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Abstract

The proportional odds model (POM) is the most widely used model when the response has ordered categories. In
the case of high-dimensional predictor structure the common maximum likelihood approach typically fails when
all predictors are included. A boosting technique pomBoost is proposed that fits the model by implicitly selecting
the influential predictors. The approach distinguishes between metric and categorical predictors. In the case of
categorical predictors, where each predictor relates to a set of parameters, the objective is to select simultaneously all
the associated parameters. In addition the approach distinguishes between nominal and ordinal predictors. In the case
of ordinal predictors, the proposed technique uses the ordering of the ordinal predictors by penalizing the difference
between the parameters of adjacent categories. The technique has also a provision to consider some mandatory
predictors (if any) which must be part of the final sparse model. The performance of the proposed boosting algorithm
is evaluated in a simulation study and applications with respect to mean squared error and prediction error. Hit rates
and false alarm rates are used to judge the performance of pomBoost for selection of the relevant predictors.

Key words: Logistic regression, Proportional odds model, Variable selection, Likelihood-based boosting,

Penalization, Hit rate, False alarm rate.

1. Introduction

Various regression models for ordered responses categories have been proposed, see for example McCullagh (1980)
and Agresti (1999), Ananth and Kleinbaum (1997). The most widely used model is the proportional odds model
(POM), also known as cumulative logit model. Although the parameterization is sparser than in the multinomial logit
model, with increasing number of covariates the usual maximum likelihood approach may fail. However, in many
applications, the number of covariates is much larger than the sample size. In addition the covariates may be categor-

ical with large number of categories. If the number of parameters to be estimated is larger than the sample size, one
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possible alternative to the usual likelihood approach is penalized likelihood. Ridge regression is one of the oldest pe-
nalization methods considered by Zahid (2011) to address the problems in likelihood estimation for ordinal response
models with a special focus on proportional odds models. With high dimensional settings ridge regression solves
the problem of non-existence of estimates by keeping all the predictors in the model. But it is does not reduce the
dimension by identifying the relevant/significant predictors to get a sparse model with an enhanced predictability. For
unordered response categories several methods have been proposed. For example, Friedman et al. (2010) used the L1
penalty for parameter selection in the multinomial logit models, Zahid and Tutz (2010) introduced a variable selection
procedure based on likelihood-based boosting which makes variable selection rather than parameter selection as done
by Friedman et al. (2010). But for ordered response categories, methods for variable selection seem not to be available.
In the following a componentwise boosting technique called pomBoost is proposed for the fitting of the proportional
odds models with implicit selection of the relevant predictors. Boosting was initially introduced in the machine learn-
ing community to improve classification (see Schapire (1990) and Freund and Schapire (1996)). Friedman et al. (2000)
showed that boosting can be seen as an approximation to additive modeling with appropriate likelihood function. In
the context of linear models, instead of using the LogitBoost cost function, Bithimann and Yu (2003) used the L2 loss
function. A relation between boosting and Lasso was developed by Biihlmann (2006). Bithlmann and Hothorn (2007)
provided an overview of boosting. Tutz and Binder (2006) proposed a general likelihood-based boosting procedure

for variable selection in generalized additive models (GAM).

In this paper we are using the likelihood-based boosting with one step of Fisher scoring. In many application areas,
sometimes the experimenter is interested to see the effect of some predictor(s), and wants them to be a necessary
part of the final sparse model. The pomBoost technique has the provision to declare some predictor(s) as mandatory
which will always be the part of model during fitting/selection process. One advantage of the proposed method is that
categorical predictors are treated properly by regularization. Our aim is to select predictors not parameters. Therefore
a predictor is selected (or omitted) with all of its categories. Our technique also performs the variable selection
instead of parameter selection. Also in the case of ordinal predictors the order of the categories is taken into account
by regularization. For regularization, the L2 penalty is used which allows categorical predictors with a large number

of categories.

The predictor space for proportional odds models may contain different types of predictors e.g., metric, binary, nom-
inal and/or ordinal predictors. Section 2 explains how the regularization is implemented for these different types of
predictors. The algorithm pomBoost for the selection of relevant predictors in the proportional odds model is dis-
cussed in Section 3. The effectiveness of algorithm is evaluated with respect to the mean squared error (MSE) and
selection of relevant predictors using a simulation study in Section 4. In Section 5, the boosting technique is used on

some real data sets. Some concluding comments are given in Section 6.



2. Design Space and Regularization for Proportional Odds Models

Let the response variable Y have k ordered categories such that ¥ € {1, ..., k}. The ordered response ¥ may be seen
as a coarser version of an unobservable latent variable Zas Y = r & 1vyp,-1 < Z < yor forr = 1,...,k, where
—00 = Y00 < Yo1 < ... < Yor = oo define the category boundaries on the unobservable latent continuum. Let ¢,(x)
denote the cumulative probability for the occurrence of response categories up to and including the rth category for a

covariate vector X. The proportional odds models has the form

T
6,(x) = P(Y < rlx) = — P00 ZX'Y) r=1,....q=k—1, (1)

1+ exp(yor — x"y)

or equivalently
$r(x)
log| — 22
L ey

The proportional odds model contains the so-called global parameter y, which does not vary across categories, and

]zyor—xr'y r=1, k-1 2)

the intercepts {yo,} while vary across categories and must satisfy the condition yy; < ... < v, in order to obtain
positive probabilities. For the estimation purpose, with k ordered response categories and p predictor parameters,
the model can be written as log[%] = X;8 with g x p* matrix X; = [Tyxg g1 ® XiT] and g7 = (yg,yT) =
(Y015 --+»Y0¢>Y1,--->¥p) is a vector of length p* = p + g. The complete design matrix of order ng X p* is given as

X" = [Xj,...,X,]. For further details see McCullagh and Nelder (1989) and Fahrmeir and Tutz (2001).

2.1. Regularization

In the boosting algorithm discussed in the next section, each of the predictors (with all of its corresponding parameters)
is considered individually for its possible inclusion in the model at a particular boosting iteration. To obtain weak
learner in a boosting iteration L2 regularization is used. The intercept terms y and mandatory predictors (if any) are
considered a necessary part of proportional odds model in each boosting iteration. For simplicity in this section we
assume that we have a model with only one predictor which has K parameters associated with it. It means that if
the predictor is metric or binary then K = 1, otherwise we have a categorical predictor with K + 1 categories. The
pomBoost algorithm discussed in Section 3 updates the regularized estimates of the parameters associated with one
variable at a time on the basis of one step Fisher scoring. The regularization using the L2 penalty is implemented
differently according to the nature of predictor. Assume that K dummies for the K + 1 categories labeled 1,..., K + 1

are associated to the only predictor in the model. The penalized log-likelihood with ridge penalty is given as
b =Y ko - Luen 3
p¥) = A i) =570

where /;(y) is the log-likelihood contribution of the ith observation and A is a tuning parameter. If the predictor is

nominal then we use the penalty term
K+1

J0 =7 =7 Tk v, @)
j=2
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in order to obtain regularized estimates. The matrix Ixxx is an identity matrix which serves for the penalization of
K parameter estimates. But if the predictor is ordinal, then parameter estimates of adjacent categories are penalized.
Penalizing such differences leads to avoid large differences among the parameter estimates of adjacent categories and
provides a smoother coefficient vector. With penalization, the order of the ordinal predictors is not so much focused
in the literature. Gertheiss and Tutz (2009) used these differences for penalization rather than using the parameter
estimates themselves. In the case of ordinal predictor, the first category is treated as reference category such that

v1 = 0 and the penalty term J(y) is given by

K+1
Iy =) 0i-v =y Qy, )
=2
with Q = UTU, for a K x K matrix U given by
1 0 0

The use of square matrix Q in (5) for penalization instead of the identity matrix as in (4) causes the penalization of
differences between the parameter estimates of adjacent categories of ordinal predictor. In the next section for having
weak learners in our boosting algorithm, two types of penalty terms J(y) will be used. If the predictor is ordinal then

the penalty term given in (5) is used otherwise the penalty term given in (4) will be our choice.

3. Boosting for Variable Selection and Model Fitting

The likelihood-based componentwise boosting algorithm pomBoost proposed in this section uses one step Fisher scor-
ing with ridge penalty in order to obtain a weak learner. The intercept terms {yy,}, as well as predictor variables that
are declared as obligatory will not be penalized. Along with intercepts and mandatory predictors the predictor which
improves the fit maximally will be used for updating within a boosting iteration. In order to obtain a weak learner
regularization is applied to the candidate predictors. All the predictors are divided into two groups: obligatory pre-
dictors (along with the intercept terms) and candidate predictors which are possible candidates to be a part of the final
sparse model. Let there are g candidate predictors as Vi, ..., V, and let K; denotes the number of parameters/dummies
associated with the candidate predictor V;, j = 1,...,g. So the predictor variable indices V = {1,..., p} are parti-
tioned into two mutually exclusive sets as V = V, UV, U... U V,, where V, represents the obligatory predictors (each
predictor may have one or more parameters associated with it) and Vi, ..., V, are g candidate predictors. The total

predictor space which is divided into two groups as V = Vy U V, with V. = V; U... UV, has the parameter vector
4



B" = B; BO.

For the set of obligatory predictors, log-likelihood function is given as I(8,) = X7, i(B,) with score function
s@B,) = 21, XZL.D,-(ﬂ(,)Zi‘l(ﬁ,,)[yi — h()] = XZD(ﬂ,,)Z‘I(B,,)[y — h(p)]. For the set of candidate predictors, let the
predictor V; is considered for refitting in a boosting iteration, and let y», ...,y are the global parameters associated

with K dummies of the predictor V;. The penalized log-likelihood is then given as
b =Y by - 2am = 3t - 2yTey
! i=1 l 2 i=1 l 2

The penalty matrix P assumes the value Qg xx; if the predictor variable V; is ordinal otherwise it is replaced by Tk k-

The score function for this penalized log-likelihood is given as

50 = XD @)ly: - hn)] - APy
i=1

XID@)Z ™ (y)ly - h(p)] - Py,

where 7 is a vector of length K and XJT X1, ..., Xju] with Xj; = [101 ® XJTI.]. The matrix D;(y) = ‘”?(T") is the
derivative of h(n) evaluated at ; = Xy, Z;(y) = cov(y;) is the covariance matrix of ith observation of y given
parameter vector y and W;(y) = D,-(y)ZI.‘l('y)DiT('y). For the full design matrix, in matrix notation y and A(n) are
given by y' = (yI,...,yD) and h(p)" = (h@)T, ..., h(n,)") respectively. The matrices have block diagonal form
Z(y) = diag(Z; ' (y)), D(y) = diag(D;(y)) and W(y) = diag(W;(y)).

The pomBoost algorithm can be described as follows:

Algorithm: pomBoost

Step 1: (Initialization)
Fit the intercept model py = h(1y) by maximizing the likelihood function to obtain f}y and A(#)).
Step 2: Boosting iterations
Form=1,2,...
Step 2A: For obligatory/mandatory predictors

(i) Fit the model g = h(f,_1 + X, BE'), where #),,_; is treated as an offset and X! = [X,1,...,X,,] for X,; =

T

Mgxg» 1gx1 ® X,] is the design matrix based on the parameters/columns corresponding to V. Bg Ui computed

1

with one-step Fisher scoring as

By = XgW(@u-1)Xo) " X§ Widtu) D™ (y = ).

(ii) setBy = A1 + X, B!
(iii) set Bogm) = Boom-1) + B!

Step 2B: For candidate predictors



(i) For j =1,...,g, fit the model 4 = h(#},, + X 'yfl), with offset #,, and X; is the design matrix corresponding to

V. With one-step Fisher scoring by maximizing penalized log-likelihood, ¥ is computed as
Y = X[W@)X; +v Py XT WR,) D™ (y - ),

where v = /df;.A, with ridge penalty A and P = Qg «k,, if V; is ordinal otherwise P = I k.

(ii) From the candidate predictors Vi, ..., V,, select the predictor say Vi.s, which improves the fit maximally and
set
Fl _ 751 if jE Vbest

0 if ]¢ Vbest

(111) set ﬁm A ﬁm + XC ﬁf]

(iv) Setﬂc(m) :ﬂc(m—l) +ﬂfl

The boosting algorithm uses ridge penalty to obtain the weak learners. But different candidate predictors may have
different parameters associated with them, so the ridge penalty is adjusted for degrees of freedom by multiplying
A with \/d_f] As a result, for a fixed value of A with increasing number of parameters for a candidate predictor, the
learner becomes more weak than the other candidate predictors with less degrees of freedom. For selecting a predictor
for refit in a boosting iteration, different criteria can be used. One possible choice can be the deviance and the predictor
with minimum value of deviance Dev(#},,) among all candidate predictors is considered for refit. The other choices
which should be more appropriate with varying number of parameters for different predictors are Akaike information
criterion (AIC) and Bayesian information criterion (BIC), because they also involve the degrees of freedom. Both of
these measures are given by

AIC = Dev(ﬁm) +2 dfm,

and

BIC = Dev(#,,) + log(n) df,,,

where df}, is the effective degrees of freedom given by the trace of the approximate hat matrix H,, obtained after m
boosting iterations. The use of AIC or BIC for predictor selection in a boosting iteration seems to be better choices
than the deviance because they involve the effective degrees of freedom. But using these measures can slow the
computational process significantly for large sample size and increasing number of candidate predictors. In case of
large samples with high-dimensional structure using deviance for predictor selection can reduce the computational
burden and makes the algorithm more efficient regarding processing time. In the boosting it is possible that some of
the predictors are considered for updating only for a very few number of times. In such case those predictors which

are not contributing in the model in a real sense can become a part of the final sparse model. The pomBoost algorithm



avoids such predictors (with too small estimates) to be a part of the final model after m boosting iterations. The

estimates ¥ ; associated with the candidate predictor V; are set to zero after m boosting iterations if

K |2
KL‘- 2l 13l 1
P ivK a ©)
Zio kg X il P
The degrees of freedom df,, used in the criterion AIC or BIC is computed from the approximate hat matrix H,, after

m boosting iterations. The approximate hat matrix H,, is defined in the following proposition.

Proposition: In the mth boosting iteration, an approximate hat matrix for which &, ~ H,,y is given by

Hm:zm:Mj

Jj=0 i

(I -My),

j-1
i=0

where M,, = W,,(X W, X,, + vA)"'X,, for D,, = D@,,)) and W,, = D,.Z,!DI.

Proof: Let the predictor variable V; = Vi is selected after m boosting iterations and for proportional odds model

we have D,, = D@,,) and W,, = W,,(,) = D,f,Z,'D]

o Dl By using the Taylor approximation of first order

i.c., h@) = h@) + Gha)/on )@ —m), we obtain f, ~ f, + Dl = fyt) = By + DuX; BT = 0 +
D,,,Xj(XJT.Wij +v P)’! X]T (y — fim_1). So we have f1,, ~ fi, | + M,,(y — fi,_1) with M,,, = DmW,;qu':ImWDT_1
where H,, = W,,X j(XjTWmX itV P)‘IXJT.. The expression for fi,, can be written as f1,, ~ fi,,_; + My(y — fim-1) =
H,_1y + M,,(I - H,,_1)y. Expanding in the same way, for mth boosting iteration, the general form of the approximate

hat matrix is H,, = Z’j’.’zo M; H{:—é (I - My), with f1,, = H,,y and the starting value f1, = Moy.

4. Simulation Study

In this section properties of pomBoost algorithm are investigated using simulated data. For the response variable
with three and five ordered categories, we generate the predictor space with continuous and binary covariates for
different samples of size n. Our main focus is on sparse model fitting and we are using the high-dimensional predictor
space with few relevant predictors. The continuous covariates are drawn from a p—dimensional multivariate normal
distribution with variance 1 and correlation between two covariates x; and x; being P71l We generate the data with k
response categories for ten different settings with different sample sizes and values of p. The description of these ten

settings is as follows:



Setting & n Continuous Binary p  pinfo S
1 3 50 404) 10(1) 03 5 50
2 3 100 404) 10(1) 03 5 50
3 350 404) 10(1) 08 5 50
4 3 100 40(4) 10(1) 038 5 50
5 3 100 180(6) 20(2) 03 8 50
6 3 100 180(6) 20(2) 0.8 8 50
7 3 100 400 (6) 100(2) 0.3 8 25
8 3 100 400 (6) 100(2) 0.8 8 25
9 5 100 404) 10(1) 03 5 50
10 5 100 404) 10(1) 08 5 50

The numbers within brackets are the number of informative continuous/binary predictors. pinf, is the total num-
ber of informative predictors (informative predictors have non-zero values for true parameters while all other non-
informative predictors have zero parameter values) in a particular setting and S is the number of simulations. To
investigate the performance of the algorithm with categorical predictors, in the eleventh setting nominal and ordinal
predictors with three and four categories are considered with three ordered categories for the response variable. For

a sample of size 100, predictor space of total 80 predictors with 20(2) predictors of each of four types is generated.

Pinfo

With this setting S = 50 samples are generated. For the true parameter values ZFI

K values (where piyg, is the
total number of informative predictors) are obtained by the formula (—1)/exp(=2(j — 1)/20) for j = 1,..., f:"T K;.
These values are randomly allotted to the global parameters iy, corresponding to the informative predictors. The
true values of the intercepts yg = (—0.3,0.8) and 'yg = (-0.8,-0.3,0.3,0.8) are used for proportional odds models
with three and five response categories respectively. The true parameter vector 87 = (‘yg ,7) is then multiplied with
a constant cg,, which is chosen so that the signal-to-noise ratio is 3.0. For the componentwise boosting we set the
maximum number of iterations equal to 400. For regularization, we tried to use the same value of ridge penalty A for
all samples in a particular setting for a particular variable selection criterion. The value of A is chosen so that there
are at least 50 boosting iterations in each sample of all settings. Deviance with 10—fold cross-validation is used as a

stopping criterion. In some instances the optimal (final) boosting iteration less than 400 is not obtained and the results

are then based on maximum number of iterations.

4 1. Identification of Informative Predictors

The algorithm pomBoost fits the proportional odds model by implicitly selecting the relevant predictors. In high-
dimensional structures, it is important that the final sparse model contains all informative predictors and ideally no

irrelevant predictor. The hit rates” and “false alarm rates” are used to evaluate the performance of the algorithm



regarding proper variable selection. The hit rate which is the proportion of correctly identified informative predictors

is given as

DI # 0).0F; # 0)
P ¢
1 #0)

hit rate =

)

and false alarm rate which is the proportion of non-informative predictors identified as informative is given by

571G = 0).1(F; # 0)

false alarm rate = 7 P,
2 17 =0)

true
J

The vector ¥, j = 1,..., p contains true global parameter values for the predictor V; and ¥; is the vector of
corresponding estimates. The indicator function /(expression) assumes value 1, if “expression” is true and O otherwise.
The hit rates and false alarm rates with deviance, AIC and BIC as the predictor selection criteria are given in Table
1. The results show that as far as selection of relevant predictors is concerned, the algorithm is selecting most of the
times all relevant predictors in all settings with three or five response categories. In some settings, even no relevant
predictor is missed in any sample although some acceptable number of non-informative predictors are also selected
with informative predictors. For setting 11 where we have only categorical predictors and the each predictor with all
of its associated parameters is to be selected or rejected for updating, the hit rate is good especially with deviance as
predictor selection criterion. But with respect to false alarm rate AIC and BIC are performing better than deviance.
The general view of Table 1 reflects that results of hit rates and false alarm rates for all predictor selection criteria
are very close to each other. More specifically if hit rates are focused then deviance may be our choice for predictor
selection and if false alarm rates are considered then BIC seems to be a good choice with AIC as its strong competitor.

But AIC seems to be more appropriate choice while considering both of the factors that is selection of all relevant

predictors with minimum possible irrelevant predictors.

4.2. Empirical Results

In this section we are comparing the estimates/fit for the sparse model chosen from componentwise boosting procedure
with ridge estimates (see Zahid (2011)). The usual MLE is not existing in all considered high-dimensional settings.
For comparison we are using three different measures: mean squared error (MSE) of the parameter estimates 8, mean

deviance for the fit (deviance()) and mean prediction error (MPE). The MSE(ﬁ) is computed using the formula

~method

1 2B,

vij = 0. To compute the mean prediction error (MPE), we generate a new test data set of size n = 1000 observations

B"™*|I* and the deviance for the fit is computed as D = 2. 37, 3%, y,;,»log(f%) with y; jlog(y"j ) = 0 for

Tij

with the same parameters as in simulation study for each setting. The mean prediction error based on the deviance

qriest
ijs

measure for this test data set is computed as MPE = ¢ ¥ Dy = £ 3, 2.[ PHED ﬂ“’“log(

ijs

)] The values of these

e
ijs
three measures are given in Table 2 for boosting technique with deviance, AIC and BIC as predictor selection criteria

and ridge regression with all predictors (informative and non-informative) in the model. The results with boosting are

better than those for the ridge regression with an exception for setting 1 where the boosting is showing some weak
9



results in terms of MSE(B) and the fit but still performing much better in terms of prediction error. If we look at the
results of boosting with different predictor selection criteria, the use of deviance as the predictor selection criterion
is showing better results than AIC and BIC in all settings with three or five categories response models. But for
high-dimensional settings with moderate correlation among the continuous predictors such as in setting 5 and 7, BIC
is showing the best results followed by the AIC. The log values of 8 and MPE for boosting and ridge regression
in some selected settings are shown graphically in terms of box plots in Figure 1 and 2. In both figures, the box
plots associated with 5—categories response models (setting 9 and 10) are reflecting more significant improvement
for boosting approach (especially with deviance as a predictor selection criterion) over the ridge estimates. The solid

circles within each box of the box plots represent the mean of the data for which the box plots are drawn.

TasLE 1: Hit rates (HR) and false alarm rates (FAR) for identifying the informative predictors when deviance, AIC and BIC
are used as criteria for selecting a predictor in a boosting iteration. Deviance is used as stopping criterion with 10—fold
cross-validation.

Deviance AIC BIC

HR FAR HR FAR HR FAR
Setting 1 0.9920 0.1164 0.9120  0.0378 0.9160 0.0396
Setting 2 1.0000  0.0787 1.0000  0.0640 1.0000 0.0622
Setting 3 0.9920  0.1040 0.9880  0.0804 0.9920 0.0671
Setting 4 1.0000  0.1164 1.0000  0.1000 1.0000 0.0840
Setting 5 0.8300  0.0924 0.8175  0.0767 0.8000 0.0548
Setting 6 0.9250  0.0874 0.8075  0.0572 0.7975 0.0501
Setting 7 0.9850  0.0487 0.9950  0.0452 1.0000 0.0302
Setting 8 0.8300  0.0550 0.8150  0.0454 0.8000 0.0364
Setting 9 1.0000  0.0676 0.9520  0.0729 0.8560 0.0724
Setting 10 1.0000  0.0342 0.9680  0.1067 0.9280 0.1222
Setting 11 09100  0.1542 0.7450  0.0878 0.7250  0.0903

10
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Figure 1: Illustration of the simulation study: Box plots for comparing Boosting (with deviance, AIC and BIC as predictor
selection criteria) with ridge estimates in terms of log(MSE(ﬁ)) (top panel) and Mean Prediction Error i.e., log(MPE)
(bottom panel). The solid circles within the boxes represent the mean of the observations for which box plots are drawn.
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Figure 2: Illustration of the simulation study for high dimensional settings: Box plots for comparing Boosting (with
deviance, AIC and BIC as predictor selection criteria) with ridge estimates in terms of log(MSE(B)) (top panel) and Mean
Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean of the observations

for which box plots are drawn.



TasLE 2: Comparison of Boosting approach with ridge regression in terms of meﬂwv, deviance(r) and Mean Prediction Error (MPE).

MSE(@) deviance(#) MPE

Boosting Boosting Boosting

deviance AIC BIC Ridge deviance AIC BIC Ridge deviance AIC BIC Ridge
Setting 1 70.2648  111.1998  112.1113 56.8419 20.6806 54.3948 55.4751 35.3729 698.0362  1205.8165 1226.7801 2127.6189
Setting 2 29.0005 43.2247 45.4894 37.8050 27.8537 35.0938 36.9378 32.0932 328.3775 428.2221 463.4275 721.3418
Setting 3 28.6156 35.8152 36.1927 36.2654 15.8493 19.5011 19.8625 22.1099 407.9411 446.9234 457.4776 972.9473
Setting 4 58.9571 64.1723 64.4525 57.3699 42.0505 43.7915 43.8009 37.3850 424.0350 454.0069 454.2585 560.1846
Setting 5 58.3875 53.1730 47.5466 65.0128 44.6954 41.7891 39.1264 82.5753 696.7068 668.2237 637.7509 2638.3867
Setting 6 65.9816 77.6853 78.6995 75.7883 41.9446 59.2422 61.3988 49.8337 682.1554 830.3144 839.9394 1515.1373
Setting 7 72.5417 65.7581 56.2641 91.1384 59.5380 53.6569 46.7804  129.5409 836.1576 766.0989 629.7030 4069.3070
Setting 8 92.7841 92.3475 91.8610  107.3350 56.7862 58.9721 60.3961 109.0961 882.7764 876.0458 870.5403 3372.8829
Setting 9 1193682  215.8329  221.8824  447.5947 43.2587 111.5447 120.1233 174.2679 605.6147 1391.4402  1483.4945 5908.5421

Setting 10 112.1967  280.6495  295.9767  352.5364 64.3926 104.4435 112.5791 92.3607 632.6943 1170.4883 1251.0021  2866.8977
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5. Application

The data set being analyzed in this section is taken from UCI repository (http://archive.ics.uci.edu/ ml/
datasets/Housing). The data is about housing values in suburbs of Boston. The response variable Median value
of owner-occupied homes in $1000’s (MEDV) is categorized using the four ordered categories as MEDV< 10, 10 <
MEDV < 25,25 < MEDV < 40 and MEDV > 40. There are thirteen predictors as: per capita crime rate by town
(CRIM); proportion of residential land zoned for lots over 25,000 sq.ft. (ZN); proportion of non-retail business acres
per town (INDUS); Charles River dummy variable (CHAS= 1 if tract bounds river; CHAS= 0 otherwise); nitric
oxides concentration (NOX)(parts per 10 million); average number of rooms per dwelling (RM); proportion of owner-
occupied units built prior to 1940 (AGE); weighted distances to five Boston employment centres (DIS); index of
accessibility to radial highways (RAD); full-value property-tax rate per $10, 000 (TAX); pupil-teacher ratio by town
(PTRATIO); 1000(Bk —0.63)> where Bk is the proportion of blacks by town (B) and % lower status of the population
(LSTAT). The algorithm pomBoost is used for fitting the proportional odds model with selection of predictors. For
predictor selection in a boosting iteration deviance, AIC and BIC are used as criteria and deviance is used as stopping
criteria with 10—fold cross-validation. For regularization same value of ridge penalty i.e., 4 = 500 is used for all three
predictor selection criteria. The deviance as predictor selection criterion suggests four predictors RM, PTRATIO,
B and LSTAT as informative. AIC and BIC as selection criteria are more strict and exclude PTRATIO and B. For
boosting we used 400 as the maximum number of iterations. The parameter estimates with boosting algorithm are
given in Table 3. For the deviance and AIC the selected number of iterations was 109 and 74, respectively. For BIC no
optimal iteration less than 400 was found, so the maximum number of iteration is used for the results. The boosting

coefficients build-up with deviance, AIC and BIC as predictor selection criteria are given in Figure 3.

TaBLE 3: Parameter estimates for Housing data with boosting when deviance, AIC and BIC are used as predictor selection
criteria and deviance is used as stopping criterion based on 10—fold cross-validation.

Predictor Deviance AIC BIC Predictor Deviance AIC BIC

Intercept 1 -5.9429 -5.0165 -5.2761 RM —-1.0631 —-1.4932 -1.4455
Intercept 2 2.1398 1.7592 1.8516 AGE 0 0 0
Intercept 3 5.2280 4.7416 4.8856 DIS 0 0 0
CRIM 0 0 0 RAD 0 0 0
ZN 0 0 0 TAX 0 0 0
INDUS 0 0 0 PTRATIO 0.4873 0 0
CHAS 0 0 0 B -0.3670 0 0
NOX 0 0 0 LSTAT 1.6842 0.9941 1.3231
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Figure 3: Coefficients build-up with component wise boosting for Housing data. Deviance (left panel), AIC (central panel)
and BIC (right panel) are used as predictor selection criteria. Deviance with 10—fold cross-validation is used as stopping
criterion. The names of non-informative predictors are overlapped against zero value on right side of each graph.

6. Concluding Remarks

In regression, proportional odds models (POM) are commonly used to model response variable with ordered cate-
gories. In many application areas it is common to consider a large number of predictors for the initial model to reduce
the modeling bias. But to increase the predictive ability of the model and for a better interpretation of the parame-
ters, models should be sparse. Variable selection is an important but challenging part of model building. A judicious
predictor selection criterion selects a subset of significant predictors which have potential influence on the response
variable. The issue of variable selection in ordinal regression has somewhat neglected in the literature. Although Lu
and Zhang (2007) refer to variable selection for proportional odds models they discussed variable selection in survival
analysis. The proposed algorithm is an effort to fill this gap. The proposed boosting technique fits proportional odds
model by implicitly selecting the relevant predictors. Unlike multinomial logit models which have category specific
estimates, proportional odds models have so called global parameters. But in case of a categorical predictor more than
one parameters are linked with it. To obtain the weak learner in a boosting iteration, regularization with ridge penalty
is used. Regularization allows to include categorical predictors with large number of categories in the model. The
predictor selection indicates the selection of all parameters for a predictor. Our componentwise boosting procedure
picks potentially influential predictors not the parameters. The algorithm pomBoost distinguishes between mandatory
predictor(s) and other predictors among which selection is required. For regularization with ordinal predictors, the
ordering of the categories should be considered. In such case rather than penalizing the estimates, differences between
the parameter estimates of adjacent categories should be penalized. The proposed method differentiates among nom-
inal, ordinal and binary/continuous predictors and performs the regularization for the candidate predictors according
to their nature. Although we are considering the proportional odds model only the procedure is easily extended to any

ordered regression model.
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