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1 INTRODUCTION

1 Introduction

Time series could be any sequence of data points measured at successive time in-

tervals. An essential property of this sequence is its unclear evolution over time.

Still, some paths remain more probable than others and this motivates researchers

to try to understand the generating mechanism of the data points and possibly to

forecast its future events, even before they have occurred. Linear models provide

a starting point for modelling the nature of time series. Linear time series models,

however, encounter various limitations in the real world and that makes them ap-

plicable only under certain, very restrictive, conditions. The field of time series has

undergone various new developments in the last two decades, which relaxed some of

these constraints. In particular, the development of nonparametric regression added

more flexibility to the standard linear regression, which was adopted by the time

series paradigm as well. A leading aspect to be explored throughout the thesis is

the nonparametric modelling and the resulting forecasting techniques.

The second major aspect will concern the issue of high-dimensionality in the mod-

els, i.e. models with many covariates. The development of nonparametric analysis

even in high dimensions was made possible thanks to the availability of suitable

software and technological solutions. One of the most powerful strategies that deal

with high-dimensional models comes from the machine learning community. The

idea has undergone extensive evolution in the last decade and as a result, now we

have available an ensemble procedure for regression under the name boosting. The

novel component of the present work is the application of boosting to time series,

which is done by letting the covariates be lagged values of a time series.

In the beginning of Section 2 we will explain the underlying idea of nonparametric

regression through basis expansions and will emphasize how it links to linear regres-

sion. We will also exemplify basis expansions through splines and will explain the

real breakthrough in the nonparametric regression, obtained through the application

of penalized B-Splines.

Section 3 introduces the gradient-descent view of boosting, which is considered

purely as a numerical optimization, rather than as a “traditional” statistical model.

We will examine the structure of several boosting algorithms for continuous data

and link them to the framework of statistical estimation. We will discuss the gen-

eral ideas behind componentwise boosting of linear models. We will also study two

possible strategies for componentwise boosting of additive models, built on top of

penalized B-Splines and will finish with discussion on the theoretical grounds behind

1



1 INTRODUCTION

multivariate linear boosting.

Section 4 will start with a close look of the foundation of univariate autoregressive

time series analysis. We will discuss some of the aforementioned necessary con-

ditions, which make the linear time series models work. Actually, even for these

constrained classes of time series, as the linear autoregressive time series are, there

are plenty of aspects that should be considered in order to provide a full research.

Our intention is to address just the most relevant modelling principles in order to

avoid overwhelming, but still provide a sound theoretical base. We will outline the

relevant aspects of vector autoregressive times series models as well. The literature

offers a great deal of modelling tools for nonlinear times series. Initially we will

outline some of the common parametric nonlinear models, followed by an outlook

of the mechanisms of the most popular nonparametric algorithms.

The results of a simulation study will be examined in Section 5. We will analyse the

performance of boosting with P-Spline base learners in Monte Carlo simulations with

six artificial, nonlinear, autoregressive time series. We will compare the outcomes

of boosting to the outcomes, obtained through alternative nonparametric methods.

Their performances will be considered in terms of lag-selection and goodness-of-fit.

Boosting of linear and additive model will be applied to real world data in Section 6.

The target variable is the German industrial production. We will compare boosting,

along with other methods, to the simple univariate autoregressive model in order

to answer one very appealing question: do these sophisticated techniques actually

manage to outperform the linear autoregressive model in terms of forecasting? Then

we will extend the data set with exogenous variables, thus building several bivariate

time series. We will include the standard tool from the macroeconomic forecasting

field, namely the vector autoregressive model. Finally, we will create a real high-

dimensional model by including all nine exogenous variables with their respective

lags into one model and will examine the forecasting performance of boosting. In

Section 7 we conclude.
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2 SPLINES

2 Splines

In this section we will outline basic statistical methods for nonparametric modelling

through basis expansions. Basis expansions are at the heart of many nonparametric

methods, presented in this thesis. Therefore, we will reveal their key concepts in

order to facilitate the exposition later on. Still, other nonparametric techniques are

available in Hastie and Tibshirani (1990, Chapter 2); Hastie, Tibshirani, and Fried-

man (2001, Chapter 6); Fahrmeir and Tutz (2001, Chapter 5), among others. The

exposition in this section will follow mainly: Eilers and Marx (1996), who made the

real breakthrough in the development of splines for regression; Wood (2006), who

provides a very thorough theoretical treatment and extensive material of practical

application of splines, using the statistical software R (R Development Core Team,

2008); and will draw partly on Hastie et al. (2001) and Kneib (2003).

Section 2.1 will introduce the underlying idea of basis expansions and will emphasize

on their connection with linear regression. In Sections 2.2 and 2.3 we will exam-

ine some simple basis examples such as polynomial splines, truncated splines and

B-Splines. Subsequently, we will extend them to the fundamental concept of penal-

ized splines in Section 2.4, which also relates to the paradigm of additive boosting,

described later in the thesis.

2.1 Basics

The most famous statistical model is the simple linear model

y = Xβ̃ + ε (2.1)

where vector y = (y1, . . . , yn)T contains n realizations of the continuous response

variable y, X = (1,x1, . . . ,xp), xj = (x1j, . . . , xnj)
T is the design matrix, which

summarizes an intercept and the realizations of say p predictor variables {x1, . . . , xp},
also called covariates or inputs, β̃ gathers the linear impact of each covariate at the

response and an error term ε = (ε1, . . . , εn)T . The notation β̃ helps us just to

distinguish these parameters from the ones in (2.5) below and implies no unusual

interpretation. There are several reasons for the popularity of this model, some of

them being the convenient ways of estimation the unknown parameters in β̃. Further

on, these are easily interpretable and therefore preferred from non-statisticians as

well.

However, in practice it is unlikely that the random variable y and the covariates

x1, . . . , xp relate in a linear fashion. Therefore the framework of Generalized Additive

3



2.1 Basics 2 SPLINES

Models (GAM) (Hastie and Tibshirani, 1990) proposes an alternative for flexible

specification of the dependence through

yi = f1(xi1) + . . . + fp(xip) + εi (2.2)

where xij, i = 1, . . . , n, is the ith observation of the jth predictor and fj’s represent

smooth functions which are to be estimated instead of the parameters in β̃. Model

structures such as (2.2) represent methods for moving “beyond linearity”. The

quotation marks serve to emphasize the common knowledge, that in fact, many

nonlinear techniques are direct generalizations of the linear methods. The basic

idea of basis expansion is to replace the inputs x1, . . . , xp by additional variables,

which are their transformations, and then use the linear methods in this new space

of derived input features. This can be done by choosing a basis, defining the space

of say m completely known basis functions. Every single fj in (2.2) is an element of

this basis. Denote by b
[l]
j (xij) the lth transformation of xij, then fj is assumed to

have a representation

fj(xij) =
m∑

l=1

b
[l]
j (xij)β

[l]
j (2.3)

and substituting (2.3) into (2.2) yields a clear linear model

yi =
m∑

l=1

b
[l]
1 (xi1)β

[l]
1 + . . . +

m∑

l=1

b[l]
p (xip)β

[l]
p + εi

=
m∑

l=1

p∑
j=1

b
[l]
j (xij)β

[l]
j + εi (2.4)

The latter could be equivalently represented in a matrix notation which leads to

y = Zβ + ε (2.5)

where Z = (Z1, . . . ,Zp) is the augmented (n × mp) design matrix, Z1, . . . ,Zp are

(n ×m) matrices, each representing the basis transformation of the initial vectors

x1, . . . ,xp such that Zj = (b
[1]
j (xj), . . . , b

[m]
j (xj)), β = (βT

1 , . . . , βT
p )T is a (mp × 1)

parameter vector, βj = (β
[1]
j , . . . , β

[m]
j )T and ε is a (n × 1) error vector. One easily

encounters the beauty of this approach, consisting in the similarity between (2.1)

and (2.5). Once the basis functions b
[m]
j have been determined, the models are linear

in these new variables, and the fitting proceeds as in (2.1). Note, that interpreting

the name nonparametric as absence of any parameters would be not quite precise,

since β contains, indeed, very large number of parameters, which in turn have to

be estimated. In order to precise the description, Eilers and Marx (1996) explain in

their introduction basis expansion as an overparametric technique or equivalently

anonymous model, in which the nature of parameters is not knows, i.e. they have

4



2.2 Splines 2 SPLINES

no direct statistical interpretation. Having noted this, however, we continue to

follow the common concept, which describes basis expansions as a nonparametric

technique.

For the sake of convenience we will restrict the number of the covariates p = 1 in

the next two sections. Thus, avoiding the redundant notation (the jth index falls

away) we will concentrate on the functionality of splines. Besides, the boosting

algorithms presented in sections 3.2 and 3.3 imply componentwise processing with

the covariates. The latter means that we are always working with one predictor

at a time and therefore escape the need for simultaneous treatment of multiple

predictors. This parsimony implies the following interpretation of the notation:

β = β1,Z = Z1, b
[l] = b

[l]
1 and f = f1.

2.2 Splines

Splines propose a very convenient way for choosing the aforementioned basis func-

tions. Before we introduce splines, we define a polynomial. Polynomial is a mathe-

matical expression involving a sum of powers in one or more variables multiplied

by coefficients. A polynomial spline is a curve, made up of sections of polynomials

(piecewise polynomials) joined together so that they are continuous in value, as well

as derivatives up to the degree of the polynomial minus one. These polynomials are

referred to as the basis functions. The points at which the sections join are known

as the knots of the spline. Typically the knots are evenly spread over the domain

and are used by the spline function to connect the neighbouring polynomial pieces

in a special smooth way. That means, that having knot locations denoted by τm,

a = τ1, . . . , < τM = b, S : [a, b] → R consists of polynomial pieces bi : [τi, τi+1) → R,

S is said to be a polynomial spline of degree l if

1. bi has degree at most l in the subintervals [τi, τi+1)

2. S is l − 1 times continuously differentiable.

A general approach to splines can be found in the books by Wahba (1990) and Gu

(2002).

Given the knot locations, there are many alternatives of writing down a basis for

splines. For instance, a very simple spline function f of lth order could be represented

via polynomial basis, such as:

b[1](x) = 1, b[2](x) = x, b[3](x) = x2, b[4](x) = x3, . . . , b[l+1](x) = xl.

5



2.2 Splines 2 SPLINES

This means that (2.3) could be written as

f(x) = β1 b[1](x) + β2 b[2](x) + β3 b[3](x) + β4 b[4](x) + . . . + βl b
[m](x)

= β1 + β2 x + β3 x2 + β4 x3 + . . . + βm xm−1.

Another option proposes the regression spline, represented as a linear combination

of a truncated power basis,

b[1](x; l) = 1, b[2](x; l) = x and b[k+2](x; l) = (x− τk)
l
+,

where

(x− τk)
l
+ =





(x− τk)
l if x ≥ τk,

0 otherwise.

One could find even more complicated examples such as the one in Gu (2002, pg.

37):

b[1](x) = 1, b[2](x) = x and b[k+2](x) = R(x, τk)

where

R(x, τk) =

[(
τk − 1

2

)2

− 1

12

][(
x− 1

2

)2

− 1

12

]
/4

−
[(
|x− τk| − 1

2

)4

− 1

2

(
|x− τk| − 1

2

)2

+
7

240

]
/24.

However, despite the diversity of available options, all of these basis functions have

one purpose, namely to map the scalar xi into the ith row vector, of the augmented

matrix Z, denoted by z(i), i.e.

xi 7→ z(i) =
[
b[1](xi), . . . , b

[m](xi)
]
.

It should be noted that in case some subinterval [τi, τi+1) is empty, that would lead

to a singular design matrix Z and consequently prevent the standard estimation

process of β in (2.3). Since this it is rather unlikely to happen, we will always

assume a full rank design matrix.

The proposed basis functions are relatively simple and straightforward to implement.

However, they are not locally defined, which turns out to be a substantial drawback

for the penalizing concept later on. A large number of knots often leads to numerical

problems due to unbounded basis functions. Therefore, for regression problems we

will explore one of the most convenient basis representations, namely the Basic

Splines, hence B-Splines.

6



2.3 B-Splines 2 SPLINES

2.3 B-Splines

A primary reference for B-Splines in numerical analysis is De Boor (1978, 2001). A

real breakthrough for statistics was made by Eilers and Marx (1996), who showed

that penalized B-Splines are very attractive as basis functions for regression. Before

we study their method in the next section, basic overview of B-Splines is proposed.

The definition of the ith B-Spline basis of degree l is recursive, and namely:

Bi(x; l) =
x− τi

τi+l − τi

Bi(x; l − 1) +
τi+l+1 − x

τi+l+1 − τi+1

Bi−1(x; l − 1)

where

Bi(x; 0) =





1 if x ∈ [τi, τi+1)

0 otherwise.
(2.6)

Figure 1 shows a sequence of B-Splines up to order three with evenly spaced knots

from 0 to 1. The total number of knots needed for construction of k B-Splines

of order l is k + 2l + 1. Note, that B-Splines of order l overlap with exactly 2l

neighbours. In Figure 1, the leftmost and the rightmost splines, which have less

overlap, are not depicted (see Appendix C.1, Figure 11 for the full illustration).

With the assistance of the illustration in Figure 1 we could easily observe some of

the appealing properties of B-Splines. Each function is nonzero over the intervals

between l+2 adjacent knots, which means that the basis functions are strictly local.

Moreover, in contrast to the polynomial basis, the basis functions are now bounded

which leads to the numerical advantages and enhanced stability. Consider Eilers

and Marx (1996) for further details on the appealing properties of B-Splines.

The application of basis expansions on regression is best seen by example. In Figure

2 is shown an illustration of how B-Splines of order three, also called cubic splines,

are related to the regression framework. Suppose we have an original basis of six

functions, as depicted in Figure 2(a). Each function of 2(a) is multiplied by a

coefficient, which results in different curves, shown in 2(b). The coefficients are

usually provided by the associated parameter vector β̂, estimated in (2.5). For an

illustration purpose, let us choose: β̂ = (−0.2,−1.0,−0.8, 1.2, 0.5, 0.8)T . Then, the

scaled functions from 2(b) are summed up, thus producing an estimation f̂ , depicted

in 2(c).

Although B-Splines circumvent some of the major drawbacks of polynomial splines,

they still require several subjective decisions in order to produce satisfying results.

The first one, which is actually of minor importance, is the order of the B-Splines.

The practice shows that the estimation procedure is not very sensitive to this option

7
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(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1: A sequence of B-Splines of order 0 (a), 1 (b), 2 (c) and 3(d). The leftmost

and rightmost splines are discarded.

and B-Splines of order three are usually a reasonable choice. A quote of Hastie et al.

(2001, p. 120) states that,

it is claimed that cubic splines are the lowest-order spline for which the

knot-discontinuity is not visible to the human eye.

The next option, however, is of major importance. It addresses the number of knots,

which strongly influences the degree of smoothness. Too small number of knots leads

to very smooth spline curve, which fits the data poorly. On the other hand, if the

number of knots is too large the spline curve is very rough. This is a consequence

of fitting the noise, as well as the underlying process. There are two common

8
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(a)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

(c)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 2: Nonparametric regression with B-Splines. Panel (a) depicts cubic basis

functions, panel (b) shows the basis functions, multiplied by their associated coef-

ficients β̂. The sum of the scaled functions gives the spline itself, shown in panel

(c).

strategies that deal with this issue. One could apply a data-driven knot selection

model (Friedman and Silverman (1989); Friedman (1991); Stone et al. (1997)) or

use a maximal set of knots and penalize the curvature in the estimated function.

Since one of the major topics in this thesis, namely additive boosting (Sections 3.2

and 3.3) develops estimation procedure, which is based on penalized splines, we will

consider the penalization concept in the following section.

9



2.4 P-Splines 2 SPLINES

2.4 P-Splines

Before we get familiar with the so called P-Splines (Eilers and Marx, 1996), we briefly

introduce the more general form of penalized regression splines, called smoothing

splines. The appealing feature of the penalization concept is the fact that a single

parameter could control the degree of smoothness. That means that, rather than

minimizing
n∑

i=1

(yi − f(xi))
2

one could minimize
n∑

i=1

(yi − f(xi))
2 + λ

∫ (
∂2f

∂x2

)2

dx (2.7)

where f has continuous first and second derivatives, and the second derivative is

quadratically integrable. The resulting estimation is called a natural cubic smoothing

spline (Reinsch, 1967). The first term in (2.7) measures the closeness to the data,

the second penalizes the curvature in f and the (tuneable) smoothing parameter λ

establishes the tradeoff between them. If λ = 0, then we clearly get the unpenalized

estimator, which leads to a very rough function estimation. If we let λ = ∞, that

would lead to the smoothest possible curve estimation, namely a straight line. It can

be shown that the natural cubic smoothing spline is unique minimizer of (2.7) with

knots at the values of xi (Wood, 2006, p. 148). This results in n free parameters

which are to be estimated.

Eilers and Marx (1996) propose a special form of penalized regression splines which

greatly reduces the number of the parameters to estimate. They consider a discrete

approximation of (2.7) with B-Splines and term it Penalized B-Splines, hence P-

Splines. The main idea is that one keeps the basis dimension fixed, at a size a little

larger than it is believed could reasonably be necessary (more than 30 knots do not

indicate significant improvement) and penalizes directly the squared differences of

the coefficients of adjacent basis functions. Moreover, the knots are evenly spaced

and the recursive definition of B-Splines ensures very convenient computation of

their derivatives. Thus, for any function f :

f(x) = β1B1(x; l) + . . . + βmBm(x; l) = βT B(x; l) (2.8)

10



2.4 P-Splines 2 SPLINES

De Boor (1978) showed that the first derivative of f could easily be calculated trough

the following formula:

∂f

∂x
=

1

h

m∑
i=1

βi[Bi(x; l − 1)−Bi+1(x; l − 1)]

=
1

h

m∑
i=2

(βi − βi−1)Bi(x; l − 1)

=
1

h

m∑
i=2

∆βiBi(x; l − 1) (2.9)

where h denotes the distance between two adjacent knots, ∆ is the difference oper-

ator, recursively defined by

∆βi = βi − βi−1

∆2βi = ∆(∆βi) = βi − 2βi−1 + βi−2.

Later by induction Eilers and Marx (1996) showed that

∂2f

∂x2
=

1

h2

m∑
i=3

(βi − 2βi−1 + βi−2)Bi(x; l − 2)

=
1

h2

m∑
i=3

∆2βiBi(x; l − 2). (2.10)

It turns out that the second term in (2.7) can be approximated in the following way:

∫ (
∂2f

∂x2

)2

dx =

∫
(D2β)TD2β dx = βTDT

2 D2β (2.11)

where

D2 =




1 −2 1 0 .

0 1 −2 1 .

. . . . .

. . 1 −2 1


 (m− 2×m)

and therefore the approximation of (2.7) can be written as

||y− Zβ||2 + λβTΛβ (2.12)

where Λ = DT
2 D2. Now minimizing (2.12) with respect to β, one obtains the

penalized least squares estimator

β̂ = (ZTZ + λΛ)−1ZTy (2.13)

(see the derivation in Appendix B.1) and therefore the hat matrix (or influence

matrix ) can be written as

H(λ) = ZT (ZTZ + λΛ)−1ZT . (2.14)
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2.4 P-Splines 2 SPLINES

The hat matrix is the one which yields the fitted vector, µ = Zβ̂ = Hy, when

post-multiplied by the data vector y. Moreover, it has the very useful property

of determining the flexibility of the model. More precisely, the model’s flexibility

is determined by the effective degrees of freedom, defined by the trace of the hat

matrix. Clearly, with λ set to zero the degrees of freedom of the model would be the

dimension of β. At the opposite extreme, if λ is very high then the model will be

quite inflexible and will hence have very few degrees of freedom, equal to the order

of difference penalty.

In Figure 3 are depicted three fits with different values of the smoothing parameter

in order to gain a graphical impression of its impact. If λ is too high, then we have

oversmoothing (or underfitting) and we miss the underlying dynamics of the real

model. With λ too small the data will be undersmoothed (or overfitted), describing

this way too much noise. These considerations will be of use once again when we

discuss boosting of an additive model in the next section. The choice of λ will be,

indeed, of minor importance, since we will always provide sufficiently large value

for λ and will compensate the model inflexibility through the number of boosting

iterations. Despite that, for the sake of integrity we will now briefly outline some

basic techniques for a proper choice of the smoothing parameter. To see this topic

in a greater depth, consider for example (Wood, 2006, Chapters 3 and 4).

Generally, we find an estimation of the smoothing parameter through numerical

optimization of some information criterion with respect to λ. One possibility for

estimating an “ideal” λ proposes the ordinary cross validation score, which estimates

the expected squared error of the model. The idea consists of consecutive out-of-

sample predictions of each value yi. More precisely, we leave every (xi, yi)-pair out

of the model, fit the remaining data and provide an estimation of yi, based on xi.

Finally we calculate the squared difference between the estimated and the real value

of yi. Let f̂
[−i]
λ denote the model fit at xi (also known as jackknifed fit at xi). Then

the formal definition of ordinary cross validation is

CV (λ) =
1

n

n∑
i=1

(f̂
[−i]
λ − yi)

2. (2.15)

Since it is inefficient to calculate n model fits, especially for large sample sizes, we

could employ the hat matrix as a useful measure. It can be shown (Hastie and

Tibshirani, 1990, p. 47-48) that (2.15) is equivalent to

CV (λ) =
1

n

n∑
i=1

(
yi − f̂λ,i

1−Hii(λ)

)2

(2.16)
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Figure 3: Penalized regression spline fits using three different values for the smooth-

ing parameter λ.

where f̂λ,i is the ith component of the estimate, produced by fitting the full data,

and Hii(λ) are the main diagonal elements of the hat matrix. In practice, Hii(λ) is

replaced by tr(H(λ))/n which defines the Generalized Cross Validation (GCV):

GCV (λ) =
1

n

n∑
i=1

(
yi − f̂λ,i

1− tr(H(λ))/n

)2

. (2.17)

With tr(H(λ)) we indicate the trace of the hat matrix. Thanks to its usefulness,

various modelling strategies are based on slight modifications of the GCV criterion.
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3 BOOSTING

3 Boosting

Boosting, as one of the most powerful ideas in the machine learning community, has

been a field of increased research interest in the last decade. Real breakthrough for

a two class problem, i.e. response y ∈ {1, 0}, was made by Freund and Schapire

(1996) with their AdaBoost algorithm.

Later Breiman (1996) provides experimental and theoretical evidence that his method

“bootstrap aggregating”, hence bagging, can give substantial improvement in accu-

racy for both classification and regression prediction. Although unstable in predic-

tion, his method makes a significant step towards optimality, by incorporating the

idea of generating multiple versions of a predictor and then producing an aggregated

predictor by plurality vote. A “committee” based approach is the basic concept of

boosting as well. Breiman (1998) noted that the AdaBoost algorithm can be consid-

ered as a gradient descent optimization technique in function space. These findings

opened perspective to consider boosting for regression problems which was success-

fully developed later by Friedman (2001). In the context of regression, the gradient

boosting proposed by Friedman is essentially the same as Mallat and Zhang’s (1993)

matching pursuit algorithm in signal processing.

3.1 Gradient Boosting

3.1.1 Steepest Descent

The statistical framework developed by Friedman (2001) interprets boosting as a

method for direct function estimation. He showed that boosting could be inter-

preted as a basis expansion, in which every single basis term is iteratively defined

by the preceding ones. Suppose we have a random output variable y and a set of

explanatory or input variables x = (x1, . . . , xp) the goal is, using a “training” sample

{yi,x(i)}n
1 , where x(i) ∈ Rp is a p-dimensional row-vector, to obtain an estimate f̂(x)

of the function f(x), which maps x to y. To achieve this approximation one has to

specify a loss function L(y, f), and to minimize the expectation of this loss function

with respect to f . A discussion about the specification of several loss functions

follows in Section 3.1.2 below. The minimization of f can be viewed as a numerical

optimization problem such as

f̂ = arg min
f

L(y, f) (3.1)

where

L(y, f) =
n∑

i=1

L(yi, f(x(i))). (3.2)
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A common procedure that solves (3.1) is to restrict f(x) to be a member of a

parameterized class of functions f(x; θ). For instance, f(x; θ) can be viewed as an

additive expansion of the form

f(x; β,γ) =
M∑

m=1

βm h(x; γm)

where the basis function h(x; γ) is characterized by a set of parameters γ, i.e. the

members of this expansion differ in the parameters γm. Thus, the original function

optimization problem has been changed to a parameter optimization problem. That

is, optimize

{β̂, γ̂} = arg min
β,γ

n∑
i=1

L(yi, f(x(i); β, γ)) (3.3)

in order to achieve

f̂ = f(x; β̂, γ̂). (3.4)

In many situations, however, it is unfeasible to solve (3.3) directly and therefore an

alternative numerical optimization method should be applied. One possibility is to

try a greedy stagewise approach, which is

{βm,γm} = arg min
β,γ

n∑
i=1

L(yi, fm−1(x(i)) + β h(x(i); γ)) (3.5)

followed by

fm(x) = fm−1(x) + βm h(x; γm). (3.6)

In machine learning a strategy like the sequence (3.5)-(3.6) is called boosting and

the function h(x; γ) is termed a weak learner or a base learner. There are various

modifications of the boosting strategy, differing mostly in the base learner. We will

examine some of them in the following sections. However, the solution of (3.5) is

not always feasible and requires a numerical optimization method itself. One such

method is the steepest-descent optimization algorithm. Given any approximation

fm−1(x), the increments βm h(x; γm) in (3.5)-(3.6) are determined by computing

the current gradient:

−gm(x(i)) =

[
∂L(yi, f(x(i)))

∂f(x(i))

]

f(x)=fm−1(x)

(3.7)

which gives the steepest-descent direction −gm = −(gm(x(1)), . . . , gm(x(n)))
T ∈ Rn.

Note, that the gradient is defined only at the training data points and cannot be gen-

eralized to other x-values. If the only goal was to minimize the loss on the training

data the “steepest descent” would be sufficient. One possibility for generalization to

new data, not presented in the training set, is to choose that h(x; γ) which produces
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hm = (h(x(1); γm), . . . , h(x(n); γm))T most parallel to the gradient −gm, i.e. this

h(x; γ), which is most highly correlated with the gradient −g(x). This can be done

simply by fitting h(x; γ) to the “pseudoresponse” −g(x), i.e.

γm = arg min
β,γ

n∑
i=1

(−gm(x(i))− β h(x(i); γ))2. (3.8)

Furthermore, a more powerful strategy would be to multiply the gradient vector

with some constant in order to go into a “better” direction, which is called line

search.1 That means that we additionally compute

ρm = arg min
ρ

n∑
i=1

L(yi, fm−1(x(i)) + ρ h(x(i); γm)) (3.9)

and finally the updates are determined via

fm(x) = fm−1(x) + ρm h(x; γ̂m).

Now we summarize steepest descent boosting as the following generic algorithm:

Generic Gradient Descent Boosting

1. Initialize f0 = arg minρ

∑n
i=1 L(yi, ρ), m = 0

2. m = m + 1

3. ri = −
[

∂L(yi,f(x(i)))

∂f(x(i))

]
f(x)=fm−1(x)

, i = 1, . . . , n

4. γm = arg minβ,γ

∑n
i=1(ri − β h(x(i); γ))2

5. ρm = arg minρ

∑n
i=1 L(yi, fm−1(x(i)) + ρ h(x(i); γm))

6. fm(x) = fm−1(x) + ρm h(x; γm)

7. Iterate 2-6 until m = M

where the best value for M can be obtained via cross-validation.

3.1.2 Loss Functions

Expression (3.7) hints at the importance of the prechosen loss function. In addition

to the weak learner, this is the second major option which determines the nature

of the generic algorithm. Therefore several options for choosing the loss are briefly

discussed in the sequel.

One of the frequently employed loss functions L(y, f(x)) is the squared-error loss,

1It should be noted that the line search can be automatically provided through β when com-
puting (3.8) and working with certain loss functions. See next section for further details.
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Figure 4: A comparison of three loss functions for regression, plotted as a function

of y − f(x).

also called L2-loss, L(y, f(x)) = 1
2
(y − f(x))2. It is scaled by the factor 1

2
thus

ensuring a convenient representation of its first derivative (simply the residuals)

which becomes very useful at line 3 of the generic algorithm. An absolute-error

loss L(y, f(x)) = |y − f(x)| or L1-loss is another famous example for loss criterion.

Although not differentiable at the points yi = f(x(i)), partial derivatives of L1-loss

could be computed due to the zero probability of realizing single point yi = f(x(i)) by

the data. The last one to examine is the Huber loss criterion used for M-regression

(Huber, 1964) and defined as:

L(y, f(x)) =




|y − f(x)|2/2 if |y − f(x)| ≤ δ,

δ(|y − f(x)| − δ/2) if |y − f(x)| > δ

where a strategy for adaptively changing δ is proposed by Friedman (2001):

δm = median ({|yi − fm−1(x(i))|; i = 1, . . . , n}).

Figure 4 proposes a graphical interpretation of the loss functions. The squared-error

loss penalizes observations with large absolute residuals more heavily than the other

two criteria. Thus L2-loss is far less robust and its performance degrades for dis-

tributions with heavy tails and especially by presence of outliers. L1-loss penalizes

the extreme margins only linearly and thus Huber-loss is somewhat a compromise

between them.
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Furthermore, a very convenient property is the computational simplicity of the gra-

dients of these loss functions. The loss criteria and the corresponding gradients

are summarized in Table 1. Recall the generic gradient boosting strategy. Applied

Loss Function ∂L(y, f(x))/∂f(x)

L1 sign{y − f(x)}
L2 y − f(x)

Huber y − f(x) for |y − f(x)| ≤ δm

δm sign{y − f(x)} for |y − f(x)| > δm

Table 1: Gradients for commonly used loss funcitons.

to the most popular L2-loss, it turns out that Least Squares Boosting (LS Boost,

Friedman (2001)) is nothing more than repeated least squares fitting of residuals

(see line 4 of the generic gradient descent boosting). Furthermore, line 5 (the line

search) is not needed anymore because ρm = βm and βm was computed already at

line 4. Essentially the same procedure with M = 2 has been proposed by Tukey

(1977) and termed “twicing”. Gradient boosting with squared-error loss produces

the following algorithm:

LS Boost

1. f0(x) = ȳ, m = 0

2. m = m + 1

3. ri = yi − fm−1(x(i)), i = 1, . . . , n

4. (βm, γm) = arg minβ,γ

∑n
i=1(ri − β h(xi; γ))2

5. fm(x) = fm−1(x) + βm h(x; γm)

6. Iterate 2-5 until m = M

where the best value for M is usually determined via cross-validation.

3.1.3 Regularization

One virtual problem of prediction is encountered, when the training data is fitted

too closely. This hinders the good prediction when working with new data and is

called overfitting. The impressive performance of boosting is mainly due to its resis-

tance to overfitting. Initially, this appealing property was observed empirically, until

Bühlmann and Yu (2003) provided an analytical proof. The key to this resistance

comes at the price of one extra parameter introduced by a regularization method
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called shrinkage. It attempts to prevent overfitting by constraining the fitting pro-

cedure with a shrinkage factor. The simple strategy is to replace line 6 of the generic

algorithm (respectively line 5 of the LS Boost) with

fm(x) = fm−1(x) + ν ρm h(x; γm) (3.10)

where ν is the shrinkage factor. On the other hand, as the boosting iterations

evolve, the estimation model has more terms which suggests the “natural” way of

overfit prevention - providing small number of covariates, i.e. small M . It turns

out that we have two instruments for prevention which work in different manners.

Regularizing by controlling the number of influence terms suggests that “sparse” ap-

proximations, i.e. models which involve fewer terms, are believed to provide better

prediction. However, it has often been found that regularization through shrinkage

provides superior results to that obtained by restricting the number of covariates.

The shrinkage can be regarded as controlling the learning rate of the boosting proce-

dure. Roughly speaking, it provides the weak learner to be “weak” enough, i.e. the

base learner has large bias but low variance. Nevertheless, these parameters do not

operate independently and therefore mutually affect their performances. Decreasing

the values of ν increases the best value for M , so there is a tradeoff between them.

Ideally one should estimate optimal values for both by minimizing a model selection

criterion jointly with respect to the values of both parameters. The performance of

ν is examined rather empirically and Friedman (2001) was the first to demonstrate

that small values (ν = 0.3) are good in sense of low sensitivity of the boosting

procedure.

3.1.4 Boosting with Linear Operator

Bühlmann and Yu (2003) made the next significant contribution to the intensively

developing boosting framework. Their work contributed in several aspects, most

notably: they proposed a learner via linear operator S, which was appropriately ad-

justed later for the componentwise approach; they managed to prove an exponential

dependence between the bias and the variance of the boosted model, which is the

reason for the overfit resistane2 of boosting; they showed how smoothing splines can

be adopted by the boosting base procedure. In this section we will consider the first

aspect.

Roughly speaking, the key idea is to represent the learner as a linear operator (or

smoother) S : Rn → Rn, which yields the fitted values when post-multiplied by

2It was shown that addition of new terms in the model does not linearly increase its complexity,
but rather with exponentially diminishing amounts.
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the pseudo response. Let us denote hm = (βm h(x(1); γm), . . . , βm h(x(n); γm))T ,

fm = (fm(x(1)), . . . , fm(x(n)))
T , y = (y1, . . . , yn)T and rm = y − fm−1. Furthermore

we use the basic relation from the generic boosting algorithm fm = fm−1 + hm with

hm = Srm to provide the relationship

rm = y− fm−2 − Srm−1

= rm−1 − Srm−1.

Since f0 = Sy, then follows r1 = (I − S)y and we obtain

rm = (I − S)my. (3.11)

Consequently

fm = y− rm+1 = (I − (I − S)m+1)y

and finally the operator that maps the initial response vector y to fm is termed

Boosting operator, that is

Bm = I − (I − S)m+1. (3.12)

Expression (3.12) enables us to define the presence of “learning capacity” of the

model such that ‖I − S‖ < 1. In addition, Bm converges to the identity I as

m → ∞, thereby Bmy converges to the fully saturated model y, interpolating the

response exactly. However, using the same smoother S still does not explicitly

suggest variable selection and is therefore best applicable for univariate problems.

In the following Section 3.2 we will shown how this flexibility can be adopted by

boosting even for high-dimensional models, where the number of predictor variables

is allowed to grow very quickly.

3.2 Boosting High-Dimensional Models

Bühlmann (2006) provided an essential boosting technique, called L2Boost, for re-

gression problems with rapidly growing number of predictor variables. The key idea

in his method is to exercise the weak learner upon one variable at a time and to

pick out only those components with the “largest contribution to the fit”. That is

another way of keeping the learner “weak” enough, i.e. having low variance relative

to the bias, which is done simply by restraining of a complex structure with many

parameters. Thus, he also manages to incorporate an original predictor selection

stage into the boosting paradigm. The arbitration of the model’s complexity is

another distinctive feature of the new boosting technique. This complexity has an

essential role for defining the stopping condition of boosting. It is not required to
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run the algorithm multiple times for cross-validation, as commonly used by then.

A derivation of the hat matrix is provided and the complexity is determined by its

trace. Using that trace, one employs a corrected version of an AIC (Hurvich, Si-

monoff, and Tsai, 1998) to define the stopping criterion for the boosting algorithm.

These novelties are illustrated in the sequel.

3.2.1 Componentwise Linear L2Boost

We consider a linear model with p covariates, x1, . . . , xp and a response variable y,

with xj denoting a n-dimensional vector with realizations of xj, and xkj the kth

element of this vector. The essential modification of the new strategy concerns the

base learner, which is forced to do componentwise selection among the predictors at

each boosting stage. The base learner h(x) works as follows:

Componentwise linear least squares learner

h(xŝ) = β̂ŝ xŝ

β̂j =
(xj − x̄j)

T r

(xj − x̄j)T (xj − x̄j)
, j = 1, . . . , p

ŝ = arg min
1≤j≤p

n∑
i=1

(ri − β̂j xij)
2 (3.13)

where r = (r1, . . . , rn)T is the gradient of the loss function, used as a pseudo response.

Thus, the base procedure fits a simple linear regression with every single covariate

and selects the one that reduces the residual sums of squares most. So we have

a “built-in” predictor selection procedure. Finally, the L2Boost algorithm can be

summarised in the following scheme:

Componentwise boosting of linear model

1. Initialize f0 = ȳ1, set m = 0.

2. m = m + 1

3. rm = y− fm−1

4. Find ŝm as in (3.13).

5. Update fm = fm−1 + ν h(xŝm).

6. Iterate 2-5 until m = M

where ν is the shrinkage parameter and should accordingly be kept small, e.g. ν =

0.1, 1 = (1, . . . , 1)T and h(xŝm) = (h(x1,ŝm), . . . , h(xn,ŝm))T . Due to the additive
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structure in (5), the final estimate can again be interpreted as an additive model,

but the componentwise selection suggests that it typically depends on a subset of

the original p covariates.

Unlike the common practice in gradient boosting, the stopping condition M for

L2Boost is determined via the computationally more efficient AICc information

criterion (3.17) defined below. The first requirement for providing this criterion is

to determine the model complexity. Therefore, we assign degrees of freedom for

boosting. Denote by

H(j) =
xjx

T
j

‖xj‖2
, j = 1, . . . , p (3.14)

the (n×n) hat matrix for the linear squares fitting operator using the jth predictor.

It acts similarly to the linear operator S in Section 3.1.4 but employs each time

different covariate. The denominator ‖xj‖2 denotes the Euclidean norm for a n-

dimensional vector. Recall the common knowledge that the hat matrix yields the

fitted vector when post-multiplied by the (pseudo) response vector, i.e. h(xŝm) =

H(ŝm)rm. Moreover rm = y− fm−1 and fm = fm−1 + ν h(xŝm) which is followed by

rm = y− fm−2 − νH(ŝm−1)rm−1

= rm−1 − νH(ŝm−1)rm−1

and we have

rm = (I − νH(ŝm−1)) . . . (I − νH(ŝ2))(I − νH(ŝ1))y. (3.15)

Then

fm = y− rm+1 = (I − (I − νH(ŝm)) . . . (I − νH(ŝ1)))y

and finally the L2Boost hat matrix at stage m equals

H(m) = I − (I − νH(ŝm)) . . . (I − νH(ŝ2))(I − νH(ŝ1)). (3.16)

Note that H(ŝ) and H(m) are hat matrices in different regression problems, i.e. H(ŝ)

maps the pseudo response while H(m) maps the initial response. The L2Boost hat

matrix H(m) ultimately depends upon the selected components ŝ1, . . . , ŝm. This is

a direct consequence of the componentwise approach. Therefore, the term “hat

matrix” is in someway liberally transferred to H(m) and more precisely should be

viewed as an approximate hat matrix. Conversely, the Boosting operator (3.12) uses

the same operator (or smoother) at every stage, thus excluding the componentwise

fashion of modelling.

The degrees of freedom, provided by the trace of H(m), are employed in a corrected
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version of AIC in order to define a stopping condition for boosting:

AICc(m) = log(σ̂2) +
1 + tr(H(m))/n

(1− tr(H(m)) + 2)/n
(3.17)

σ̂2 = n−1

n∑
i=1

(yi − (Hmy)i)
2.

The number of boosting iterations is then estimated

M̂ = arg min
1≤m≤M

AICc(m)

where M is large enough to be used as an upper bound for the candidate number

of iterations.

3.2.2 Componentwise Additive L2Boost

The final remarks in Section 3.1.4 suggested the possibility of adding a nonparamet-

ric procedure to the boosting framework. Therefore, we assume additive expansion3

of the predictors. In this case, a smooth function is fitted to the negative gradient

of the loss function in each iteration, i.e. the parametric least squares learner from

the previous section is simply substituted by its “nonparametric” (or overparamet-

ric) counterpart. Bühlmann and Yu (2003) have shown that choosing smoothing

splines as a base procedure is very competitive to standard nonparametric models.

Later, Schmid and Hothorn (2007) investigated whether boosting with smoothing

spline base learners can be successfully approximated by boosting with P-Spline

base learners.4 Similarly to regression, it turned out that P-Splines, which are more

advantageous from a computational point of view, propose very good approximation

of smoothing splines. Recall that Z1, . . . ,Zp represent the basis transformations of

the initial covariates x1, . . . ,xp such that Zj = (b
[1]
j (xj), . . . , b

[B]
j (xj)) is a (n × B)

matrix. Then we have

h(xs) = Zsβs. (3.18)

Consequently βs is estimated via penalized least squares estimator as in (2.13). The

base procedure is then:

Componentwise P-Splines as base procedure

3Note that the term additive expansion can be used in two different contexts. Here we suggest
an initial additive expansion of the covariates, which should be clearly distinguished from the
interpretation of the boosting iterations as additive expansions themselves.

4We will briefly discuss in the next section the use of P-Spline base learners in an alterna-
tive boosting procedure, called likelihood boosting (Tutz and Binder, 2006), and show when both
strategies coincide.
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h(xŝ) = Zŝβ̂ŝ

β̂j = (ZT
j Zj + λΛ)−1ZT

j r, j = 1, . . . , p

ŝ = arg min
1≤j≤p

‖r− h(xj)‖ (3.19)

where Λ is the penalty matrix.

The inevitable price that we pay for increased flexibility consists of additional pa-

rameters. Now we should choose not only an appropriate shrinkage factor ν, but also

smoothing parameter λ and number of evenly spaced knots. Schmid and Hothorn

(2007) carried out a thorough analysis of the effect of the various parameters on

the boosting fit and provided very intriguing conclusions. They proved an approx-

imately linear dependence between the number of the boosting iterations and ν

for regression with one-dimensional covariate and found empirical evidence that the

same relationship also holds true for higher dimensions. This implies that the AICc

criterion (3.17) automatically adapts the stopping value for the iterations to the

shrinkage factor.

Furthermore, note that λ determines the degrees of freedom (df) of the base learner.

High values of λ lead to low degrees of freedom which is preferable in order to keep

the learner “weak”. Roughly speaking, λ acts like the shrinkage factor above by

reducing the learning rate of the base procedure. It was proposed by Schmid and

Hothorn (2007) df = 3 − 4 as a suitable amount for the degrees of freedom. Their

results, concerning the number of knots confirmed the common knowledge that there

is a minimum number of necessary knots which have to be provided and the algo-

rithm is not sensitive to this choice (20-50 knots should be sufficient). Finally, the

insertion of the new learner in the boosting paradigm is rather straightforward.

3.3 Likelihood Boosting

Likelihood boosting, proposed by Tutz and Binder (2006), retains the especially

useful “built-in” selection feature for high-dimensional models. Besides, it manages

to generalize the “boosts” for a response following a simple exponential family like

binomial, poisson or Gaussian. This is done by maximizing the likelihood in gen-

eralized additive models for all kinds of link functions. The procedure is referred

to as GAMBoost. One of the most advantageous innovations in GAMBoost is the

relation of the Newton-Raphson method to boosting. It also restrains the explicit

usage of the proposed loss functions by incorporating an information AIC criterion

instead. AIC is additionally used as stopping condition.

The theory of maximum likelihood estimation is referred to the estimation of Gen-
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eralized Linear Models (GLM). A GLM (Nelder and Wedderburn, 1972) allows for

the response distributions other than normal and has a basic structure

µi = h(ηi) = h(x(i)β) (3.20)

instead of the linear predictor

µi = ηi = x(i)β

where x(i) is a p-dimensional predictor vector, µi = E (yi|x(i)) and h is a specified re-

sponse function. General assumptions for yi’s are their independence and belonging

to some exponential family, i.e.

fθ(y) = exp{(yθ − b(θ))/a(φ) + c(y, φ)}

where θ is a canonical parameter which completely depends on β, φ is an arbitrary

dispersion parameter and a, b and c are arbitrary functions. The log likelihood of

θ, given a particular y, is the log(fθ(yi)) considered as a function of θ and not of y

anymore. Furthermore the log likelihood of θ defines ultimately the log likelihood

of β, that is

l(β) =
n∑

i=1

log(fθi
(yi)) =

n∑
i=1

(yiθi − b(θi))/a(φ) + c(φ, yi). (3.21)

Unfortunately, if the response is not Gaussian, there is no solution in closed form

for (3.21), i.e. it demands numerical optimization methods such as Iteratively Re-

weighted Least Squares (IRLS) or the Newthon-Raphson method. In combination

with an additive structure in the covariates, fitting of model (3.21) is based on

maximizing the penalized likelihood

l(p) = l(β)− λ

2
Λβ.

At this stage a modified version of the Newton-Raphson method should be applied

to obtain an estimation of β. It is done via the so called penalized score function

sp(β) = s(β)− λΛβ, where

s(β) = ZT
j D(β)Σ(β)−1(y− µ) = ZT

j W(β)D(β)−1(y− µ)

with

ZT
j = (z1j, . . . , znj) the augmented design matrix,

µ = (µ1, . . . , µn)T , ηi = η̂(m)(x(i)) + zT
ijβj,

D(β) =




∂h(η1)/∂η . .

.
. . . .

. . ∂h(ηn)/∂η



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Σ(β) =




σ1 . .

.
. . . .

. . σn




σ2
i = Varβ(yi), W(β) = D(β)Σ(β)−1D(β).

The penalized Fisher matrix

Fp(β) = E

(−∂2lp(β)

∂β∂βT

)

has the form Fp = F (β) + λΛ, where F (β) = E
(−∂2l(β)/∂β∂βT

)
= ZT

j W(β)Zj.

One Fisher scoring step is then

β̂new = β̂ + Fp(β̂)−1sp(β̂)

and starting with an initial guess β(0) the solution is found through successive im-

provements of β. Since with boosting one successively corrects the already fitted

terms, at this stage we observe the most innovative feature of GAMBoost. Likelihood

boosting requires only one step of the Fisher scoring algorithm and the estimations

β̂new are derived simply by refitting the residuals. For further details see Tutz and

Binder (2006).

Assuming the special case of a Gaussian response, the notation is consistent with

Section 2.1: f = µ = Zβ̂, where Z = (Z1, . . . ,Zp) is the augmented (n × Bp)

design matrix, Z1, . . . ,Zp represent the basis transformations of the initial covari-

ates x1, . . . ,xp, such that Zj = (b
[1]
j (xj), . . . , b

[B]
j (xj)), β̂ = (βT

1 , . . . , βT
p )T is a

(Bp × 1) vector, βj = (β
[1]
j , . . . , β

[B]
j )T . The weak learner is essentially the same

as in the previous section. Then, the updates of β̂ are introduced through β̂(m) =

β̂(m−1) + (0T , . . . , β̂
T

ŝm
, . . . ,0T )T , where 1 ≤ ŝm ≤ p denotes the fitted component at

the mth step and 0 denotes zero vectors that supplement the second addend to a

conformable argument. That leads to the well-known structure

fm = Zβ̂(m−1) + Zŝmβ̂ŝm
= Zβ̂(m) = fm−1 + hm.

To stop the boosting iterations one could profit again from the sophisticated hat

matrix at step k, H(k) and particularly from its ability to express the model com-

plexity by the effective degrees of freedom stuck in its trace. The hat matrix has

the form

H(ŝm) =
m∑

j=0

H(ŝj)

j−1∏
i=0

(I −H(ŝi)) (3.22)

(see the derivation in Appendix B). Thus, in the special case of Gaussian response,

additive learner and L2-loss function, the hat matrices (3.16) and (3.22) coincide.
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3.4 Multivariate Boosting

Allowing high dimensionality for the response in a boosting strategy has been con-

sidered, up to my knowledge, only in Lutz and Bühlmann (2006) . They present

theoretical treatment of the multivariate boosting and also provide empirical evi-

dence that the multivariate approach outperforms individual estimations in several

cases. Their technique strongly resembles the L2 Boosting scheme from Section 3.2,

hence only the most distinctive features are outlined in the sequel. It should be

noted, that this more advanced way of boosting was still not implemented in the

standard add-on package mboost (Hothorn et al., 2008) at the time of writing this

thesis.

A multivariate linear regression model with n observations is considered as follows:

Y = XB + E (3.23)

with Y ∈ Rn×q, X ∈ Rn×p, B ∈ Rp×q and E ∈ Rn×q. The increase of dimension-

ality demands a richer nomenclature. Therefore y(i) denotes the response at the

ith sample point, i.e. a q-dimensional row-vector. With yj is indicated the jth re-

sponse variable, i.e. a n-dimensional column-vector. For the error matrix is assumed

E (ej) = 0, cov(e(k), e(l)) = 0, for k 6= l, that is the sample points are independent,

cov(ei) = Σ. Additionally it is assumed that all covariates are centered to have zero

mean, so no intercepts are worrying. The corresponding loss function is then

L(B) =
1

2

n∑
i=1

(yT
(i) − xT

(i)B)Γ−1(yT
(i) − xT

(i)B)T (3.24)

where Γ is an estimate of the usually unknown covariance matrix Σ. The well

known componentwise procedure is affected by the new dimensionality in the pseudo

response as well. It consistently follows the dimensionality of the initial response

and is termeed with R ∈ Rn×q. The componentwise learner selects again only that

component which reduces the loss function most:

Multivariate linear learner

H(xŝ) = xŝβ̂ŝ,t̂

β̂jk =

∑q
v=1 RT

v xjΓ
−1
vk

xT
j xjΓ

−1
kk

(ŝ, t̂) = arg max
1≤j≤p,1≤k≤q

(∑q
v=1 RT

v xjΓ
−1
vk

)2

xT
j xjΓ

−1
kk

(3.25)
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From (3.25) we see the impact of the multivariate structure in β̂jk, which is not

influenced only by the kth response but also by other response-components via Γ−1

and their correlation with the jth predictor xj. The other key definition is the hat

matrix, that maps the single components to the response. That is

H(jk) =




0 0 . . . 0
...

...
...

0 0 . . . 0

Hj Γ−1
k1

Γ−1
kk

Hj Γ−1
k2

Γ−1
kk

. . . Hj Γ−1
kg

Γ−1
kk

0 0 . . . 0
...

...
...

0 0 . . . 0




(3.26)

where Hj = xjx
T
j /xT

j xj is the hat matrix of the univariate componentwise linear

learner using the jth predictor. Then the approximate hat matrix of the boosting

at step m is

Km = I − (I − νH(ŝm t̂m))(I − νH(ŝm−1 t̂m−1)) . . . (I − νH(ŝ1 t̂1)). (3.27)

Lutz and Bühlmann (2006) also provide the computational complexity of the hat

matrix O(n2p + n3q2m) and conclude that such computations are not feasible for

large n or q. Finally, the stopping criterion should also be conformable with higher

dimensions, which leads to

AICc(m) = log(|Σ̂(m)|) +
q(n + trace(Km)/q)

n− trace(Km)/q − q − 1

where Σ̂(m) = n−1
∑n

i=1(R(i)R
T
(i)) and the number of boosting operations is esti-

mated via

M̂ = arg min
0≤m≤M

AICc(m)

with a pre-chosen, sufficiently large value of M .

Alternatively, one could approach the multivariate structure by row-boosting. The

concept of row-boosting is to update a whole row of B, instead of a single entry.

This strategy is supported by the assumption that a single covariate could influence

all response-components. The variable, which contributes to the multivariate fit

most, is updated at the corresponding step. The multivariate fit is determined via

Wilk’s Λ,

Λ =
|(Y−XB̂)T (Y−XB̂)|

|YTY|
where |.| denotes the determinant of a matrix.

28



3.4 Multivariate Boosting 3 BOOSTING

Lutz and Bühlmann (2006) showed with simulated data that multivariate boosting

performs well, particularly in those situations, where the predictor dimension or the

response dimension is large relative to the sample size. Row-boosting does not seem

to outperform multivariate boosting, except of the situations with row-complete B.

In case of correlated errors, multivariate boosting is clearly superior to the individual

L2 Boosting and at least as good with uncorrelated errors. Apparently, on real data

none of the boosting techniques proves to be the overall best method. For further

details see the cited paper.
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4 Time Series Models

In this section we will outline some basic concepts of time series models. In Section

4.1 we will discuss the general ideas behind univariate, autoregressive time series

modelling in terms of stationarity conditions, parameter estimation and order selec-

tion. For a substantially broader discussion on times series, see Hamilton (1994),

which is one of the most frequently quoted textbooks on the topic. Due to the wide

application and frequent use of the simple autoregressive model, we will use it as

a benchmark in the application part to follow (Section 6). In Section 4.2 we will

introduce the relevant modelling techniques for vector autoregressions. Multivariate

time series are considered in greater depth by Lütkepohl (1991; 2006). In the last

Section 4.3 we will outline some strategies for modelling of nonlinear time series.

Summaries of the common nonlinear models are given by Priestley (1980), Tong

(1993) and Tsay (2005) among others.

4.1 Univariate Time Series

4.1.1 Stationarity

A stochastic process could be treated as a function of one or several deterministic

arguments (“inputs”) whose values (“outputs”) are non-deterministic, i.e. random

values to which a probability distribution is assigned. This implies that the future

evolution of the process is not clearly determined, even when an equal starting point

is ensured. However, some paths are more probable than others.

In the simplest possible case, a stochastic process amounts to a sequence of random

variables, which is suitably termed time series. Each time series observation is

assumed to be generated by a different member of the stochastic process. Suppose

we have observed a sample size T of some variable y:

{y1, y2, . . . , yT}

we denote the stochastic process with {yt}t∈T . Note that we will follow the common

practice to denote the random variables and the corresponding observations with

the same symbol. It would be the context to suggest whether the symbol yt refers

to an observed value or a random variable. Further on, the covariance between two

variables yt and yk is defined as

Cov (yt, yk) = E [(yt − µt)(yk − µk)] = γtk (4.1)

where µt = E (yt) is the expectation, also called unconditional mean, of yt. Note

that provided t− k = h, (4.1) could be described as the covariance between yt and
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its own lagged value yt−h, hence (4.1) is also referred to as autocovariance of yt.

Time series analysis is based, indeed, on stationarity. A stochastic process {yt}t∈T

is called (weakly) stationary if neither the mean µt, nor the covariances γtk depend

on the time index t. That is

E (yt) = µ for all t, µ < ∞
E (yt − µ)(yt−h − µ) = γh for any t and any h such that t− h ∈ T. (4.2)

Due to the practical usefulness and frequent usage of weakly stationary processes

we suppress “weakly” and call them just stationary. So, by providing that the first

and the second moment are time-invariant, we mean that a time series, generated

by a stationary process must fluctuate around constant term µ with a constant

variance σ2 = γ0. Moreover, the covariances between any two random variables

depend on the distance between them, h = t − k, and not on the realisation dates

t and k themselves. The normalized counterpart of γh is called autocorrelation and

is denoted with ρh = γh/γ0. Clearly, with h = 0, ρh = 1. Additionally, there

is a more restrictive concept of strict stationarity, which requires even the joint

distributions of (yt, yt−1, . . . , yt−h) to be unaffected by t. Strict stationarity has

barely any practical application and is regarded as a rather theoretical construct.

However, if the times series yt is normally distributed, then weak stationarity is

equivalent to strict stationarity.

In practice the expectation and the autocovariance are estimated by their sample

counterparts, namely the sample mean

µ̂ = ȳ =
1

T

T∑
t=1

yt

and the sample autocovariance

γ̂h =
1

T

T∑

t=h

(yt − ȳ)(yt−h − ȳ), for h = 0, 1, 2, . . . .

Note that even though only T −h observations are used to estimate γ̂h, the denomi-

nator is T rather than T − h. Thus, for large h, the estimates are shrunken towards

zero.

4.1.2 Autoregressive Processes

A stochastic process {yt}t∈T is said to be autoregressive of order p, if the past p

values of yt jointly determine the conditional expectation of yt, given the past data.
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This is

yt = a0 + a1 yt−1 + a2 yt−2 + . . . + ap yt−p + εt (4.3)

where εt is assumed to have mean zero and a constant variance σ2 and is referred

to as white noise.

A very convenient alternative for expressing system of equations like (4.3) is provided

by the lag operator L. It shifts the time index of a times series variable backward

by one unit of time, that is Lyt = yt−1. Applying the lag operator twice increases

the shift back in time, such as

L2yt = L(Lyt) = L(yt−1) = yt−2.

It can be raised to arbitrary integer power p, Lp = yt−p, providing this way an

equivalent expression of (4.3) through

(1− a1L− a2L
2 − . . .− apL

p)yt = a0 + εt. (4.4)

There is a detailed discussion in Hamilton (1994, p. 26-27) about the useful alge-

braic properties of the lag operator, such as commutativity with the multiplication

operator

L(c yt) = c Lyt

or distributivity over the addition operator

L(yt + zt) = Lyt + Lzk.

Through the application of a lag operator we can easily examine the stationarity.

This is done via the so called characteristic equation of the AR(p) process:

1− a1λ− a2λ
2 − . . .− apλ

p = 0, (4.5)

whose roots determine the dynamics of the whole stochastic process. The stationa-

rity condition of the AR(p) process is fulfilled, if the absolute values of its char-

acteristic roots exceed one, otherwise it is unstable. According to the common

terminology, the characteristic roots are said to lie outside the unit circle. In should

be noted that the nomenclature is not always consistent. Sometimes, characteristic

roots indicate the inverses of the solutions of (4.5). Consequently, they are accord-

ingly claimed to lie inside the unit circle in order to satisfy the necessary condition

for stationarity.5 Nevertheless, we restrain from this convention.

5Characteristic roots should be clearly distinguished from the eigenvalues of the so called state
space representation of an AR(p) process, see Hamilton (1994, Chapters 1,13).
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Suppose we have a simple example of an AR(2) process. The characteristic equation

is

1− a1λ− a2λ
2 = 0, (4.6)

and the characteristic roots lie outside the unit circle, if

λ1,2 =
a1 ±

√
a2

1 + 4a2

2a2

, |λ1,2| > 1.

It is worth mentioning that in situations, in which the characteristic roots are com-

plex numbers,6 the dynamic behaviour of the process is characterized by decaying

sinusoids, instead of exponential decays, as with real valued solutions. For the spe-

cial case, in which the characteristic equation (4.5) has a unit root, i.e. λi = 1, the

process is said to be unit root process, or an integrated process, denoted by I(1).

Having unit roots, the original AR(p) could be factored as

(1− a1L− a2L
2 − . . .− apL

p−1)∆yt = a0 + ε,

where ∆ denotes the difference operator: ∆yt = yt − yt−1 = (1 − L)yt. Such

transformation is commonly used in practice because we obtain an AR(p−1) model

of the {∆yt}t∈T−1 process.

4.1.3 Parameter Estimation

In practice we usually have to estimate the parameters ai. Throughout this subsec-

tion we will assume that the order of the process is known as p. Later on we will

show a strategy to estimate the order of the process as well. For now, assuming the

stationarity is preliminarily satisfied, one could use very useful relations between the

autocovariances of the process. Multiplying both sides of (4.3) by yt−j and taking

the expectations leads to

E (ỹtỹt−j) = a1 E (ỹt−1ỹt−j) + . . . + ap E (ỹt−pỹt−j) + E (εtỹt−j) (4.7)

where ỹt = yt − µ. Then we have

γj = a1 γj−1 + a2 γj−2 + . . . + ap γj−p, for j = 1, 2, . . . p. (4.8)

Dividing both sides of (4.8) by γ0 produces the famous Yule-Walker equations :

ρj = a1 ρj−1 + a2 ρj−2 + . . . + ap ρj−p. (4.9)

6Note that the modulus of a complex number λ = a + i b is defined by |λ| =
√

a2 + b2. See
Hamilton (1994), p. 14-18 for a broader discussion on the effect of complex numbers to the system
dynamics.
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One can employ the fact that ρ1 = ρ−1 and rewrite (4.9) in a system of equations

ρ1 = a1 ρ0 + a2 ρ1 + a3 ρ3 + . . . + ap−1ρp−2 + ap ρp−1

ρ2 = a1 ρ1 + a2 ρ0 + a3 ρ1 + . . . + ap−1ρp−3 + ap ρp−2

...
...

ρp−1 = a1 ρp−2 + a2 ρp−3 + a3 ρp−4 + . . . + ap−1ρ0 + ap ρ1

ρp = a1 ρp−1 + a2 ρp−2 + a3 ρp−3 + . . . + ap−1ρ1 + ap ρ0

which is equivalent to



ρ1

ρ2

...

ρp−1

ρp




︸ ︷︷ ︸
ρ

=




1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

ρp−2 ρp−3 ρp−4 . . . ρ1

ρp−1 ρp−2 ρp−3 . . . 1




︸ ︷︷ ︸
Φ




a1

a2

...

ap−1

ap




︸ ︷︷ ︸
a

.

Finally, the estimates are found through

â = Φ−1ρ. (4.10)

Another particularly easy estimation of an AR process of order p can be done via

ordinary least squares (OLS). This model is in the same form as the well-known

simple linear regression model in which yt is the response and the yt−1, . . . , yt−p are

the explanatory variables. Hence, the resulting over-determined system is



yp+1

yp+2

...

yT




︸ ︷︷ ︸
y

=




yp yp−1 . . . y1

yp+1 yp . . . y2

...
...

yT−1 yT−2 . . . yT−p




︸ ︷︷ ︸
X




a1

a2

...

ap




︸ ︷︷ ︸
a

. (4.11)

As usual, the estimator is â = (XTX)−1XTy.

There are even more estimation techniques such as the Burg estimation method or

Maximum Likelihood Estimation which, indeed, all provide very similar results with

increasing sample size (see Brockwell and Davis (1991) for further details).

4.1.4 Order Selection

In order to complete the exposition of the estimation process we still have to find

the initially unknown order of the AR-model. We will explore this problem from
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the perspective of the most common estimator, the OLS. The strategy consists of

successive computations of an information criterion for different orders, m = 1, . . . , l,

where l is a preliminary specified positive integer. Consequently, the selected m is

the one, which provides the best value according to this criterion. As shown in

Lütkepohl and Krätzig (2004, p. 33), the information criterion is of the general

form

Cr(m) = log σ̂2
ε(m) + cT ϕ(m) (4.12)

where σ̂2
ε(m) = T−1

∑T
t=1 ε̂t(m) is the error variance estimator based on the OLS

residuals ε̂(m) from an m-ordered AR model, cT is a sequence indexed by the sample

size, and ϕ(m) is a function that penalizes large AR orders. The use of an informa-

tion criterion like (4.12) leads to a parsimonious time series model, as it not only

rewards goodness-of-fit but includes a penalty term, that is an increasing function

of the number of the estimated parameters. This penalty term thus discourages

overfitting. In the general case ϕ(m) denotes the order of the fitted process and

cT is a weighting factor that may depend on the sample size. Several modifications

of the information criterion (4.12) exist, which differ mainly in the choice of the

weighting factor.

The application of OLS actually rearranges the lagged values as explanatory vari-

ables, which leads to reduction of the response length by a factor of l. It is important

to note that the sample size should be kept constant for all orders. Let us have an

initial sample size of length T + l. In order to simplify the notation, one starts to

count the response values from −l +1 to T , instead from 1 to T + l. In other words,

we relabel the observations by defining “presample” realizations y−l+1, . . . , y0. Such

partitioning implies that the sample size of all regressions is T . Then, the order that

minimizes the criterion is chosen as estimator p̂ of the true order p.

Specifying cT = 2/T leads to the well-known criterion of Hirotugu Akaike (Akaike,

1973, 1974)

AIC(m) = log σ̂2
ε(m) +

2

T
m

which is frequently used in practice. Another specifications of cT produce the crite-

rion

HQ(m) = log σ̂2
ε(m) +

2 log log T

T
m (Hannan and Quinn, 1979)

or

SC(m) = log σ̂2
ε(m) +

log T

T
m (Schwarz, 1978).

It is straightforward to see that for moderate to large sample sizes the Schwarz Cri-

terion (SC) is more likely to produce parsimonious model, compared to the AIC.
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However, after denoting the selected orders by p̂(AIC), p̂(HQ) and p̂(SC) the fol-

lowing relations hold even in small samples of fixed size T ≥ 16 :

p̂(SC) ≤ p̂(HQ) ≤ p̂(AIC)

(Lütkepohl 1991, Chapters 4 and 11; Lütkepohl and Krätzig 2004, p. 33).

Each of the aforementioned criteria suggests the inclusion of all p̂ lags in the model,

regardless of how significant they are. However, it may happen that some lags are

not significant. To overcome this problem one can specify a threshold value for the t-

ratios of the estimated coefficients. If one t-value is smaller that the threshold, say 2,

then the corresponding coefficient is restricted to zero and the model is re-estimated.

4.2 Vector Autoregressive Model

Now we will introduce vector autoregressions, which are particularly convenient for

estimation and forecasting. They became very appealing for economic times series

analysis since the seminal work of Sims (1980) has been introduced. We will consider

the basic, stationary finite order vector autoregressive (VAR) model in particular.

The VAR model suggests that every variable is a linear combination of its past

observations and the past observations of supplemental variables. Additionally, the

forecasting errors are uncorrelated for the different time periods. In practice such

assumptions enjoy great popularity. We will examine the practical usefulness of the

VAR model with real data in Section 6.

4.2.1 Stationary Vector Processes

In contrast to the univariate autoregressive time series, we assume yt to be a q-

dimensional random variable. Accordingly, the pth-order vector autoregression, de-

noted with VAR(p), is a vector generalization of (4.3):

yt = A0 + A1 yt−1 + . . . + Ap yt−p + εt (4.13)

with A0 denoting a (q×1) vector of constants and Aj a (q×q) matrix of autoregressive

coefficients with j = 1, 2, . . . , p. The (q × 1) error vector εt is affected by the new

dimensionality in the following way:

E (εt) = 0

and

E (εtε
′
k) =





Σ for t = k,

0 otherwise
(4.14)
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where Σ denotes a (q × q) symmetric positive definite matrix and 0 denotes a

(q × 1) zero vector. Note that every row in the vector autoregression system (4.13)

represents a scalar variable which is regressed on a constant, its own p past-values

and the additional p past-values of the others q − 1 variables, e.g. the ith row is

yit = a
(0)
i + a

(1)
i1 y1,t−1 + . . . + a

(1)
iq yq,t−1︸ ︷︷ ︸

First lag

+ . . . + a
(p)
i1 y1,t−p + . . . + a

(p)
iq yq,t−p︸ ︷︷ ︸

pth lag

+εit.

where a
(0)
i denotes the ith element of matrix A0, a

(k)
ij the row i, column j element

of matrix Ak. The regressors in all equations are the same which turns out to

be very helpful for the application of OLS estimators later on, i.e. we will see

that the generalized least squares estimator coincide with the ordinary least squares

estimator.

Again, stationarity guarantees that the “essential” properties of the times series

remain constant over time. A vector process {yt}t∈T is said to be weakly stationary7

if its first and second moments (E (yt) and E (yt yt−h)) are time invariant. This

means that

E (yt) = µ, ‖µ‖ < ∞
E [(yt − µ)(yt−h − µ)] = Γh, ‖Γ‖ < ∞.

where µ and Γh do not depend on t. After application of the lag operator L, (4.13)

can be rewritten in

(In − A1 L− A2 L2 − . . .− Ap Lp)yt = A0 + εt.

and the stationarity condition holds if all values of λ satisfying

|In − A1 λ− A2 λ2 − . . .− Ap λp| = 0

lie outside the unit circle.

4.2.2 Estimation of Vector Autoregressive Processes

The estimation principles of univariate and multivariate autoregressive processes are

closely related. Again, we have to go through order selection, parameter estimation

and possibly parameter restrictions, in order to estimate a reasonable model. There-

fore, in the following we will summarize the most distinctive features of the VAR

model, drawing partly up on Lütkepohl (2006, Chapters 3 and 4).

7Also called covariance-stationary, wide-sense stationary or stationary
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Before we start the estimation process, it should be noted that there are different

possibilities for estimating a VAR model. Many of them are multivariate generaliza-

tions of the methods, met in the univariate case such as Least Squares Estimation,

Yule-Walker Estimation or Maximum Likelihood Estimation. Since discussion on

all methods would go beyond the scope of the present work, we will discuss the first

method, which is most commonly used in practice: the Least Squares Estimation.

In order to estimate the elements in A0, A1, . . . , Ap and Σ, generated by the q-

dimensional VAR(p) process (4.13), it is assumed that T + p time series observa-

tions are available. As previously discussed, such assumption facilitates the notation

by partitioning the data into p “presample” observations, that is yp−1, . . . ,y0, and

remaining observations y1, . . . ,yT . Then we introduce the following notation:

Y = [y1, . . . ,yT ] (q × T )

B = [A0, A1, . . . , Ap] (q × (qp + 1))

Zt =




1

yt
...

yt−p+1




((qp + 1)× 1)

Z = [Z0, . . . , ZT−1] ((qp + 1)× T )

ε = [ε1, ε2, . . . , εT ] (q × T )

y = vec(Y) (qT × 1)

ε = vec(ε) (qT × 1)

β = vec(B) (q2p× 1)

b = vec(B′) (q2p× 1)

where vec is the column stacking operator as defined in Appendix B.5. The initial

T equations (4.13) can now be written compactly in a matrix form as

Y = BZ + ε. (4.15)

Then, appying the vectorization rules (1) and (3) from Appendix B.5 to (4.15), we

come up with

vec(Y) = (Z ′ ⊗ Iq)vec(B) + vec(ε) (4.16)

where ⊗ denotes the Kronecker Product (Eves, 1980). The latter could be equiva-

lently represented as:

y = (Z ′ ⊗ Iq)β + ε. (4.17)

Note that the covariance matrix of ε is

Σε = IT ⊗Σ. (4.18)
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Since Σε is not a diagonal matrix we employ the generalized least squares estimator

(GLS). That means that an estimation for β is obtained via minimizing

S(β) = ε′Σ−1
ε ε

which in turn produces

β̂ = ((ZZ ′)−1Z ⊗ Iq)y. (4.19)

(see Appendix B.3 for derivation of (4.19)). It is worth noting that the GLS-

Estimator β̂ is independent from Σε. So, if we examine the trivial OLS-Estimator,

obtained simply by minimizing

S̃(β) = ε′ε

we have exactly the same estimation of β, as in (4.19) (see derivation in Appendix

B.4). This result is attributable to Zellner (1962), who showed that GLS and OLS

estimation in a multiple equation model coincide if the regressors in all equations

are the same. Further on, in optimization problems, the definiteness of the Hessian

matrix determines the quality of an extremal value. In this case, the Hessian matrix

of S(β)
∂2S(β)

∂β∂β′
= 2(ZZ ′ ⊗Σ−1) (4.20)

is positive definite which guarantees that β̂ does indeed minimize S(β). More pre-

cisely, β̂ is a strict local minimum of S.

Alternatively, one can use the OLS estimator of (4.15) in order to derive estimates

via

B̂ = YZ ′(ZZ ′)−1

or, in vector form,

b̂ = vec(B̂) = (Iq ⊗ (ZZ ′)−1Z)vec(Y′).

Now we provide four conditions:

(1) E (εt) = 0

(2) E (εtε
′
t) = Σ, Σ nonsingular

(3) E (εtε
′
k) = 0 for k 6= t

(4) E |εitεjtεktεmt| ≤ c, with c being positive constant, i.e. fourth moment exists
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which jointly define εt as being a standard white noise process. Provided standard

white noise process, it is assured that the estimator converges in probability to the

true value, i.e. it is consistent, and is asymptotically normal (see Lütkepohl 2006,

p. 74, Proposition 3.1):

• plim B̂ = B

• √T (β̂ − β) =
√

Tvec(B̂ −B)
d−→ N(0,Γ−1 ⊗Σ)

where Γ = plimZZ ′/T and
d−→ denotes convergence in distribution. The second

asymptotical property will be considered in the discussion about the proper param-

eter constraints that follows.

Up to this moment we have assumed that the real order of the VAR process is

known. Apparently, we need procedures for choosing an adequate VAR order, p, in

practice. In order to make significant estimations for larger response dimensions,

the number of the sample size should (exponentially) increase. This phenomenon

is commonly referred to as the curse of the dimensionality (Bellman, 1961). Due

to insufficient degrees of freedom, the model parameters are then imprecisely esti-

mated, thus yielding large standard errors and high estimation uncertainty. In the

past, a common practice to handle this problem was simply to specify a model with

a shorter lag length. Sims (1980) motivated a criticism against this methodology,

stating that the economic models often suffer from “incredible zero restrictions”.

Therefore, it may be more appropriate to come up with schemes, reducing the num-

ber of free parameters without shortening lag lengths.

A straightforward strategy, which includes t-, χ2- or F -tests for inference regarding

the parameters, may be inappropriate too (see Toda and Phillips, 1993). In the pres-

ence of unit roots, i.e. presence of integrated or cointegrated variables, this strategy

raises another problem concerning the convergence rate of the parameters. As the

second asymptotical property shows, the parameters converge with a rate of T 1/2.

But, if there are integrated or cointegrated variables, some estimated coefficients

or linear combinations of coefficients converge with a faster rate than T 1/2, which

makes the proper interpretation of the t-ratios unclear. Nevertheless, the harmful

influence of unit roots could be relaxed to some extent. As shown by Toda and

Yamamoto (1995) and Dolado and Lütkepohl (1996), if all variables are I(1) or I(0),

the usual tests have their standard asymptotic properties. In other words, t-ratios

have their usual standard normal distributions and are suitable statistics for testing

that a single coefficient is zero.

Finally, we determine the order of the autoregressive process via model selection
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procedure. We employ a generalized version of (4.12) via

Cr(m) = log(det(Σ̃u(m))) + cT ϕ(m), (4.21)

where det(.) denotes the determinant and Σ̃u(m) = T−1
∑T

t=1 ε̂ε̂′ is the residual

covariance matrix estimator for a model of order m, cT is a sequence indexed by the

sample size T and ϕ(m) is a function which penalizes large VAR orders. The general

strategy again is to fit VAR models of different orders m = 0, . . . , l and to choose an

order estimator p̂ which minimizes the preferred criterion. The three criteria from

Section 4.1.4 are now generalized to

AIC(m) = log(det(Σ̃u(m))) +
2

T
mq2,

HQ(m) = log(det(Σ̃u(m))) +
2 log log T

T
mq2

and

SC(m) = log(det(Σ̃u(m))) +
log T

T
m q2.

4.3 Nonlinear Autoregressive Models

Linear time series models are generally the starting point for modeling both station-

ary univariate and multivariate times series data. However, the practice shows that

real world data quite often exhibits nonstationary behaviour, e.g. structural breaks,

variance increases, changing lag order. When nonlinear dynamics are an objective, it

is no longer sufficient to consider linear models. The literature offers a great amount

of nonlinear modeling tools. For the sake of integrity, we will summarize the most

common of them.

The first four models of our overview are developed in the spirit of nonlinear para-

metric models. Nonlinear parametric models have one substantial drawback, which

is the reason for their varying performance. They require an a priori choice of para-

metric functions, which are believed to be appropriate in certain situations. This

approach is used mainly in financial applications, when we have sufficient knowl-

edge to prespecify the nonlinear structure between the covariates and the response.

However, the appropriateness is usually hard to be justified. Consequently, these

methods are not always capable to capture the relevant features. In this case, one

has to choose an alternative nonlinear parametric model. Here are the options.

• The Bilinear Model is maybe the simplest nonlinear model. It is a natural

extension of the simple autoregressive model (4.3). Bilinear models incorpo-

rate the class of linear models considered by Box and Jenkins (1976), namely
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the integrated auto-regressive moving average (ARIMA) models. The ARIMA

model is considered as the first-order Taylor expansion of the true, underly-

ing function. Bilinear model employs the second-order Taylor expansion in

order to improve the estimation. This model was introduced by Granger and

Andersen (1978).

• Self-Exciting Threshold AutoRegressive (SETAR) model is another extension

of the autoregressive model. It allows higher degree of flexibility in the model

parameters through a regime switching behaviour. The model consists of k

regimes, each considering different autoregressive parts. The major criticism

of the SETAR model is based on the discontinuity of its mean function. Fur-

thermore, the transition is determined by a particular lagged variable. Conse-

quently, this suggests deterministic scheme of switching. Therefore, the model

is justified only in cases in which nonlinearity is caused by declining or rising

patterns in the stochastic process. The model was fully developed by Tong

and Lim (1980).

• Smooth Tansition AutoRegressive (STAR) model has been proposed in re-

sponse of the criticism of the SETAR model. It actually contains the two-

regime SETAR model as a special case. It can be understood as two-regime

SETAR model with smooth transition between the regimes, or as continuum

of the regimes. Thus, the presence of transition function is the defining feature

of this model. It was developed by Chan and Tong (1986). The method is

implemented in the Java-based Multiple Time series software JMulti, based

on Lütkepohl and Krätzig (2004).

• The last and the most popular model in this first part of our overview is the

Markov Switching Autoregressive (MSA) model. It uses probability switching

with aperiodic transition between various states. More precisely, MSA con-

trols the transition from one conditional mean function to another via hidden

Markov chain. Thus, the MSA has the very appealing property of stochastic

scheme of switching, i.e. it does not require the presence of a distinct pattern,

explicitly followed by the process. MSA is considered in Hamilton (1989).

There is a specialized implementation of MSA, namely Regression Analysis

of Time Series (RATS) software package.

In contrast to the parametric nonlinear models, when using nonparametric tech-

niques, we are not restricted to a particular choice of parametric function classes.

One principal strategy is to study the times series counterpart of the additive model

(2.2), which is

yt = f1(yt−i1) + f2(yt−i2) + . . . + fp(yt−ip) + εt (4.22)
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where ij’s are positive integers, fj represent the essence of nonparametric models,

namely smooth functions and a white noise term εt. Models like (4.22) are termed by

Chen and Tsay (1993) Nonlinear Additive AutoRegressive (NAAR) models. When

further (exogenous) variables are available, we suitably extend the model from (4.22)

with more functions and call it NAARX. Thus, NAARX encompasses linear regres-

sive models and many nonlinear models as special cases. Then we could employ

different nonparametric strategies to select the significant covariates (or lags) and

fit a reasonable model. Many of these strategies have one fundamental ingredient in

common, namely basis expansions, which we have discussed in detail in Section 2.

Therefore, in the remainder of this section we give a partial sketch of the key ideas

underpinning common nonparametric algorithms, without being very exhaustive.

The aim is to get familiar with the general principles, while a series of references

point to the original sources for an in-depth exposition.

4.3.1 Spline Fitting with BIC

Huang and Yang (2004) recently introduced a study that gained much of an atten-

tion. Their method manages to demonstrate very appealing lag-selection properties

for univariate nonlinear time series. It is fairly simple because, in fact, it repre-

sents an additive version of the linear stepwise procedure. The procedure proposes

truncated splines or B-Splines as base expansions of the predictors. Note that the

proposed base functions are not penalized. Instead, the study suggests a formula,

which determines a quite small number of evenly spaced knots. The maximal lag

length of the process is defined via the integer d, which is called total number of can-

didate variabes. Another index Smax indicates the maximal number of the variables

(among the candidate ones) which are allowed in the model. Clearly, Smax should

not be larger than d. The actual method is divided into three stages: forward stage,

backward stage and final selection. The forward stage starts with a current model,

which is the null model, i.e. yt = c + εt, where c is a constant. Then, it adds to

the current model one variable at a time, by choosing the one, which minimizes a

modified version of the mean-squared error (MSE). The fitting is actually the least

squares method, as described by the augmented linear model (2.5). The “best”

variable is included into the current model. Then, we continue to add from the

remaining variables one at a time, until we reach the maximal number Smax of can-

didate variables in the current model.

The backward stage starts with the model, resulted from the forward stage. It

deletes from the current model one variable at a time in accordance to the MSE,

excluding the “worst” ones. The backward stage continues in this fashion until no
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variables remain in the current model. Both forward and backward stages identify

a collection of “good” models. The final selection chooses from this collection the

model, which provides the best performance according to a corrected version of the

Schwarz Criterion (or BIC), discussed in 4.1.4. In terms of lag selection, the pro-

posed method performs quite well with simulated time series. However, no results

are provided, that concern the goodness-of-fit of the model. We will use some of the

artificial times series, provided by Huang and Yang (2004) in the Section 5 and will

shed light upon the goodness-of-fit as well.

4.3.2 Multivariate Adaptive Regression Splines

The base reference about Multivariate Adaptive Regression Splines (MARS) is Fried-

man (1991). A neat overview of the method is proposed by Hastie, Tibshirani, and

Friedman (2001, Chapter 9) and an application of MARS in a time series context is

provided by Lewis and Stevens (1991). Probably the first thing to be noted about

MARS is that the term multivariate actually suggests a procedure which includes

multivariate tensor-splines bases and does not assume a multidimensional response.

It is considered as a generalization of the pioneering adaptive procedure for re-

gression splines by Friedman and Silverman (1989), called TURBO. However, high

dimensionality of the response is also considered by Stone, Hansen, Kooperberg, and

Truong (1997) and is suitably termed POLYMARS. The second main thing about

MARS is the term adaptive, which implies an optimizing procedure over the number

and the location of the knots in an adaptive way. We have already mentioned this

in Section 2 as an alternative of the penalizing concept.

MARS uses linear splines of the form (x− τ)+ and (τ − x)+, where

(x− τ)+ =





x− τ if x > τ ,

0 otherwise
and (τ − x)+ =





τ − x if x ≤ τ ,

0 otherwise

which are nonzero linear functions as shown in the example of Figure 5. The starting

point is the forming of such pairs (or reflected pairs) for every single observation,

which means that we have 2np basis functions, where p is the number of the predic-

tors and n is the sample size, and describe them as candidate functions, collected in

a set C. Note that these basis functions share the appealing property of B-Splines

to operate locally: they are nonzero over a small part of the domain. The modelling

strategy is based on the well known least squares estimation (2.5), applied in a step-

wise manner to a hierarchically enlarging model. The enlargement is done via the

reflected pairs or their products from C. That means, that every observed predictor

value is a candidate knot site. So, the knot selection implies an automatic variable
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Figure 5: An example of the basis functions (0.5− x)+ (broken line) and (x− 0.5)+

(solid line) used by MARS.

selection. This original addition procedure stops when the number of the terms in

the current model reaches some preliminary specified limit.

At the end of the addition stage, one usually has an overfitted model, to which a

backward deletion procedure should be applied. The deletions are performed ac-

cording to a modified version of the GCV criterion. The essence of this modification

consists in a tuneable penalty term, which charges a cost per basis function.

4.3.3 BRUTO

The last nonparametric model in our review is the BRUTO procedure (Hastie and

Tibshirani, 1990, Chapter 9). Inspired by TURBO, BRUTO combines inputs selec-

tion with backfitting by using smoothing splines: once the selection process stops,

the model is backfit. It was applied to time series by Chen and Tsay (1993). The

BRUTO method can be thought of as optimizing of an approximation to the GCV

criterion over all p smoothing parameters λj in a p-term additive model. It ad-

dresses another central concept for estimating additive models, namely backfitting.

The underlying idea of backfitting is to estimate the individual functions iteratively,

conditioned on the results of the other functions. Heuristically explained, this is an

estimation of the smooth components of an additive model by iteratively smooth-

ing the partial residuals from that model. The partial residuals relating to the jth

45



4.3 Nonlinear Autoregressive Models 4 TIME SERIES MODELS

smooth term are the residuals, which result from subtracting all the current esti-

mates from the response variable, except for the estimates of the jth component.

Let us assume we have an additive model of the form

yi = α +

p∑
j=1

fj(xij) + εi.

The partial residuals of the kth terms are: y − α̂ − f̂1 − . . . − f̂k−1 − f̂k+1 . . . − f̂p,

where f̂j = (f̂j(x1j), . . . , f̂j(xnj))
T . Consequently, the basic backfitting algorithm is

an iterative procedure as follows:

1. Initialize: α̂ = ȳ and f̂j = 0 for j = 1, . . . , p

2. Cycle: j = 1, . . . , p, 1, . . . , p, . . .

Calculate: ej = y− α̂−
∑

k 6=j

f̂k

Set: f̂j equal to the result of smoothing ej with respect to xj.

3. Repeat 2 until f̂j stop changing.

It is provided that the backfitting algorithm always converge. See Hastie and Tibshi-

rani (1990), p. 90-91 for details concerning backfitting and p. 262 for the BRUTO

algorithm.
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5 Simulation Study

In this section we will investigate the performance of boosting an additive model in

Monte Carlo simulations with six artificial, nonlinear, autoregressive time series. We

will compare the outcomes of boosting to the outcomes, obtained through alternative

nonparametric methods. Their performance will be considered in two categories: in

terms of lag-selection (Section 5.2) and goodness-of-fit (Section 5.3). The dynamics

of the simulated processes are shown in Table 2. All of them fulfil the stationary

condition (4.2). Models NLAR1U1-NLAR1U2 have one lag and were used by Huang

and Yang (2004). Besides, there are three models with two lags: NLAR1-NLAR3

which were originally used by Tschernig and Yang (2000). The last model NLAR4

has four lags and was used by Shafik and Tutz (2007). The present work makes a

difference mostly thanks to the alternative assessment of the models’ dynamics.

5.1 Implementation

All data analyses presented in this thesis have been carried out using the R system

for statistical computation (R Development Core Team, 2008), version 2.6.2. In the

following we will discuss some R extensions that have been useful for the application

of alternative methods.

There are several implementations of boosting techniques, available as add-on pack-

ages for R. Package mboost (Hothorn et al., 2008) provides an implementation for

fitting generalized linear models, as well as additive gradient based boosting, while

package GAMBoost (Tutz and Binder, 2006; Binder, 2006) provides an implemen-

tation of the likelihood boosting approach, as described in Section 3.3. In our

special case of Gaussian response with L2-loss, both techniques for fitting an addi-

tive model coincide and are referred to as GAMBoost. Our simulations were carried

out with mboost. For base procedure were used P-Splines, provided by the function

Model Function

NLAR1U1 yt = −0.4(3− y2
t−1)/(1 + y2

t−1) + 0.1εt

NLAR1U2 yt = 0.6(3− (yt−2 − 0.5)3)/(1 + (yt−2 − 0.5)4) + 0.1εt

NLAR1 yt = −0.4(3− y2
t−1)/(1 + y2

t−1) + 0.63(3− (yt−2 − 0.5)3)/(1 + (yt−2 − 0.5)4) + 0.1εt

NLAR2 yt = (0.4− 2 exp(−50y2
t−6))yt−6 + (0.5− 0.5 exp(−50y2

t−10))yt−10 + 0.1εt

NLAR3 yt = (0.4− 2 cos(40yt−6) exp(−30y2
t−6))yt−6 +

(0.55− 0.55 sin(40yt−10) sin(40yt−10)) exp(−10y2
t−10) + 0.1εt

NLAR4 yt = 0.9((π/8)yt−4)− 0.75 sin((π/8)yt−5) + 0.52 sin((π/8)yt−6) + 0.38 sin((π/8)yt−7) + 0.1εt

Table 2: Dynamics of six artificial time series.
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gamboost() with option for the base learner bbs. Additionally, the knots were set

to 20, i.e. knots = 20 and the degrees of freedom were set to 3.5, i.e. degree =

3.5. For all other options the default values were used.

Further on, we consider the method proposed by Huang and Yang (2004), described

in Section 4.3.1, which uses spline fitting with BIC. Their novel approach was “man-

ually” implemented (see Appendix D, function stepwise()), since it is currently not

available as an extension package for R or in any other statistical software. It is la-

beled with the acronym HaY. The implementation was carried out via the package

mgcv (Wood, 2006, 2007) with unpenalized cubic splines. The maximal number of

candidate variables has been equalled to the maximal number of lags.

A classical candidate for additive fitting with component selection is the BRUTO al-

gorithm. As mentioned before, it fits a model by adaptive backfitting using smooth-

ing splines. An implementation of BRUTO could be found in package mda (Hornik

et al., 2006), originally provided by Trevor Hastie and Robert Tibshirani and main-

tained by Kurt Hornik. The corresponding function bruto() has a tuning parameter

cost, which specifies the cost per degree-of-freedom change. It was empirically in-

vestigated by Huang and Yang (2004), that a value of log(n) provides much better

results than the default value of two, where n indicates the sample size. Therefore,

in our application cost was set to log(n) too.

Another nonparametric alternative in data mining is MARS. We include MARS in

the comparison as a powerful strategy to detect non-monotone relationships between

the predictors and the covariates, which is particularly suitable for problems with

many variables and possible interaction effects. Like BRUTO, it includes an auto-

matic variable selection by identifying all “promising” variables, which makes it a

“natural rival” of boosting. An implementation of MARS is available in package

mda and the corresponding function is mars(). It has a tuning parameter, which

charges a cost per basis function, denoted by penalty. This tuning parameter was

also set to log(n).

In order to make results reproducible, the random number generator set.seed()

has been fixed and the simulated time series stored locally. All models from Table

2 have been simulated 100 times with sizes 400 + N , the first 400 values discarded

and N = p + T , with p = 10 pre-sample values and T = 50, 100, 200 in-sample

observations. In Section 4 we have argued that such partitioning of the time series

values is convenient in order to ensure same sample size of T for each variable at a

given period and to simplify the notation. As p suggests, the number of maximal
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lags has been limited to ten. In the next section we will compare the performance

of the different procedures in terms of lag selection.

5.2 Lag Selection

For each process, we have an index set s, consisting of the numbers of the true

variables, e.g. for NLAR3, s = {6, 10}. Let ŝ be a particular model estimation of

s. The correctness of the estimation is quantified by the following rule: ŝ is said to

be correct if ŝ = s; ŝ is an overfit if ŝ ⊃ s; and ŝ is an underfit if (ŝ ∩ s) ⊂ s. Note

that ŝ can be larger than s and still underfitting. In other words, underfit indicates

that some significant variables have been erroneously omitted by the model, while

overfit stays for inclusion of redundant variables in addition to the significant ones.

Table 3 contains a summary of the Monte Carlo simulations with all four fitting

procedures. Each stochastic process and its corresponding in-sample length are pre-

sented horizontally. For each setup in the table the first, second and third columns

present the numbers of underfit, correct and overfit outcomes over 100 simulation

runs. For example, MARS at NLAR3 with T = 50 has identified the index set 34

times correctly, has neglected at least one of the significant lags 46 times and has

added more lags in 20 cases.

As Table 3 promptly suggests, boosting of an additive model is likely to overfit most

of the times. This tendency is especially noticeable in the cases with one significant

lag only (NLAR1U1, NLAR1U2) and in NLAR1. Such performance of GAMBoost

is in some sense expected. If in a single boosting step, some non-significant vari-

able has been considered, that would be sufficient to add it to the estimated set

ŝ. Although redundant variables have been erroneously selected, the corresponding

function estimates can still be close to zero and therefore be interpreted as random

errors. In the the next section we will explore whether such an influence is really

considered as minimal or it has a substantial counterproductive impact.

Furthermore, boosting almost never missed significant components in the cases with

more than one lag. On the contrary, the other methods are more likely to underfit

larger models. This is evident for NLAR2 and NLAR3, and becomes especially no-

ticeable for NLAR4. The last process is repeatedly underfitted by BRUTO, MARS

and HaY, while GAMBoost encourages inclusion of more lags. Nevertheless, we

should keep in mind that the mathematical properties of boosting for variable se-

lection are still open questions.
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Model Length GAMBoost BRUTO MARS HaY

NLAR1U1 50 0 0 100 0 29 71 0 73 27 0 98 2

100 0 0 100 0 22 78 0 78 22 0 100 0

200 0 0 100 0 27 73 0 61 39 0 100 0

NLAR1U2 50 0 0 100 0 0 100 0 73 27 0 32 68

100 0 0 100 0 0 100 0 81 19 0 96 4

200 0 0 100 0 0 100 0 71 29 0 100 0

NLAR1 50 0 0 100 44 16 40 0 46 54 4 93 3

100 0 0 100 5 37 58 0 73 27 0 98 2

200 0 0 100 0 57 43 0 65 35 0 97 3

NLAR2 50 1 0 99 98 2 0 64 27 9 99 1 0

100 5 7 88 84 16 0 7 73 20 92 8 0

200 0 7 93 0 92 0 0 83 17 88 12 0

NLAR3 50 1 0 99 44 47 9 46 34 20 68 32 0

100 0 8 92 4 81 15 6 67 27 26 74 0

200 0 12 88 0 93 7 0 81 19 1 99 0

NLAR4 50 15 4 81 100 0 0 100 0 0 100 0 0

100 0 12 88 98 2 0 91 6 3 100 0 0

200 0 17 83 89 11 0 75 22 3 100 0 0

Table 3: Simulation results for lag selection. For each setup in the table, the first,

second and third columns represent the underfit, correct and overfit outcomes over

100 simulations.

The performances of BRUTO, MARS and HaY for the first five processes are con-

sistent with the results provided by Huang and Yang (2004). It should be noted

that, in contrast to the cited paper, we have examined small to moderate sample

sizes. Under these conditions, the promising algorithm HaY still demonstrates very

good detection of true variables and steadily increases the frequency of correct fit-

ting with increasing sample size. As reported in the cited paper, the cubic spline

fitting faces some difficulties with NLAR2, where it performed relatively poorly in

our simulations too. However, HaY is the single model which underfitted 100% of

the NLAR4 realizations. Moreover, the stepwise approach used in this algorithm

turns out to be an inevitable drawback in high-dimensional models. Combining

both forward and backward stages with maximum number of d lags and number of

candidate variables Smax, the forward stage requires
∑Smax

i=1 (d− i+1) computations

and the backward stage
∑Smax

j=1 j . Particularly, when Smax = p, where p denotes the

number of covariates, the number of the required computations is p ∗ (p + 1), which

means that every covariate contributes quadratically to the computational burden.

For high dimensions that would be an essential issue.

50



5.3 Dynamics Estimation 5 SIMULATION STUDY

−0.5 0.0 0.5 1.0 1.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

Lag  1

f pa
rti

al

NLAR1

True Function
GAMBoost
BRUTO
MARS
HaY

−0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

Lag  2

f pa
rti

al

NLAR1

True Function
GAMBoost
BRUTO
MARS
HaY

Figure 6: A comparison between true lag functions (blue) and estimated functions

for NLAR1. Left panel shows true partial function and four estimations of the first

lag. Right panel shows respectively true partial function and four estimations of the

second lag (with centering of all functions to mean zero).

MARS shows an overall good performance. It is the single non-boosting method

that manages to “catch” about a fourth of NLAR4 realizations with T = 200 cor-

rectly. On the other hand, BRUTO shows a rather erratic behaviour by favouring

processes like NLAR2, NLAR3 and performing very poorly with others (NLAR1U1,

NLAR1U2, NLAR4).

5.3 Dynamics Estimation

In simulations we can measure how precisely a fitting procedure reflects the true

dynamics of a simulated process. In case of linear time series, a convenient measure

would be the Euclidian distance between the true parameter vector and the esti-

mated one. However, when dealing with nonparametric models we need some more

sophisticated accuracy measure for the discrepancy between functions. Note that

simply averaging the sum of squared residuals could be a misleading measure, due

to its property to favour overfitting.8 When we know the true underlying process in

regression problems, a common measure for the goodness-of-fit is obtained in terms

of MSE. However, in this case we fit stationary time series, which implies that true

8Overfitting is now used in sense of fitting the training data too closely and not in terms of
selected variables as in the previous section.
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Model Length T GAMBoost BRUTO MARS HaY

NLAR1U1 50 .551 .984 .362 .070

100 .205 .937 .183 .038

200 .130 .338 .102 .029

NLAR1U2 50 .195 .442 .122 .121

100 .179 .256 .134 .183

200 .052 .156 .050 .074

NLAR1 50 .193 .241 .152 .125

100 .063 .030 .009 .027

200 .058 .004 .005 .022

NLAR2 50 .212 .206 .228 .206

100 .208 .201 .197 .199

200 .199 .190 .188 .195

NLAR3 50 .140 .124 .191 .154

100 .103 .076 .099 .081

200 .079 .069 .067 .069

NLAR4 50 .332 .380 .460 .411

100 .184 .218 .291 .337

200 .099 .103 .150 .193

Table 4: Simulation results of average MSPE. The results of NLAR1U2, NLAR1

are multiplied by 10, NLAR2, NLAR3 are multiplied by 100 and NLAR1U1, NLAR4

are multiplied by 103. Boldface numbers indicate the best model performance for each

setup.

process is time invariant and therefore the expectation of its observations is always

constant, i.e. µt = µ = 0. Therefore, the average sum of squared residuals between

the realizations of true partial functions or lag functions (centered to mean zero) and

the estimated ones gives a convenient goodness-of-fit measure. A single illustration

of the differences between true lag functions and the estimated functions for NLAR1

with length T = 200 is depicted in Figure 6. In Appendix C.3 all true lag functions

for the simulated processes are represented graphically. Let us denote with f̃k the

kth lag function after centering it to mean zero, i.e. f̃k(·) = fk(·)− f̄k(·). Then the

mean squared prediction error is given by

MSPEk = T−1

T∑
i=1

[f̃k(yik)− ˆ̃fk(yik)]
2 (5.1)
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where ˆ̃fk is the estimated counterpart of f̃k and yik denotes the ith observations of

the kth lag. The accuracy measure is the mean of the individual MSPE’s

MSPE = p−1

p∑

k=1

MSPEk. (5.2)

The results of the average MSPE across all 100 simulation runs are summarized in

Table 4, where the rows give the simulated series and the columns represent the

different modelling techniques.

NLAR1U and NLAR1U2 are the most parsimonious models. Their dynamics seems

to be explained very well by MARS and HaY, while BRUTO performed very poorly.

The performance across fitting methods differed most within these two processes.

For NLAR1U2, we notice that despite overfitting in sense of selected lags, boosting

estimated the relevant function quite precisely, e.g. with T = 200. This suggests that

the redundant functions were considered close to zero. It is reassuring to see that

the functionals are really close to zero for overfitted lagged variables of NLAR1U2

in Figure 7. However, this was not the case for all processes which can be explained

with the presence of serially correlated covariates. Strong serial dependence might

mislead the fitting procedures to produce erroneous transformations. For instance,

this is evident for boosting of NLAR1, where the third variable was strongly over-

fitted, see Figure 8 (function estimations, obtained by boosting for all time series

are available graphically in Appendix C.4). The literature on nonparametric regres-

sion for dependent data is relatively sparse, especially when related to boosting.

Of course, further study on the use of boosting algorithms in time series context is

needed to justify the general use of this procedure.

With increasing number of significant covariates both BRUTO and GAMBoost

strongly improved their performance. Moreover, excluding significant covariates

by the non-boosting methods turned out to be very counterproductive at the largest

model NLAR4, where GAMBoost provides the best description of the model’s dy-

namics in all sample sizes. Boosting also performs comparably good with NLAR2

and NLAR3. However, my limited experience indicates that neither algorithm is

universally superior to the others.
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Figure 7: Boosting estimations of the lag functions of NLAR1U2. True lag is 2.

The functions are mean zero centered.

54



5.3 Dynamics Estimation 5 SIMULATION STUDY

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 1

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 2

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 3

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 4

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 5

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 6

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 7

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 8

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 9

−0.5 0.5 1.5

−1.0
−0.5

0.0
0.5
1.0

Lag 10

Figure 8: Boosting estimations of the lag functions of NLAR1. True lags are 1 and

2. The functions are mean zero centered.
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6 Application

Boosting, along with other parametric and nonparametric models, will be applied

to real data in this section. The target variable is the German industrial production

(IP) from 1992:01 to 2006:08.9 Forecasting of IP is frequently performed in practice.

Contributions to the forecasting of German industrial production include Hüfner and

Schröder (2002), Benner and Meier (2004), Dreger and Schumacher (2005) among

many others. The series was obtained from Deutsche Bundesbank10 and is seasonally

and workday adjusted. Along with the leading indicators in Section 6.3, the data

was also used by Robinzonov and Wohlrabe (2008). The exact monthly growth rates

are taken to eliminate non-stationarity, that is

∆(IP ) =
IPt − IPt−1

IPt−1

.

Forecasting, being the major concern of macroeconomic time series, will be thor-

oughly explored in the current section. Some basic forecasting principles and a

motivation about the choice of the consecutive forecasting strategy will be delivered

in Section 6.1. An application, based solely on the industrial production time series

will be delivered in Section 6.2. Most of the models used so far will be examined

in the spirit of forecasting. The promising technique by Huang and Yang (2004) is

omitted because Section 6.3 extends the available data set with exogenous variables,

the so called leading indicators, and demonstrates how the additional information

affects the performance of the models. The inclusion of exogenous variables and

their lags rapidly increases the number of covariates, forming this way a classical

high-dimensional modelling problem. In this context, the method of Huang and

Yang (2004) would be no longer applicable.

6.1 Forecasting

Historically, the focus in forecasting has been on low-dimensional univariate or mul-

tivariate models, all sharing the common linearity in the parameters. Recently

additional studies exist that investigate the forecasting performance of nonlinear

time series models. Clements, Franses, and Swanson (2004) provide a thorough lit-

erature overview, Teräsvirta, van Dijk, and Medeiros (2005) examine the Smooth

Transition Autoregressive (STAR) and neural networks models, Claveria, Pons, and

Ramos (2007) study Markov-switching and Self-Exciting Autoregressive (SETAR)

9In order to circumvent any structural breaks due to the reunification, the data before 1991 is
usually omitted. Data from 1991 is not included either, because some of the exogenous variables,
such as ZEW Economic Sentiment, FAZ Indicator, have only been available after 1992.

10Series USNA01.
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models. Elliot and Timmermann (2008) review almost all issues concerning eco-

nomic forecasting.

When a specific model for a time series is assumed and a set of observations is

given, we want to make statements about the future, thus forecasting. We will use

the terms forecasting and prediction11 interchangeably, although not quite precisely.

The given set of observations is called a training set or an information set. The

intention is using an information set It,

It = {xτ : τ ≤ t}

our artificial outputs ŷt+h, h = 1, 2, . . . to be close enough to the real outputs yt+h. If

no exogenous variables are taken into account, then xτ contains information about

IP only. Thus, forecasts for the 6 months from January 2003 to June 2003 are

computed from models estimated using only data available through December 2002.

Further on, we distinguish between one-period ahead forecast ŷt+1 and multi-period

ahead forecast ŷt+h, where t is referred to as the forecasting origin and h is the

forecasting horizon. To evaluate how concerned we are if our forecast is off by a

particular amount, we need to specify a cost function. Therefore, minimizing the

quadratic expected cost or loss

E (yt+h − ŷt+h|It)
2 (6.1)

is often set as an objective. Expression (6.1) is known as the mean squared error,

associated with the forecast ŷt+h, denoted by

MSE(ŷt+h) = E (yt+h − ŷt+h|It)
2.

The choice of an accuracy measure is a major topic by itself. Hyndman and Koehler

(2006) widely discuss and compare different measures of accuracy of times series

forecasts such as Mean Absolute Percentage Error(MAPE), Median Absolute Per-

centage Error(MdAPE), Root Mean Squared Error (RMSE), Mean Absolute Scaled

Error(MASE) and many more. They warn about the misleading properties of some

of the measures. The references therein point the reader to different studies with

often controversial conclusions about the “best” forecasting measure. Still, the lit-

erature being inconsistent, the MSE withstands the time proof and remains one of

the most popular out-of-sample measures. Therefore, it is used in this elaboration

as well.

11Prediction is a similar to forecasting, but is a more general term which is concerned with
statements about the likely values of unobserved events, not necessarily those in the future.
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In case that It contains endogenous variables only, the prediction ŷt+h can be deliv-

ered successively through h one-period ahead forecasts. This means that multiperiod-

ahead forecasts are made using a one-period ahead model, iterated forward to the

desired number of periods. This strategy of forecasting is called iterative forecast-

ing (Marcellino et al., 2006). It is applicable to both univariate and multivariate

autoregressive modelling strategies.

The presence of exogenous variables, however, raises another question, namely how

multi-steps-ahead forecasts are to be delivered. The endogenous variable is modelled

on its own past values, as well as on the past values of the exogenous variables. Thus,

the prediction concerns only the first out-of-sample endogenous variable, whereas

no exogenous estimations are delivered. That obviously hinders the iterative ap-

proach of forecasting and demands an alternative technique for long term forecasts.

A common strategy to overcome this problem is to use the so called direct forecast-

ing12 approach used in Marcellino, Stock, and Watson (2006), Chevillon and Hendry

(2005). The idea is to make horizon-specific estimation model, where the response

is the the multiperiod ahead value being forecasted, i.e. the dependent variable is

directly modelled on the corresponding horizon (instead of starting with yt+1) on

its past values, as well as on past values of the exogenous variables. By doing so,

every estimation refers to the future random variable in a straight manner. An ob-

vious and, sadly, inevitable drawback of this technique is the fact that it requires h

separate modellings in order to deliver all forecasts for a desired horizon. We will

apply this type of forecasting to the univariate case in next section. Later on, the

set of the explanatory variables will be extended and the forecasts will be delivered

in the same fashion. That ensures a juxtaposition of the forecasts with and without

exogenous variable, all other things being equal.

In the next section, the direct forecasting strategy is adopted by the GAMBoost,

BRUTO and MARS for the univariate IP. We will also apply boosting with compo-

nentwise linear least squares learner and squared error loss, which is implemented

in the add-on package mboost (Hothorn et al., 2008) via the function glmboost().

This type of boosting will be referred to as GLMBoost or for simplicity as linear

boosting.

12It should be noted that the comparison iterated vs. direct forecasting of univariate time series
is a theoretically ambiguous concept and the question which method is preferable to choose is
rather an empirical one.
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6.2 Univariate Forecasting of Industrial Production

Now we apply GLMBoost, GAMBoost, as well as BRUTO and MARS on the Ger-

man industrial production. The univariate autoregressive model (AR) offers one of

the simplest and most commonly used techniques for forecasting. It is easily appli-

cable and therefore is often used as a benchmark model. The underlying assumption

is that every alternative method should be at least as good as the autoregressive

model in order to justify an increase in the model’s complexity. The estimation of

AR is carried out via the ar() function in package stats with AIC criterion (see

Section 4.1).

So, the univariate case of IP is modelled. We have a total length of 176 observa-

tions. The initial information set is defined from the beginning until 2003:12, thus

consisting of 144 observations. The maximal number of lags is limited for every

fitting procedure to 12. Then, at the first stage twelve forecasts are calculated, i.e.

clarify prognoses for 2004:1-2004:12. At the consecutive stage, the information set

is enlarged with one observation and the corresponding horizon is re-estimated. We

continue in this fashion until 2005:8, where the information set reaches its maxi-

mum, and then we compute the final twelve forecasts. Thus, we compute twenty

stages in total. This method of enlarging the information set for every new fore-

casting horizon is called recursive scheme for forecasting. However, one could hold

the information set at a fixed size, that is to leave out the oldest observation, when

a new arrives. This is referred to as a rolling scheme for forecasting. The latter

scheme is not considered in any greater detail than just mentioning it. See Elliot

and Timmermann (2008) for further details concerning both schemes.

Table 5 gives a summary of the average squared forecast errors for IP, delivered by

the different methods. Apparently, in short term forecasting, the standard autore-

Horizon AR GLMBoost GAMBoost BRUTO MARS

1 .0668 .0626 .0638 .0845 .0892

6 .1052 .0784 .0845 .1029 .0898

12 .1214 .1211 .1145 .1168 .1169

Table 5: Average squared forecast errors, multiplied by 103, of IP for 1, 6 and

12-periods ahead forecasts of the monthly industrial production growth rates in Ger-

many. The results are based on 20 forecasts.

gressive model is quite a hard one to overcome. This simple, yet very powerful, model

is superior to BRUTO and MARS for short-term forecasting. On the other hand,
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Figure 9: Boxplots of the average squared forecast errors (multiplied by 103) for 1,

6 and 12-periods ahead forecasts of the univariate IP, based on 20 forecasts.

GLMBoost and GAMBoost seem to be very precise in short term forecasting. With

increasing forecasting horizon, all alternative models provide better forecasts for the

monthly German industrial production growth rates, compared to AR. Both boost-

ing methods prove to be very efficient in forecasting, especially the linear boosting

in short and middle-term forecasting, where it offers the smallest prediction error in

average. For the longest horizon GLMBoost remains at least as good as its para-

metric counterpart AR, but performs relatively poorly in comparison to GAMBoost,

BRUTO and MARS. Figure 9 depicts the differences between the models of the pre-

diction squared errors. In addition, Table 6 is considered to give an impression of the

selected lags, chosen by the models. Selected lags may differ at the different stages,

therefore we review the outcome at the stage where the information set reached

its maximum (2005:08), being in this way the most representative. Both boosting

techniques estimated quite large models, which is consistent with the results of the

simulation study (the selected smooth components by GAMBoost are available in

greater detail in Appendix C.2, Figure 12). This confirms the statement that reg-

ularization through shrinkage (as done by boosting) can provide superior results in

terms of prediction to that obtained by restricting the number of covariates.

AR GLMBoost GAMBoost BRUTO MARS

Selected lags 1,2 1,2,3,6,7,8,11 1,2,3,5,6,7,9,10,11,12 1 1

Table 6: Selected variables when information set reached its maximum.
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6.3 Forecasting Industrial Production with Exogenous Vari-

ables

Forecasting of industrial production is based on the assumption that different lead-

ing indicators should relate significantly and stably with the response, and therefore

positively influence its prediction. However, there are many leading indicators that

“claim” such an appealing property. Usually, one indicator is taken and its fore-

casting potential is judged by a bivariate autoregressive model, e.g. Dreger and

Schumacher (2005) compare four indicators. The additional dimension does not

necessarily improve the forecasting quality, on the contrary, in case of an “inappro-

priate” extra variable, it deteriorates it. In consequence, different studies provide

surprisingly a large variety of controversial conclusions about the forecasting power

of the indicators. Instead of focusing on the indicators’ prediction quality, we col-

lect the nine most commonly used indicators and investigate how they affect the

fitting. In other words, we will examine in this section, how redundant variables are

considered from the fitting procedures. The aim is to gain knowledge, whether it is

still possible to obtain good forecasts, despite the presence of probably inappropri-

ate additional variables. Table 7 contains a list of the nine frequently used leading

indicators on forecasting German IP (see Appendix A.1 for a detailed description of

the indicators).

Indicator Provider Label

Ifo Business Climate Ifo Institute ifo

ZEW Economic Sentiment ZEW Institute zew

OECD Composite OECD oecd

leading indicator for Germany

Early Bird Indicator Commerzbank com

FAZ Indicator FAZ Institute faz

Interest Rate: overnight IMF rovnght

Interest Rate: spread IMF rspread

Employment Growth Bundesbank emp

Factor Bundesbank factor

Table 7: Leading Indicators.

Since vector autoregressive analysis has evolved as a standard instrument in econo-

metrics for analysing multivariate times series, we will consider nine bivariate mod-
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els, each consisting of the IP and one leading indicator from Table 8 in its restricted13

(VARr) and unrestricted (VAR) form. There are various add-on packages in R which

deal with time series such as tseries, dse, fMultivar, MSBVAR and different func-

tions in the base distribution of R. The package vars, provided by Bernhard Pfaff,

offers “standard” tools in the context of purely vector autoregressive models and

will be therefore used for the following computations of VAR and VARr. The cor-

responding information criterion is AIC.

The inclusion of one exogenous variable in the model means that boosting, BRUTO

and MARS should deal with 24 covariates, i.e. twelve for the IP and twelve for the

exogenous variable. The forecasting is conducted as described in Section 6.1, and

the respective outcome is documented in Table 8. Every triplet shows the average

performance of the corresponding models, respectively for 1, 6 and 12-periods ahead

forecasts. In addition, it is indicated whether the forecast quality increased or de-

creased with respect to the univariate forecasts in Table 5. Both VAR and VARr

are compared to AR.

Figure 10 depicts the results from Table 8 together with the AR model in a more

compact form in order to put an emphasize on the comparison. Now follows a

summary of the empirical results:

(a) The out-of-sample forecasting results from Table 8 suggest that both boosting

techniques remain robust to the impact of the exogenous variables. GLMBoost

remains almost immune to redundant variables. Apparently, in five cases of

middle to long-term forecasting (ifo, zew, oecd, faz and rovnght) GLMBoost

did not consider the exogenous variable at all. This explains why these fore-

casts are identical to the univariate case in Table 5. Transferred to the indica-

tors, this interpretation suggests that they have only a short term effect on IP.

In short-term forecasting GLMBoost remained very stable as well. Note that

in one-period ahead forecasting the exogenous variable exerted negative im-

pact in two cases (zew, com) only and outperformed AR in all cases except for

com. In general, substantial changes of GLMBoost, compared to the univari-

ate forecasting, were not found. That implies that linear boosting considered

IP with its own lags to a larger extent than the remaining covariates. As a

result, it showed a very strong overall performance and outperformed most of

the models for one and six-periods ahead forecasting.

(b) The addition of exogenous variables changed the prediction power of GAM-

13The restrictions are obtained via standard statistical t-tests. See the documentation of function
restrict() in package vars.
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Leading Indicator Horizon VAR VARr GLMBoost GAMBoost BRUTO MARS

ifo 1 .0990H .0771H .0623N .0661H .0845N .0892N
6 .1070H .1050N .0784N .0813N .1029N .0898N

12 .1215H .1207N .1211N .1127N .1168N .1169N

zew 1 .0641N .0621N .0639H .0727H .0765N .0826N
6 .1048N .1053H .0784N .0839N .1157H .0892N

12 .1211N .1205N .1211N .1105N .1155N .1163N

oecd 1 .0690H .0690H .0625N .0721H .0556N .1040H
6 .1108H .1108H .0784N .0825N .1244H .0829N

12 .1232H .1232H .1211N .1119N .1116N .1187H

com 1 .0884H .0846H .0697H .0757H .0789N .0764N
6 .1082H .1092H .0773N .0836N .1093H .0908H

12 .1352H .1080N .1216H .1143N .1064N .1069N

faz 1 .0684H .0522N .0626N .0711H .0830H .0916H
6 .1147H .1035N .0784N .0858H .1642H .0895H

12 .1180N .1200N .1211N .1144N .1388H .1047N

rovnght 1 .0702H .0762H .0626N .0728H .0716N .0909H
6 .1082H .1078H .0784N .0877H .1111H .0895H

12 .1277H .1267H .1211N .1153H .1163H .1017N

rspread 1 .0614N .0607N .0620N .0673H .0742N .0927H
6 .1060H .1040H .0781N .0840N .1004N .0889N

12 .1202N .1149N .1208N .1135N .1003N .1052N

emp 1 .0704H .0762H .0624N .0637N .0704N .0916H
6 .1076H .1078H .0991H .0988H .1395H .0918H

12 .1267H .1267H .1262H .1190H .1361H .1081N

factor 1 .0607N .0516N .0585N .0637N .0558N .0948H
6 .1021N .1006N .0811H .0871H .0988N .0913H

12 .1179N .1143N .1214H .1187H .1034N .1147N

Table 8: Average squared forecast errors of the monthly industrial production growth

rates in Germany, with one leading indicator as an exogenous variable. The results

are based on 20 forecasts, multiplied by 103. The symbol Nindicates forecast improve

with respect to Table 5 and Hindicates decreased forecasting quality.

Boost, BRUTO and MARS with varying success. Most notably GAMBoost

and MARS performed comparably good and stable for six and twelve-periods

ahead forecasting. This is best seen by the illustration in Figure 10. BRUTO

improved its short term forecasting performance with almost every variable

(except for faz), but in general remained worse than AR. For longer horizons

it showed a rather erratic behaviour.

(c) There are four leading indicators, which proved to have good forecasting qual-
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ifo oecd faz rspread factor

0.06

0.08

0.10

0.12

0.14

0.16

0.18
GAMBoost
GLMBoost
VAR
VARr
BRUTO
MARS

Horizon =  6

ifo oecd faz rspread factor

0.06

0.08

0.10

0.12

0.14

0.16

0.18
GAMBoost
GLMBoost
VAR
VARr
BRUTO
MARS

Horizon =  12

ifo oecd faz rspread factor

0.06

0.08

0.10

0.12

0.14

0.16

0.18
GAMBoost
GLMBoost
VAR
VARr
BRUTO
MARS

Figure 10: Average squared forecast errors of the monthly industrial production

growth rates in Germany, with one leading indicator as an exogenous variable.

Dashed red-line shows the value of the univariate autoregressive model. The results

are based on 20 forecasts, multiplied by 103.

ity in terms of bivariate linear autoregression. These are zew, faz, rspread and

factor, which increased the forecasting precision of IP, compared to AR. More-

over, the restricted bivariate autoregressive model with factor and faz provided

the best short-term forecasts, but was easily outperformed for longer horizons.

It is evident also that the restricted model is superior to the unrestricted one

in most of the cases.

(d) From a computational point of view, MARS and GLMBoost were the fastest

procedures. Closely followed by BRUTO, VAR and VARr, they all perform

comparably fast. Boosting with P-Spline base learners was more computa-

tionally demanding.14

In Table 9 are collected lags, selected by boosting, BRUTO and MARS. The bi-

variate autoregressive models selected in most cases lag length of one (the results

are not shown) which explains to some extent their relatively bad performance for

14Probably it is worth mentioning that I made a comparison between boosting with smoothing
splines and with P-Splines as base procedure. P-Spline based boosting was considerably faster,
while the estimations differences were negligibly small. This is consistent with the results, provided
by Schmid and Hothorn (2007).
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Variable GLMBoost GAMBoost BRUTO MARS

IP 1,2,3,6,7,8 1,2,3,5,6,7,9,11,12 1,2 1

ifo 1 1,7,11 1,2,3,4,5,8,11,12 -

IP 1,2,6,7,8 1,2,3,5,6,7,9,11,12 1,2 1

zew 1 1 1,2,3,5,6 1

IP 1,2,6,11,12 1,2,3,5,6,7,9,11,12 1,2 1

oecd 1 1,2,12 1,3,4,5,6,7,8,9,10 -

IP 1,2,6,7,8,11,12 1,2,3,5,6,7,9,10,12 1,2 1

com 1,2,3 1,7,10 3,4,6,8 1

IP 1,2,3,6,7,8,11 1,2,3,6,7,9,10,11,12 1 1

faz - 7 1,2,3,4,5,6,7,8,9,10,11,12 -

IP 1,2,3,6,7,8,11 1,2,3,6,7,9,10,11,12 1 1

rovnght - 7,10 2,3,4,5,6,7,8,9,10,11,12 -

IP 1,2,3,6,7,8,11,12 1,2,3,6,7,9,10,11,12 1 1,3

rspread 1 1,4 1,2,3,4,7,10,11,12 1,4,7

IP 1,2,3,6,7,8,11,12 1,2,3,6,7,9,10,11,12 1 1

emp 1,4,6,9,12 1,8,9,11,12 - -

IP 1,2,6,7,8,12 1,3,6,7,9,10,12 1,2,3,7 1,2

factor 3,4,11 1,2,3,5,7,8,11,12 3,7 1,7

Table 9: Selected lags of IP and of the exogenenous variable when the information

set reached its maximum (horizon h = 1).

longer forecasting horizons. It should be clearly stated that the selected lags by each

method in Table 9 have resulted from a single, one-period ahead model with max-

imal information set. Therefore, they do not reflect the whole forecasting process

and thus are not strictly related to the results, presented in Table 8. The intention

is to gain a rather general impression of the selecting process.

It is reassuring to find a support to the statement that GLMBoost considered IP

with its own lags more heavily than the exogenous variables. In accordance to the

intuition this is probably the most plausible forecasting strategy, since we forecast

IP, and in accordance to the forecasting results this was definitely the most success-

ful one. Boosting with P-Spline base learners seems to be very consistent in the

selection of endogenous lags - the same subset of IP lags is almost always present.

At the same time, it estimates the largest models. BRUTO is the single modelling

strategy, which repeatedly considered more exogenous than endogenous lags. This

partially explains its erratic forecasting behaviour, each time conducted by the new

indicator.
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The biggest advantage of boosting is its capability to deal with high-dimensional

models. This allows us to include all indicators in the model, together with their

twelve lags in addition to the IP lags, forming this way 120 covariates. Not surpris-

ingly, VAR and VARr were overwhelmed by the number of the estimation parameters

and performed very poorly (the results are not shown). The remaining four mod-

elling strategies are compared in Table 10. They deteriorate slightly, with respect

to the univariate case in Table 5, where the only exception is MARS for 12-periods

ahead forecasting. The results confirm that boosting is still capable to provide ro-

bust forecasts even when the number of the covariates increased dramatically. Note

that boosting with least squares base procedure of regression with 120 covariates

still outperforms the autoregressive model in one and six-periods ahead forecasting.

Horizon GLMBoost GAMBoost BRUTO MARS

1 .0650 .0731 .0904 .0974

6 .0994 .0938 .1137 .0952

12 .1259 .1290 .1261 .1037

Table 10: Average squared forecast errors for German industrial production with

nine leading indicators as exogenous variables. The results are based on 20 forecasts,

multiplied by 103.

In conclusion, for the monthly growth rates of the industrial production in Germany,

I found evidence that boosting can be very competitive to the standard techniques.

Particularly, least squares boosting predicts better than linear autoregressive models.

The increased flexibility of the nonparametric models does not seem to pay-off in

short term foreacasting, but manages to improve the prediction quality when the

information content of the data decreases, i.e. low signal-to-noise ratio, which is

observed in long-period ahead forecasting.
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7 Concluding Remarks

In this thesis several parametric and nonparametric modelling techniques for autore-

gressive time series were shown, with boosting being the particular focus. By letting

the covariates be lagged values of a time series, we have applied different strategies

in order to identify its the relevant lags, estimate a model and possibly forecast the

future realizations. In Section 5 we proposed componentwise boosting of additive

autoregressive model with P-Spline base learners. Alternative modelling strategies

were also applied on several nonlinear autoregressive time series. It was evidenced

that boosting of high-order autoregressive time series can be very competitive in

terms of dynamics estimation. Unlike regression analysis, however, the serial depen-

dence in time series data might mislead the fitting procedure to produce erroneous

transformations. Care must be taken in using boosting algorithms in time series

with strong serial correlation of the data. Further study on the use of boosting in

time series context is needed to justify the general use of this procedure.

Another boosting strategy with parametric base learners (GLMBoost) was included

in order to perform a forecasting comparison, based on real world data in Section

6. The forecasting comparison was conducted over the monthly growth rates of the

German industrial production (IP). Both boosting strategies managed to outper-

form the benchmark in macroeconomic forecasting, namely the linear autoregressive

model. Moreover, it became clear that GLMBoost was the most successful strategy

in terms of short and middle-term forecasting.

Additionally, the model was extended with different exogenous variables (leading

indicators). We had nine indicators available and we included each of them sepa-

rately, in addition to the target variable - the industrial production. Our intention

was to test whether these variables do indeed improve the forecasting quality of

the industrial production and how boosting handles these high-dimensional models.

Thus, having formed nine high-dimensional models, we forecasted again the monthly

growth rates of IP. Linear bivariate autoregressive models were also considered as

standard tools for forecasting.

The variables’ impact on the forecasting quality had debatable success, since in

many of the cases their inclusion worsened the forecasting performance, compared

to the univariate case. GLMBoost, on the other hand, was almost immune to re-

dundant variables by performing at least as good as in the univariate case. In one-

period ahead forecasting, GAMBoost was affected by the additional variables rather

strongly, which was counterproductive for its overall performance, when compared
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to the univariate case. The increased flexibility of GAMBoost was useful, however,

in middle and long term forecasting, where the information content of the data is

very low, i.e. it has low signal-to-noise ratio.

Finally, IP and all nine indicators were included together in a single regression

model, each with its twelve lags, thus forming a high-dimensional model with 120

covariates. Both boosting strategies only slightly worsened their forecasting perfor-

mances, compared to the forecasting of the univariate IP. Under these conditions,

GLMBoost was still superior to the simple autoregressive model, which is frequently

used in practice. An issue to be addressed further are the possible combinations of

the leading indicators, to be included in the model. Besides, there are numerous

tuneable parameters in boosting, that can open new perspectives when altered.

Careful research on the effect of the base procedure, the loss function or even the

shrinkage factor could possibly improve the boosting fit and respectively its forecast-

ing power. Boosting is definitely very fruitful research field for further extensions,

since GLMBoost managed to perform strongly with the default parameters.

Another crucial topic for further development addresses the multivariate generaliza-

tion of boosting. The first steps toward high dimensionality in the response were

made by Lutz and Bühlmann (2006), who provided theoretical grounds and empir-

ical evidence for its usability. Applying this approach would open new perspective

for forecasting with boosting, based on iterative forecasts of multivariate models.
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A APPENDIX

A.1 The Choice of Leading Indicators

In Section 6.3 nine leading indicators are chosen. These are summarized as follows:

The Ifo Business Climate Index is based on about 7,000 monthly survey responses

of firms in manufacturing, construction, wholesaling and retailing. The firms are

asked to give their assessments of the current business situation and their expecta-

tions for the next six months. The balance value of the current business situation is

the difference of the percentages of the responses ”good” and ”poor”, the balance

value of the expectations is the difference of the percentages of the responses ”more

favourable” and ”more unfavourable”. The business climate is a transformed mean

of the balances of the business situation and the expectations. For further informa-

tion see Goldrian (2007).

The ZEW Indicator of Economic Sentiment is ascertained monthly. Up to 350 finan-

cial experts take part in the survey. The indicator reflects the difference between the

share of analysts that are optimistic and the share of analysts that are pessimistic

for the expected economic development in Germany in six months (see Hüfner and

Schröder, 2002).

The FAZ indicator (Frankfurter Allgemeine Zeitung) pools survey data and macroe-

conomic time series. It consists of the Ifo index (0.13), new orders in manufacturing

industries (0.56), the real effective exchange rate of the Euro (0.06), the interest

rate spread (0.08), the stock market index DAX (0.01), the number of job vacancies

(0.05) and lagged industrial production (0.11). The Ifo index, orders in manufac-

turing and the number of job vacancies enter the indicator equation in levels, while

the other variables are measured in first differences.

The Early Bird indicator, compiled by Commerzbank, also pools different time se-

ries and stresses the importance of international business cycles for the German

economy. Its components are the real effective exchange rate of the Euro (0.35), the

short-term real interest rate (0.4), defined as the difference between the short-term

nominal rate and core inflation, and the purchasing manager index of U.S. manu-

factures (0.25).

The OECD composite leading indicator is delivered by using a modified version of

the Phase-Average Trend method (PAT) developed by the US National Bureau of
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Economic Research (NBER). The indicator is compiled by combining de-trended

component series in either their seasonally adjusted or raw form. The component

series are selected based on various criteria such as economic significance, cycli-

cal behaviour, data quality, timeliness and availability. For Germany the following

time series are compiled: Orders inflow or demand: tendency (manufacturing) (%

balance), Ifo Business climate indicator (manufacturing) (% balance), Spread of

interest rates (% annual rate), Total new orders (manufacturing), Finished goods

stocks: level (manufacturing) (% balance) and Export order books: level (manufac-

turing) (% balance).

Financial indicators, such as overnight interbank interest rate an interest spread,

are taken as possible predictors as well. Since the seminal paper by Estrella and

Hardouvelis (1991) financial indicators are more and more in focus for forecasting.

Stock and Watson (2003) review this literature and conduct a huge case study for

different OECD countries by forecasting Gross Domestic Product (GDP), Inflation

and Industrial production. The growth of the employment in Germany has been

taken from their paper.

Finally, a factor indicator obtained from a large data set from Germany, is included.

The data set contains German quarterly GDP and 111 monthly indicators from 1992

to 2006.15

15The estimated factor was provided by Christian Schumacher and is based on the paper Mar-
cellino and Schumacher (2007).
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B.1 Derivation of 2.13

We have to minimize

Sp(β) = ||y− Zβ||2 + λβTΛβ

= (y− Zβ)T (y− Zβ) + λβTΛβ

= yTy− yTZβ − (Zβ)Ty + βTZTZβ + λβTΛβ

= yTy− 2βTZTy + βT (ZTZ + λΛ)β.

In order to minimize Sp(β) w.r.t β we compute the first-order partial derivatives.

For that purpose we use the rules for matrix differentiation:
daTx

dx
=

dxT a

dx
= aT

and
dxT Ax

dx
= xT (AT + A), where a is a vector and A is a matrix. Then

dSp(β)

dβ
= −2ZTy + βT (2ZTZ + 2λΛ) = 0

2βT (ZTZ + λΛ) = 2ZTy

⇒ β̂ = (ZTZ + λΛ)−1ZTy.

2

B.2 Derivation of 3.22

µ̂(l+1) = µ̂(l) + Zj γ̂j(l+1)

= µ̂(l) + Zj(Z
T
j Zj + λΛ)−1ZT

j (y− µ̂(l))

= µ̂(l) +H(ŝl)(y− µ̂(l))

= µ̂(l) +H(ŝl)(y− µ̂(l) + µ̂(l−1) − µ̂(l−1))

= µ̂(l) +H(ŝl)(y− µ̂(l−1) −H(ŝl−1)(y− µ̂(l−1)))

= µ̂(l) +H(ŝl)(I −H(ŝl−1))(y− µ̂(l−1))

= µ̂(l) +H(ŝl)(I −H(ŝl−1)) . . . (I −H(ŝ1))(I −H(ŝ0))y.

Then follows

µ̂(m) =
m∑

j=0

H(ŝj)

j−1∏
i=1

(I −H(ŝi))y

⇒ H(ŝm) =
m∑

j=0

H(ŝj)

j−1∏
i=1

(I −H(ŝi))

where H(ŝ0) =
1

n
1n1

T
n .
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2

B.3 Derivation of the GLS Estimator in VAR model

The GLS estimator of β is obtained via minimizing the following expression:

S(β) = ε′Σ−1
ε ε

= ε′(IT ⊗Σ)−1ε

= (y− (Z ′ ⊗ Iq)β)′(IT ⊗Σ)−1(y− (Z ′ ⊗ Iq)β)

= y′(IT ⊗Σ)−1y + β′(Z ⊗ Iq)(Iq ⊗Σ−1)(Z ′ ⊗ Iq)β

− 2β′(Z ⊗ Iq)(IT ⊗Σ−1)y

= y′(IT ⊗Σ−1)y + β′(ZZ ′ ⊗Σ−1)β − 2β′(Z ⊗Σ−1)y. (B.1)

In order to minimize S(β) w.r.t β we compute the first-order partial derivatives:

∂S(β)

∂β
= 2(ZZ ′ ⊗Σ−1)β − 2(Z ⊗Σ−1)y. (B.2)

Equating (B.2) to zero gives the normal equations

(ZZ ′ ⊗Σ−1)β̂ = (Z ⊗Σ−1)y (B.3)

which are used to obtain the GLS-Estimator

β̂ = ((ZZ ′)−1 ⊗Σ)(Z ⊗Σ−1)y

= ((ZZ ′)−1Z ⊗ Iq)y. (B.4)

2

B.4 Derivation of the OLS Estimator in VAR model

The OLS estimator of β is obtained via minimizing the following expression:

S̃(β) = ε′ε

= (y− (Z ′ ⊗ Iq)β)′(y− (Z ′ ⊗ Iq)β)

Then we use the Gaussian estimator for β, which produces

β̂ = ((Z′ ⊗ Iq)
′(Z′ ⊗ Iq))

−1(Z′ ⊗ Iq)
′y

= ((Z⊗ Iq)(Z
′ ⊗ Iq))

−1(Z⊗ Iq)y

= (ZZ′ ⊗ Iq)
−1(Z⊗ Iq)y

= ((ZZ′)−1 ⊗ Iq)(Z⊗ Iq)y

= ((ZZ′)−1Z⊗ Iq)y.

2
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B.5 Definition of the column stacking operator vec

Let A be a (n×m) matrix of the form:

A =




a11 a12 . . . a1m

. . . .

an1 an2 . . . anm




Then operator vec transforms A into a (nm × 1) vector by stacking the columns,

that is,

vec(A) =




a11

...

an1

a12

...

an2

...

a1m

...

anm




Then the following vectorization rules apply:

vec(A + B) = vec(A) + vec(B) (1)

vec(AB) = (Iq ⊗ A)vec(B) (2)

= (B′ ⊗ Im)vec(A) (3)

vec(ABC) = (C ′ ⊗ A)vec(B) (4)

where A,B and C denote (m× n), (n× p) and (p× q) matrices and ⊗ denotes the

Kronecker Product (Eves, 1980).
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C.1 B-Splines
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Figure 11: The sequence of B-Splines of order 0 (a), 1 (b), 2 (c) and 3(d).
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C.2 Selected Lags by GAMBoost

In Table 12 are shown the selected smooth components by GAMBoost, based on the

monthly growth rates of the German industrial production for the period 1992:01-

2005:08 (maximal information set for forecasting).
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Figure 12: Selected smooth components by GAMBoost of the univariate IP when the

information set reached its maximum.

76



C.3 Lag Functions C APPENDIX

C.3 Lag Functions

Here are depicted the lag functions of all models from Section 5, Table 2 (with

centering to mean zero).
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C.4 Boosting Estimates of Lag Functions

Here are depicted boosting estimates of the lag functions from Section 5, Table 2

with maximal lag length 10 (with centering to mean zero).
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Figure 13: NLAR1U1 with true lag: 1
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Figure 14: NLAR1U2 with true lag: 2
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Figure 15: NLAR1 with true lags: 1,2
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Figure 16: NLAR2 with true lags: 6,10
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Figure 17: NLAR3 with true lags: 6,10
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Figure 18: NLAR4 with true lags: 4,5,6,7
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D APPENDIX: R-Code

In the enclosed CD most of the functions are documented with sufficient amount of

comment lines, which facilitates their further use. Therefore, they are only briefly

described here. Since I also used the novel technique by Huang and Yang (2004),

not implemented in any statistical software by the time of writing this thesis, below

I propose my version of the corresponding algorithm in full detail (see function

stepwise()). Now we summarize the usage of the basic functions and helpers on

which the present thesis was grounded.

• bbsformula() builds formula for P-Spline base learners, read by gamboost().

• dev.on() is a helper, which facilitates creation of nice Encapsulated PostScript

files, used for the production of all figures in this thesis.

• embed2() is a wrapper of the embed() function. It embeds a time series into

a low-dimensional Euclidean space and is properly adjusted to suit the data

to direct forecasting purposes.

• mspe() defines the accuracy measure MSPE from Section 5.3.

• myfcst() facilitates multi-period ahead forecasts with different modelling strate-

gies.

• partial.fit() extracts the lag functions of a fitted object, obtained by boost-

ing, BRUTO, MARS or HaY.

• p-spline() is a replica of the example in smooth.construct (see. ?p.spline)

in the package mgcv. It allows application of the HaY algorithm with P-Splines.

• setcheck() provides the lag selection rule, as defined in Section 5.2.

• simts() defines the artificial times series from the simulation study (see Table

2 in Section 5).

• stepwise() is an implementation of the stepwise algorithm, provided by

Huang and Yang (2004). See the function below for more details.

In addition, there are several R-files which had the following purposes.

• forecasting.r was used to carry out the forecasting results in the application

section.

• mc-bruto.r, mc-gamboost.r, mc-HaY.r and mc-mars.r were used to carry

out the Monte Carlo simulations. The files are named after the corresponding

methods of interest.
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• plotting.application.r contains the sequence of commands, used to pro-

duce all figures in the application section.

• plotting.simulation.r contains the sequence of commands, used to produce

all figures in the simulation section.

• plotting.r contains the sequence of commands, used to produce all figures

in the sections 2 to 4.

• simulation.storage.r reads, i.e.source, the processes, defined by simts()

and stores them locally into a pre-specified directory.

####################################################################

# Implementation of the Stepwise selection method proposed by Huang and Yang.

# INPUT: ’y’ - univariate time-series or data.frame with ’lags’.

# ’d’ - number of candidate covariates.

# ’Smax’ - maximum number of covariates in one model.

# ’basis’ - either ’ps’ or ’Bs’

# ’fPath’ - print forward and backward procedure.

# OUTPUT: A list of class "stepwise_HaY".

#####################################################################

stepwise <- function(y, d=10, Smax=10, basis="Bs", fPath=F)

{ if(all(basis!=c("Bs","ps"))) stop("’basis’ must be ’Bs’ or ’ps’.")

if(is.null(dim(y)) || min(dim(y)==1))

dat <- embed2(y,dimension=d) else

dat <- y

endF <- forward(dat, Smax=Smax, basis, fPath)

fset <- endF[[Smax]]$set

dat2 <- dat[,c(names(dat)[1],fset)]

endB <- backward(dat2, basis, fPath)

final<- c(endF,endB)

BICs <- sapply(seq(along=final), function(i) final[[i]]$BIC)

index<- which(BICs==min(BICs))[1]

result <- final[[index]]

class(result) <- "stepwise_HaY"

result

}

######################################################################

# NOTE: ’forward’ doesn’t compute intercept-model.
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# Reason: this is a job of ’backward’.

######################################################################

forward <- function(dat, Smax, basis, fPath=F)

{ n <- NROW(dat)

resp<- names(dat)[1]

set <- names(dat)[-1]

forwardset <- NULL

endF <- vector("list", Smax); count <- 1

while(length(forwardset) < Smax){

models <- vector("list", length(set)); k <- 1

for(z in set) # z="Series1.L2"

{ work <- buildModel(resp,c(forwardset,z),basis,n) # buildModel

models[[k]] <- calc.MSE_BIC(work,dat=dat)

k = k + 1

}

MSEs <- sapply(seq(along=models), function(j) models[[j]]$MSE)

ind <- which(MSEs==min(MSEs))[1]

#BICs <- sapply(seq(along=models), function(j) models[[j]]$BIC)

#ind <- which(BICs==min(BICs))[1]

forwardset <- models[[ind]]$set

endF[[count]] <- models[[ind]]; count=count+1

set <- set[!set%in%forwardset]

if(fPath) cat(paste(forwardset,collapse=" "),"\n")

}

endF

}

#######################################################################

# NOTE: ’backward’ doesn’t compute full-model and ’single-term model’.

# Reason: this is a job of ’forward’.

backward <- function(dat, basis, fPath=F)

{ n <- nrow(dat)

resp <- names(dat)[1]

set <- names(dat)[-1]

endB <- vector("list", length(set)-1)

count <- 2

workNull <- buildModel(resp,NULL, basis, n) # buildModel

endB[[1]] <- calc.MSE_BIC(workNull, dat=dat)
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while(length(set)>2){

models <- vector("list", length(set)); k <- 1

for(z in set) # z="Series1.L1"

{ work <- buildModel(resp,set[!set%in%z], basis, n) # buildModel

models[[k]] <- calc.MSE_BIC(work, dat=dat)

k = k + 1

}

MSEs <- sapply(seq(along=models), function(j) models[[j]]$MSE)

ind <- which(MSEs==min(MSEs))[1]

# BICs <- sapply(seq(along=models), function(j) models[[j]]$BIC)

# ind <- which(BICs==min(BICs))[1]

endB[[count]] <- models[[ind]]; count=count+1

set <- models[[ind]]$set

if(fPath) cat(paste(set,collapse=" "),"\n")

}

endB

}

#######################################################################

# INPUT for buildModel():

# ’predictors’ is a set ot covariates

# ’basis’ is a basis specification

# OUTPUT: list() with builded ’formula’ and ’set’ for gam fitting.

# Example: predictors = c("lag1","lag3"); n=100

# basis = "ps"

# basis = "cr"

# buildModel(predictors, basis, n)

# buildModel(NULL, basis, n)

# Note:

# When evaluating gam(Y ~ s(formula, bs = "ps")) for penalized splines

# the model doesn’t work without the function ’p-spline.r’.

########################################################################

buildModel <- function(responce, predictors, basis, n)

{ if(is.null(predictors)) {

res= list(formula=as.formula(paste(responce,"~ 1")),set="1")

attr(res, "basis") <- basis

class(res) <- "buildModel"

return(res)
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}

if( basis=="ps"){

pred <- paste("s(",predictors,",bs=’",basis,"’)",sep="",collapse="+")

model <- as.formula(paste(responce,"~",pred))

}

if( basis=="Bs"){

k <- 2 # tuning constant

knots <- floor((k*n)^(1/5)) # obtain the number of knots ? problematisch

pred <- paste("s(",predictors,",bs=’cr’,k=",knots,",fx=T)",sep="",collapse="+")

model <- as.formula(paste(responce,"~",pred))

}

res <- list()

res$formula <- model

res$set <- predictors

attr(res, "basis") <- basis

class(res) <- "buildModel"

return(res)

}

############################################################################

# INPUT for calc.MSE_BIC():

# ’formula_and_set’ should be OUTPUT of the function ’buildModel’

############################################################################

calc.MSE_BIC <- function(formula_and_set, dat)

{ if(class(formula_and_set)!="buildModel") stop("Object must be from class ’buildModel’.")

require(splines)

require(mgcv)

res <- list()

fit <- gam(formula_and_set$formula, data=dat)

if( attributes(formula_and_set)$basis == "ps" ){

n <- length(fit$fitted)

N <- sum(fit$edf)

MSE <- mean((fit$resid)^2)

BIC <- log(MSE) + N/n*log(n)

}

if( attributes(formula_and_set)$basis == "Bs" ) {

n <- length(fit$fitted)

N <- 1 + sum(fit$edf) + length(coef(fit)) #sum(fit$edf)==sum(fit$hat)
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MSE <- mean((fit$resid)^2)

BIC <- log(MSE) + N/n*log(n)

}

res$fit <- fit

res$set <- formula_and_set$set

res$MSE <- MSE

res$BIC <- BIC

return(res)

}
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und zew-konjunkturerwartungen: Ein ökonometrischer vergleich. Jahrbücher für

Nationalökonomie und Statistik 222 (3), 316–336.

Hurvich, C., J. Simonoff, and C. Tsai (1998). Smoothing parameter selection in

nonparametric regression using an improved Akaike information criterion. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 60 (2), 271–293.

Hyndman, R. and A. Koehler (2006). Another look at measures of forecast accuracy.

International Journal of Forecasting 22 (4), 679–688.

94



REFERENCES REFERENCES

Kneib, T. (2003). Bayes-Inferenz in Generalizierten Geoadditiven Gemischten Mod-

ellen. Diplomarbeit, University of Munich.

Lewis, P. and J. Stevens (1991). Nonlinear Modeling of Time Series Using Multi-

variate Adaptive Regression Splines (MARS). Journal of the American Statistical

Association 86 (416).

Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer,

Berlin.

Lütkepohl, H. (2006). New Introduction to Multiple Time Series Analysis. Springer.

Lütkepohl, H. and M. Krätzig (2004). Applied Time Series Econometrics. Cam-

bridge University Press.

Lutz, R. and P. Bühlmann (2006). Boosting for high-multivariate responses in high-

dimensional linear regression. Statistica Sinica 16 (2), 471–494.

Mallat, S. and Z. Zhang (1993). Matching pursuit in a time-frequency dictionary.

IEEE Transactions on Signal Processing 41 (12), 3397–3415.

Marcellino, M. and C. Schumacher (2007). Factor nowcasting of german gdp with

ragged-edge data. a model comparison using midas projections. Technical report,

Bundesbank Discussion Paper, Series 1, 34/2007.

Marcellino, M., J. Stock, and M. Watson (2006). A Comparison of Direct and Iter-

ated Multistep AR Methods for Forecasting Macroeconomic Time Series. Journal

of Econometrics 135 (1-2), 499–526.

Nelder, J. and R. Wedderburn (1972). Generalized Linear Models. Journal of the

Royal Statistical Society. Series A (General) 135 (3), 370–384.

Priestley, M. (1980). State-dependent models: A general approach to non-linear

time series analysis. Journal of Time Series Analysis 1 (1), 47–71.

R Development Core Team (2008). R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN

3-900051-07-0.

Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik 10 (3),

177–183.

Robinzonov, N. and K. Wohlrabe (2008). Freedom of Choice in Macroeconomic Fore-

casting: An Illustration with German Industrial Production and Linear Models.

Ifo working paper No. 57, Munich.

95



REFERENCES REFERENCES

Schmid, M. and T. Hothorn (2007). Boosting Additive Models using Component-

wise P-Splines. Department of Statistics: Technical Reports, No.2 .

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statis-

tics 6 (2), 461–464.

Shafik, N. and G. Tutz (2007). Boosting Nonlinear Additive Autoregressive Time

Series. Department of Statistics: Technical Reports, No.6 .

Sims, C. (1980). Macroeconomic and Reality. Econometrica 48 (1), 1–48.

Stock, J. and M. Watson (2003). Forecasting Output and Inflation: The Role of

Asset Prices. Journal of Economic Literature 41 (3), 788–829.

Stone, C., M. Hansen, C. Kooperberg, and Y. Truong (1997). Polynomial splines and

their tensor products in extended linear modeling: 1994 Wald memorial lecture.

Ann. Statist 25 (4), 1371–1470.
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