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Abstract

In “-omic data” analysis, information on the structure of covari-

ates are broadly available either from public databases describing gene

regulation processes and functional groups such as the Kyoto encyclo-

pedia of genes and genomes (KEGG), or from statistical analyses –

for example in form of partial correlation estimators. The analysis of

transcriptomic data might benefit from the incorporation of such prior

knowledge. In this paper we focus on the integration of structured in-

formation into statistical analyses in which at least one major step in-

volves the estimation of a (high-dimensional) covariance matrix. More

precisely, we revisit the recently proposed “SHrinkage Incorporating

Prior” (SHIP) covariance estimation method which takes into account

the group structure of the covariates, and suggest to integrate the

SHIP covariance estimator into various multivariate methods such as

linear discriminant analysis (LDA), global analysis of covariance (Glob-

alANCOVA), and regularized generalized canonical correlation analy-

sis (RGCCA). We demonstrate the use of the resulting new methods

∗Corresponding author. Email: boulesteix@ibe.med.uni-muenchen.de.
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based on simulations and discuss the benefit of the integration of prior

information through the SHIP estimator. Reproducible R codes are

available at http://www.ibe.med.uni-muenchen.de/organisation/

mitarbeiter/020_professuren/boulesteix/shipproject/index.html.

1 Introduction

Methods integrating prior knowledge on the structure of covariates into pre-

diction models have become very popular in the last few years in the context

of statistical bioinformatics. This knowledge may be given, e.g. as a set of

clusters of covariates that are involved in the same biological process or have

a similar function, or as a set of pairwise connections between covariates in

the form of a graph. The methods integrating prior knowledge into pre-

diction models – or more generally into multivariate statistical methods –

implicitly postulate that, say, connected covariates should have a similar

regression coefficient, are more correlated than non-connected covariates, or

should be selected following a none-or-all principle. These methods are gen-

erally denoted as “integration methods” in the rest of this paper, where the

term “integration” refers to the integration of prior biological knowledge on

the structure of the covariates into multivariate statistical analyses.

While some integration methods primarily aim at providing more inter-

pretable results, others are presented as a means of improving an objec-

tive criterion, for example the prediction error. The methods proposed in

the statistical bioinformatics literature are as diverse as the backgrounds

of their authors, ranging from statistical model-based approaches to ma-

chine learning procedures. In this paper, we demonstrate new applications

of the covariance estimator Σ̂SHIP (standing for SHrinkage covariance esti-

mator Incorporating Prior biological knowledge) [6] to various multivariate

methods.

In Section 2 we first outline the theory behind the shrinkage estimator

Σ̂SHIP and further give a short introduction to the scope of the correspond-

ing R package SHIP. In section 3 we present a wide range of multivariate

statistical methods which can benefit from the incorporation of biological

knowledge through the covariance estimator Σ̂SHIP and critically discuss its

usefulness for the considered problems. In this section we also introduce a

new variant of Σ̂SHIP specifically designed to address the particularities of
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one of the applications.

2 The SHIP covariance estimator

2.1 Method

The covariance estimator Σ̂SHIP is based on the shrinkage estimator in-

troduced by [8, 9] and applied by [11] in the context of high-dimensional

genomic data for which the number of variables p exceeds the sample size

n. It addresses the methodological challenges arising from the n � p data

setting, where the empirical covariance matrix of rank at most n − 1 and

dimensions p× p is not invertible. In addition, it can incorporate additional

assumptions, for instance based on prior biological knowledge on gene func-

tional groups extracted from the database KEGG (Kyoto encyclopedia of

genes and genomes [7]. In a few words, the shrinkage estimator [11] is the

asymptotically optimal convex linear combination Σ̂∗ = λT+(1−λ)S, where

λ ∈ [0, 1] denotes the analytically determined optimal shrinkage intensity, T

stands for a structured covariance target, and S is the unstructured unbiased

empirical covariance matrix. The resulting shrinkage estimator of the co-

variance matrix Σ is then invertible (provided T is chosen adequately) and

stabilized. The optimal shrinkage intensity λ is determined with respect to

a quadratic loss function, resulting in a target-specific analytical formula

[11]. For statistical details on the computation of λ see [11].

The choice of the covariance target T is essential in the computation of

the shrinkage estimator, but turns out to be very complex. On the one hand,

T is required to be positive definite and to involve only a small number of

free parameters. On the other hand, it should reflect important character-

istics of the suspected true covariance structure between the variables. An

overview of commonly used covariance targets is given in [11]. One of these

targets, denoted as target F in [11] (see Table 1), is the starting point for the

development of new targets incorporating biological information, e.g. from

KEGG. A modified version of target F where pairs of connected variables

(i.e. genes from the same gene functional group) have non-zero common

correlation (r̄) has been suggested for this purpose [6]. The resulting target

G defines a new matrix T whose elements are given on the right of Table 1.

The estimator Σ̂∗ obtained by plugging this new matrix T into the formula

λT + (1−λ)S is denoted as Σ̂SHIP. Note that a multiplicity of other F-type
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targets incorporating prior biological knowledge are conceivable [6]. In Sec-

tion 2.2 we introduce the special cases considered in this paper. For details

on the choice of the parameter λ, see Additional File 1 of [6].

Target D Target F Target G

tij =

{
sii if i = j

0 if i 6= j
tij =

{
sii if i = j

r̄
√
siisjj if i 6= j

tij =





sii if i = j

r̄
√
siisjj if i 6= j

0 otherwise

Table 1: Overview of targets D, F and G (where r̄ is the average of the
sample correlations between connected variables). The notation i ∼ j means
that variables i and j are connected. The term sij denotes the entry of the
unbiased estimator of the covariance matrix in row i, column j.

2.2 The R Package SHIP

Different variants of the covariance estimator Σ̂SHIP [6] are implemented

in the publicly available R package SHIP [5]. They differ by the user-chosen

type of covariance target. The target is the highly structured matrix used to

shrink the unbiased empirical covariance matrix, and optionally incorporates

prior knowledge from the database KEGG. The function build.target()

is a wrapper function to build the various targets by specifying the argu-

ment type. In particular, the settings type="D", type="F" and type="G"

create the targets displayed in Table 1. Several variants of target G are

implemented: type="cor" is a modified version of target G testing the cor-

relations (with a significance level of 0.05) and setting the non-significant

ones to zero before the mean correlation r is computed, while type="Gpos"

completely ignores negative correlations and computes the mean correlation

using the positive ones only. Prior knowledge is incorporated through the ar-

gument genegroups, a list with as many elements as variables (genes) in the

dataset. Each element of the list genegroups gives the groups (pathways)

the corresponding variable (gene) belongs to. For more details we refer to the

package manual [5]. The function shrink.estim() then computes the cho-

sen variant of the covariance estimator Σ̂SHIP. For example, the command

shrink.estim(x,genegroups,build.target(x,type="G")) yields Σ̂SHIP

based on target G, where x is the n × p data matrix. Depending on the

target, the positive definiteness of the resulting estimate of the covariance
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matrix may not be ensured, for example with targets G or G*. Therefore,

in the following applications we use the function make.positive.definite

(from library corpcor) to make the new estimate positive definite if neces-

sary.

3 Using Σ̂SHIP in various multivariate statistical

methods

The estimation of the covariance matrix, or of its inverse, is essential in

many multivariate analysis methods, and becomes critical when the number

of variables p exceeds the number of individuals n. In this part, we show

how the estimator Σ̂SHIP can be integrated into three multivariate meth-

ods as diverse as linear discriminant analysis (LDA), regularized generalized

canonical correlation analysis (RGCCA) and global analysis of covariance

(GlobalANCOVA). Each of these methods uses in a different way the in-

formation contained in the estimated covariance matrix. In the rest of this

section, these methods are modified by replacing a standard covariance es-

timator by the Σ̂SHIP estimator.

3.1 Simulation settings

The use of the covariance estimator Σ̂SHIP in the three considered methods

(LDA, RGCCA, GlobalANCOVA) and the resulting performance is demon-

strated using simulated data. All simulations are based on the assumption

of a multivariate normal distribution with block-diagonal covariance matrix

of size p× p of the form

Σ =




A1 0 . . . 0

0 A2 . . . 0
...

...
. . .

...

0 0 . . . AK



, (1)

where each submatrix Ak is of size pk × pk, with
∑K

k=1 pk = p. The subma-

trices Ak have the form Ak = (1 − ak)Ipk + akJpk where ak is a scalar in

]0, 1[, Ipk stands for the identity matrix and Jpk for the matrix of ones, both

of them of size pk × pk. Each Ak thus corresponds to a “group” of corre-

lated variables. For the LDA and RGCCA applications, each variable may

5



correspond to a gene, and groups represent gene functional groups that are

supposed to be more correlated than genes from different functional groups.

Groups may be quite large (typically pk > 10) but the within-group correla-

tion ak tends to be moderate. In the application to GlobalANCOVA, each

variable corresponds to a probe of the microarray, and a group corresponds

to different probesets targeting the same gene. In contrast to the LDA and

RGCCA settings, the groups are very small (usually 1 ≤ pk ≤ 5) and the

within-group correlation ak is typically very high.

3.2 Application to LDA

Linear Discriminant Analysis (LDA) is a widely used classification method

based on the assumption that the random vector of explanatory variables

follows a multivariate normal distribution N (µr,Σ) within each class r (for

r = 1, . . . , c, where c denotes the total number of classes). A new obser-

vation is assigned to the class with maximal posterior probability. Note

that the linearity of the decision function results from the assumption of

equal within-class covariance matrices (i.e. Σ1 = · · · = Σc). This deci-

sion function involves the inverse Σ−1 of the covariance matrix Σ which in

standard n > p settings is estimated through the inverse S̃−1 of the pooled

empirical covariance matrix S̃. In high-dimensional settings, however, S̃ is

singular and thus not invertible. Regularized linear discriminant analysis

aims at solving the singularity problem by modifying S̃ such that the re-

sulting estimator becomes invertible [2, 3]. Here, we estimate Σ−1 through

the inverse of Σ̂SHIP introduced in Section 2.1 and follow the formulation of

multiclass LDA from [1], shrinking the correlations only according to [11].

The resulting classification method is denoted as SHIP-LDA in the rest of

this paper.

For this application, the groups of variables represent functional groups

of genes sharing a similar function. In our simulations the genes belonging

to such “functional groups” are assumed to be correlated (ak > 0), while

the correlation between two genes belonging to different groups is set to 0.

Figure 1 shows the error rates of SHIP-LDA with target D, target G, and

target G with randomly permuted groups of variables.

These results show that the performance of linear discriminant analysis

is impacted by the estimation of the covariance matrix. When the SHIP

estimator with target G (middle boxplot) is used and the correct groups of
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variables are specified, the performance is slightly improved when compared

to the use of target D (left boxplot) or target G with permuted groups of

variables (right boxplot). Further, we observe that the difference between

the performance of the three SHIP-LDA versions tends to decrease when

the number of individuals increases, for instance to n = 100 or n = 400.

This is probably because the estimation of the covariance matrix becomes

less critical as the sample size grows, even without prior information on the

group structure. On the whole, our simulation shows a positive influence of

the incorporation of group information in the form of target G on the test

error rate of LDA, thus endorsing the concept of SHIP-LDA with target G.

This improvement, however, is very moderate in the investigated settings.

3.3 Application to RGCCA

Regularized Generalized Canonical Correlation Analysis (RGCCA) [13] is a

generalization of regularized canonical correlation analysis to three or more

blocks of variables. It constitutes a very general framework for studying

relationships between several blocks of variables observed on the same set

of individuals. Let us denote by X(1), ...,X(B) the B (centered) data matri-

ces corresponding to B blocks of variables, each of them measured on the

same n individuals. The objective of RGCCA is to find for each block linear

combinations of variables (denoted as latent components) such that i) these

components explain their own block well and/or ii) components related to

blocks that are assumed to be connected are highly correlated. The RGCCA

algorithm requires to compute for each block the inverse of the shrinkage co-

variance matrix Σ̂∗(b) = λbI+(1−λb) 1
nX(b)>X(b), for b = 1, ..., B, where the

shrinkage parameter λb is derived from an analytical formula [11]. RGCCA is

implemented in the R package RGCCA [12]. We suggest to plug the covariance

estimator Σ̂
(b)
SHIP into the RGCCA algorithm in place of Σ̂(b), b = 1, ..., B.

The performance of the combination of RGCCA with Σ̂
(b)
SHIP is evaluated on

simulated data.

In our simulations, we consider B = 3 blocks, where the n ×m(b) data

matrices X(b) (b = 1, 2, 3) have the form:

X(b) = αη(b)1>
m(b) + Z(b),

In the above formula, the n-vector η(b) corresponds to the first latent com-
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ponent of the block b, α is a scalar reflecting the importance of the latent

component η(b), 1m(b) is the m(b)-vector of ones, and the n×m(b) matrix Z(b)

is an additional term. The components of the three vectors η(1),η(2),η(3)

are i.i.d. realizations of a multivariate normal variable with mean 0 and

covariance matrix

Ση =




1 ρ1,2 ρ1,3

ρ2,1 1 ρ2,3

ρ3,1 ρ3,2 1


 .

The rows of Z(b) are i.i.d. realizations of a multivariate normal variable with

mean 0 and m(b) ×m(b) covariance matrix of the form of Eq.(1):

Σ
(b)
Z =




(1− a(b)1 )I + a
(b)
1 J 0 . . . 0

0 (1− a(b)2 )I + a
(b)
2 J . . . 0

...
...

. . .
...

0 0 . . . (1− a(b)K )I + a
(b)
K J



,

where a
(b)
k (for k = 1, . . . ,K and b = 1, . . . ,K) are scalars in ]0, 1[. It fol-

lows that the n rows of the matrices X(b) are themselves the realizations

of multivariate normal variables structured into groups. The resulting co-

variance matrix of the whole random vector obtained by concatenating the

three blocks can be written as

Σ =




M(1) ρ1,2α
2J ρ1,3α

2J

ρ2,1α
2J M(2) ρ2,3α

2J

ρ3,1α
2J ρ3,2α

2J M(3)


 where M(b) =




A
(b)
1 α2 . . . α2

α2 A
(b)
2 . . . α2

...
...

. . .
...

α2 α2 . . . A
(b)
K




is the covariance matrix of block b, each block being itself structured into

groups of variables with covariance matrix A
(b)
k = (1− a(b)k )I + (α2 + a

(b)
k )J.

Since α2 6= 0, the use of target G is not appropriate. To address this

issue, we slightly modify target G into a new target, called target H, in

order to adapt it to the case where all variables of a block are expected to

be correlated even if they are not in a common group (i.e. not connected).

The new target is defined in Table 2.

Figure 2 shows the usefulness of the combination of RGCCA with the

SHIP estimator (target H or H with randomly permuted groups) in terms of
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Target H

tij =





sii if i = j

r̄C
√
siisjj if i 6= j and i ∼ j

r̄NC
√
siisjj otherwise

Table 2: The new target H adapted to the application of SHIP to RGCCA.
r̄C (resp. r̄NC) is the average of the sample correlations between Connected
(resp. Non-Connected) variables.

MSE when α = 0.1 and α =
√

2. When considering target H, the estimated

shrinkage parameters λb are close to 1 for each block, which means that

target H is taken into account for the estimation of the covariance matrix.

Conversely, for targets D and H(p), the shrinkage parameters are close to 0

for each block.

Furthermore, when the number of individuals is set to n = 50 and

α =
√

2, the performance with target H is significantly worse than the

performance with target H(p), as can been observed from the right-bottom

panel of Figure 2. We conjecture that this unexpected result is due to a

better conditioning of the covariance matrix obtained from target H with

permuted groups.

The peculiar settings of RGCCA led us to design the new target H which

takes into account the within and between group correlation separately. In

our simulation this new target yields a significant improvement of the MSE

both over target G (data not shown) and target D. Indeed, when using target

G, the shrinkage parameters are close to 0 for each block, which means that

target G is not taken into account for the construction of Σ̂. With target

G the MSE is worse than with target D, probably because the resulting

estimated covariance matrix is then ill-conditioned.

Finally, let us point out that the MSE is not computable in real data

applications, where the true latent components and their correlation are

unknown. The evaluation of the performance of the combination of RGCCA

with the SHIP estimator beyond simulations is thus not straightforward, and

it is difficult to evaluate whether or not the integration of group structure

information in form of the SHIP estimator could benefit real applications.
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3.4 Application to GlobalANCOVA

In the last few years, global testing methods have been proposed as a useful

tool for the analysis of high-dimensional genomic data. Single variables are

not always the primary focus. For example, one may be more interested

in sets of genes from a common pathway rather than in single genes. The

GlobalANCOVA approach [4] implemented in the R package GlobalANCOVA

[10] is one the testing methods proposed in the literature to globally test

groups of variables. It tests the global null-hypothesis that all variables have

the same mean in the considered groups. The estimation of the covariance

matrix estimation is necessary to compute asymptotical p-values (as opposed

to permutation-based p-values). The current version of GlobalANCOVA

uses the shrinkage covariance estimator [11] with target D. We propose to

incorporate priori knowledge on the group structure of the variables into the

computation of asymptotical p-values by using target G instead of target D.

Our simulation design mimics the realistic case of a group of genes that

are all represented by several probesets in a microarray. In this setting,

variables are probesets and groups are genes, as opposed to the previous

examples where variables were genes and groups were pathways. Thus,

the groups of variables are now very small (including 2 to 4 variables),

because each gene is targeted by a very small number of probesets, but

highly correlated (ρ = 0.8 to 0.95), because probesets targeting the same

gene measure the same quantity. The correlation between genes is considered

to be null, following the general covariance structure given in Eq.(1).

The empirical distribution of the p-values – obtained from 1000 simulated

data sets under the null-hypothesis – is showed for three different shrinkage

estimators of the covariance matrix on Figure 3. Under the null-hypothesis,

these p-values are expected to be uniformly distributed. However, we see

that the empirical distribution of p-values is noticeably non-uniform when

the covariance matrix is estimated with target D or with target G after ran-

dom permutation of the groups of variables. In contrast, when knowledge on

the group structure of the variable is integrated into the procedure through

the SHIP estimator, the distribution is approximately uniform under the

null-hypothesis – as required from a statistical test.
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4 Conclusion

In all three applications of the SHIP estimator – with target G or with the

new target H – we could show a quantitative improvement compared to tar-

gets ignoring the group structure: in terms of prediction error in LDA, in

terms of MSE in RGCCA, and in terms of uniformity of the distribution of

p-values under the null-hypothesis in GlobalANCOVA. Based on simulated

data with known and strong group structure, we thus demonstrated the ad-

vantage of integrating priori knowledge on this structure into the estimation

of the covariance matrix for use in various multivariate methods.

This study, however, is intended as a proof of concept, and does not

aim to definitely establish the superiority of the suggested SHIP-based vari-

ants of LDA, RGCCA and GlobalANCOVA. Firstly, more simulations in

different settings would be needed for each of these three methods to obtain

more general results. Secondly, the SHIP covariance estimator is some-

times ill-conditioned, depending on the group structure and of the strength

of the correlations. This problem could be addressed in future research,

e.g. by adding an additional diagonal matrix with its own shrinkage factor.

Thirdly, the group structures considered in our simulations are intentionally

more simplistic than in real data settings. Fourthly, our approach is lim-

ited to situations where variables within a group have higher correlations

than variables from different groups. This idea might seem natural from

the point of view of a statistician, but in real life not all group structures

can be translated in terms of higher correlations. For example, genes from

common KEGG pathways do not necessarily have higher correlations than

genes from different pathways [6]. And even if such groups exist, they may

be (partially) unknown to the biomedical experts.

In conclusion, we consider the integration of information on the group

structure into the shrinkage-based estimation of the covariance matrix as

promising, but believe that caution and careful consideration of the sub-

stantive context are necessary in practice.
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Figure 1: Performance (test error rate) of the modified versions of LDA.
Within the two classes (Y = 0, 1) of size 25 each (n = 50), the data are
generated as i.i.d. realizations of a multivariate normal distribution with
mean 0 in class Y = 0 and µ in class Y = 1, where the vector µ con-
tains independent realizations of the distribution N (0, σ2). The parameter
σ controls the level of separation of the two classes and is set to σ = 0.15
in this example to obtain a neither too easy nor too difficult classification
problem. The variables are split into 3 groups of variables of sizes 200, 500
and 300 with a null correlation between groups and correlation ak within
each group k = 1, 2, 3. The boxplots display the test error rates obtained
from 100 simulated datasets by applying SHIP-LDA with targets D, G, and
G with randomly permuted groups of variables. The test error rates are
estimated based on 1000 independent test observations generated from the
same distribution. A selection of 30 variables is performed on the train-
ing sets based on the p-value of the t-test before any classification method
is applied. LEFT: the within-group correlations ak are high (a1 = 0.97,
a2 = 0.9 and a3 = 0.95). RIGHT: the within-group correlations ak are low
(a1 = 0.2, a2 = 0.3 and a3 = 0.1).
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Figure 2: Mean Square Error of the estimated correlation matrix Σ̂η be-
tween the components. To obtain boxplots, we generated 100 independent
datasets. Three blocks are simulated, each one containing respectively 100,
200 and 50 variables. The correlations of the latent components are set to
ρ1,2 = ρ1,3 = 0.7 and ρ2,3 = 0. The first block contains 5 groups of 20

variables (with correlations a
(1)
1 = 0.8, a

(1)
2 = 0.9, a

(1)
3 = 0.7, a

(1)
4 = 0.85

and a
(1)
5 = 0.96), the second block contains 2 groups of 100 variables (with

correlations a
(2)
1 = 0.8 and a

(2)
2 = 0.9) and the last block contains 3 groups

of respectively 20, 20 and 10 variables (with correlations and a
(3)
1 = 0.8,

a
(3)
2 = 0.9 and a

(3)
3 = 0.85). In the UPPER FIGURES the sample size is

set to n = 200, whereas in the LOWER FIGURES n = 50. For the LEFT
FIGURES, α is set to α = 0.1, which means that the group-structured

component z
(b)
i dominates the latent component η

(b)
i of the block. For the

RIGHT FIGURES, α =
√

2, which means that the latent component η
(b)
i

dominates the group-structured component z
(b)
i .
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Figure 3: Histograms of the p-values under the null hypothesis. The dis-
played p-values are obtained from 1000 datasets with p = 200 variables
(probesets) and n = 100 observations. The p = 200 variables are divided into
34 groups of 2, 30 groups of 3 and 18 groups of 4. Each of these groups are as-
signed a correlation (ak) chosen randomly from the set {0.8, 0.85, 0.9, 0.95}.
LEFT FIGURE: Target D is used for the estimation of the covariance ma-
trix. MIDDLE FIGURE: Target G is used. RIGHT FIGURE: Target
G is used.
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