

�
St

St−1

����Ft−1

�
= er, (A.44)

and

VarQ

�
ln

�
St

St−1

�����Ft−1

�
= VarP

�
ln

�
St

St−1

�����Ft−1

�
(A.45)

almost surely with respect to measure P.

A.5.2. Derivation of the Correlation

Corr[vt+1, ln(St)|Ft−1] =
Cov[vt+1, ln(St)|Ft−1]�

Var[vt+1|Ft−1]Var[ln(St)|Ft−1]
(A.46)

with the Cov[vt+1, ln(St)|Ft−1] being

Cov[vt+1, ln(St)|Ft−1] = E[vt+1 · ln(ST )|Ft−1]− E[δvt+1|Ft−1] · E[ln(ST )|Ft−1] (A.47)
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As can be seen in Section 6.4 the expected value is

E[vt+1|Ft−1] = α̃0 + α̃1



E
�
Z2

t
|Ft−1

�
� �� �

=Var[Zt|Ft−1]=1

− 2γ̃1
√
vt · E [Zt|Ft−1]� �� �

=0

+γ̃2
1vt





= α̃0 + α̃1

�
1 + γ̃2

1vt
�

(A.48)

and

Var[vt+1|Ft−1] = α̃2
1




Var

�
Z2

t
|Ft−1

�
� �� �

2

=2, with Z
2
t
∼χ

2(k=1)

− 4γ̃2
1vt Var [Zt|Ft−1]� �� �

2

=1





= 2α̃2
1

�
1− 2γ̃2

1vt
�

(A.49)

Now,

E[ln(St)|Ft−1] = ln(St−1) + r + λvt +
√
vt E [Zt|Ft−1]� �� �

=0

(A.50)

and

Var[ln(St)|Ft−1] = (
√
vt)

2 Var[Zt|Ft−1]� �� �
=1

= vt (A.51)

and also,

E[vt+1 · ln(St)|Ft−1] = E
� �

α̃0 + α̃1

�
Z2

t
− 2γ̃1

√
vtZt + γ̃2

1vt
��

·
(ln(St−1) + r + λvt +

√
vtZt) |Ft−1

�

= α̃0 (ln(St−1) + r + λvt +
√
vtE[Zt|Ft−1]) +

α̃1

�
(ln(St−1) + r + λvt) E[Z

2
t
|Ft−1] −

2γ̃1
√
vt (ln(St−1) + r + λvt) E[Zt|Ft−1]+

γ̃2
1vt (ln(St−1) + r + λvt)

�
+ α̃1

�
E[Z3

t
|Ft−1]

√
vt −

2γ̃1vtE[Z
2
t
|Ft−1] + γ̃2

1vt
√
vtE[Zt|Ft−1]

�

3

= α̃0 (ln(St−1 + r + λvt)+

α̃1 (ln(St−1) + r + λvt)
�
1 + γ̃2

1vt
�
+ α̃1 (−2γ̃1vt) (A.52)

2As Zt is standard normally distributed, Zt ∼ N(0, 1), the square of Zt is χ2-distributed, Z2
t ∼

χ2(k = 1), with the expected value being E
�
Z2
t

�
= k = 1 and the variance Var

�
Z2
t

�
= 2k = 2. Hence,

the variance of Z2
t δt is

Var
�
Z2
t δt

�
= (δt)2 Var

�
Z2
t

�
= 2 (δt)2 .
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Hence,

Cov[vt+1, ln(St)|Ft−1] = α̃0 (ln(St−1) + r + λvt)+

α̃1

�
ln(St−1) + r + λvt

� �
1 + γ̃2

1vt
�
+ α̃1 (−2γ̃1vt)−�

α̃0 + α̃1

�
1 + γ̃2

1vt
�� �

(ln(St−1) + r + λvt)
�

= α̃1 (−2γ̃1vt) (A.53)

and finally,

Corr[vt+1, ln(St)|Ft−1] =
α̃1 (−2γ̃1vt)�

vt
�

2α̃2
1 (1− 2γ̃2

1vt)
=

−γ̃1
√
2vt�

1− 2γ̃2
1vt

=
−sign(γ̃1)

�
2γ̃2

1vt�
1 + 2γ̃2

1vt
. (A.54)

3The third central moment of the normal distribution is 0
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B. Volatility Surfaces

All volatility surfaces and deviation plots of the examined models are presented in this
unit with two exceptions. One is the BSM model where only the deviation plots are
given as the volatility surfaces in this framework are plains which do not differ much in
value, c.f. Section 4.3 and 7.2.1. The other is the calibrated Heston-Nandi approach as
it could not be implemented properly, c.f. Section 7.2.5.

B.1. Market Volatility Surfaces

Market Volatility Surface: EUR-USD, t0 = 23/09/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Surface: EUR-USD, t0 = 07/10/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Market Volatility Surface: EUR-USD, t0 = 21/10/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Surface: EUR-USD, t0 = 04/11/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Market Volatility Surface: EUR-USD, t0 = 18/11/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Surface: EUR-USD, t0 = 02/12/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Market Volatility Surface: EUR-USD, t0 = 16/12/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Surface: EUR-USD, t0 = 30/12/2009

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Market Volatility Surface: EUR-USD, t0 = 06/01/2010

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Market Volatility Surface: EUR-USD, t0 = 20/01/2010

Implied volatility σimpl denoted in %, depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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B.2. Deviations of the Calibrated BSM Call Prices to
the Market Call Prices

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 23/09/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 07/10/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmdel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of BSM to Market Call Prices: EUR-USD, t0 = 21/10/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 04/11/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

129



Deviation of BSM to Market Call Prices: EUR-USD, t0 = 18/11/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 02/12/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of BSM to Market Call Prices: EUR-USD, t0 = 16/12/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 30/12/2009

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of BSM to Market Call Prices: EUR-USD, t0 = 06/01/2010

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of BSM to Market Call Prices: EUR-USD, t0 = 20/01/2010

Deviation of BSM call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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B.3. Grafical Results of the Calibrated Heston Model

B.3.1. Calibrated Heston Volatility Surfaces

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 23/09/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 07/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 21/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 04/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 18/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 02/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 16/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 30/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 06/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Volatility Surface of Calibrated Heston Model for EUR-USD, t0 = 20/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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B.3.2. Deviations of the Heston Call Prices

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 23/09/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 07/10/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmdel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 21/10/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 04/11/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 18/11/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 02/12/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 16/12/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 30/12/2009

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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Deviation of Heston to Market Call Prices: EUR-USD, t0 = 06/01/2010

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.

Deviation of Heston to Market Call Prices: EUR-USD, t0 = 20/01/2010

Deviation of Heston call prices to the market call prices relative to the stock price in
percent, i.e. Cmodel−Cmarket

St

[%], depending on the driftless delta ∆dl,t in % of the OTM
option and maturity τ in years, c.f. Section 4.2.2.
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B.4. Grafical Results of the Heston-Nandi Model with
ML Estimated Parameters

B.4.1. Heston-Nandi Volatility Surfaces with ML Estimated
Parameters

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
23/09/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
07/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
21/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
04/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
18/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
02/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
16/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
30/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

146



Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
06/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with ML Estimated Parameters for EUR-USD, t0 =
20/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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B.4.2. Deviations of the Heston-Nandi Call Prices with ML
Estimated Parameters

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 23/09/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 07/10/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmdel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.
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Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 21/10/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 04/11/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.
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Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 18/11/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 02/12/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.
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Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 16/12/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 30/12/2009

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.
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Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 06/01/2010

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters to Market Call
Prices: EUR-USD, t0 = 20/01/2010

Deviation of Heston-Nandi Call Prices with ML Estimated Parameters call prices to the
market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%], depending
on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years, c.f. Section
4.2.2.
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B.5. Grafical Results of the Heston-Nandi Model with
Calibrated Volatility Index Parameters

B.5.1. Heston-Nandi Volatility Surfaces with Calibrated Volatility
Index Parameters

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 23/09/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 07/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 21/10/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 04/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 18/11/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 02/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 16/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 30/12/2009

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 06/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.

Heston-Nandi Volatility Surfaces with Calibrated Volatility Index Parameters for EUR-
USD, t0 = 20/01/2010

Implied volatility σimpl denoted in % depending on the driftless delta ∆dl,t in % of the
OTM option and maturity τ in years, c.f. Section 4.2.2.
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B.5.2. Deviations of the Heston-Nandi Call Prices with Calibrated
Volatility Index Parameters

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 23/09/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 07/10/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmdel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.
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Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 21/10/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 04/11/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.
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Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 18/11/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 02/12/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.
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Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 16/12/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 30/12/2009

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.
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Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 06/01/2010

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters to
Market Call Prices: EUR-USD, t0 = 20/01/2010

Deviation of Heston-Nandi Call Prices with Calibrated Volatility Index Parameters call
prices to the market call prices relative to the stock price in percent, i.e. Cmodel−Cmarket

St

[%],
depending on the driftless delta ∆dl,t in % of the OTM option and maturity τ in years,
c.f. Section 4.2.2.
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