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SUMMARY: In linear mixed models the assumption of normally distributed random
effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet pro-
cess mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of
distributions assumptions the specification allows to estimate clusters of observations
with a similar random effects structure identified. An Expectation-Maximization al-
gorithm is given that solves the estimation problem and that exhibits advantages
over in this framework usually used Markov chain Monte Carlo approaches. The
method is evaluated in a simulation study and applied to dynamics of unemployment

in Germany as well as lung function growth data.
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1 Introduction

Linear mixed models (LMM) are a common tool for the modeling of longitudinal

data. The classical model has the form

yZJ‘bz “ﬂ N(w£ﬁ+2?bl, 0'2), Z:L,n, jzl,,nl, (1)

J
where y;; denotes the response observed for subject ¢ at observation times ¢;; with
tin < ... <t <...<ty,. Population effects of covariates x;; are collected in the
parameter vector 3 whereas individual-specific effects of covariates z;; are represented
in the parameter vector b;. The classical assumption in (1) is a Gaussian distribution
for the random effects, i.e. b; i.i.d. N(0, D), see for example Verbeke and Molenberghs
(2000) and Ruppert et al. (2003). While this choice is mathematically convenient,
in applications it is often questionable for several reasons. The normal distribution
is symmetric, unimodal and has light tails. Since the distributional assumption is
made on unobserved quantities, it is typically hard to validate these properties based
on estimates. Possible skewness and multimodality (arising, for example, from an
unconsidered grouping structure in the data) may be masked when checking the
normal distribution in terms of estimated random effects. A finite mixture of normal
distributions as a random effects distribution suggested, for example, by Verbeke and
Lesaffre (1996), Verbeke and Molenberghs (2000), and Griin (2008) is much more

flexible. One assumes

N
biNZWhN(“h’D>7 (2)

h=1
where mq,...,my are mixture weights. The number of mixture components is un-

known and has to be chosen. A data driven choice of this number is desirable and
could be achieved by a penalization of the mixture weights 7). For example, Komarék
and Lesaffre (2008) penalized differences between reparametrized weights. In contrast,
Magder and Zeger (1996) used component specific covariance matrices subject to the
constraint that their determinants are greater than or equal to some minimum value.
In this paper we present a new penalization approach. The basic concept is to shrink
the weights 7, towards zero in order to reduce the number of clusters. Therefore
we consider a Dirichlet process mixture (DPM) for the random effects distribution
and use the stick breaking procedure of the Dirichlet process (see Ferguson, 1973, for
the theory behind the Dirichlet process and Sethuraman, 1994, for the stick breaking
presentation of the Dirichlet process). The main advantage of Dirichlet processes is
the cluster property: by using a DPM for the random effects distribution we obtain
automatically a clustering of individuals. Under the assumption that the population

can be described by few clusters we want to identify and interpret them. Since a



Dirichlet process allows to specify a prior on probability measures, it has been mainly
used in the Bayesian inference for density estimation and random effects models. For
linear mixed models, Dirichlet process priors for random effects were first proposed
by Kleinman and Ibrahim (1998).

We aim at establishing the Dirichlet process as a tool for frequentist modeling. There-
fore, instead of using Markov chain Monte Carlo (MCMC) methods, which are usually
applied for estimation in random effects models with Dirichlet processes (compare for
example Heinzl et al., 2011), we extend the traditional Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) used in the heterogeneity model of Verbeke
and Molenberghs (2000) and call it DPM-EM model. We will show that the EM al-
gorithm has an essential advantage over MCMC methods, where Dirichlet processes
are concerned. In summary, on the one hand our DPM-EM model is a regularization
approach for the number of mixture components in (2). On the other hand our model
is a method to obtain clustering of individuals in longitudinal data.

The paper is organized as follows: In Section 2.1 the model hierarchy as well as the
cluster property of Dirichlet processes are illustrated. In Section 2.2 we present our
DPM-EM algorithm in detail. Simulation results can be seen in Chapter 3 while
applications are shown in Chapter 4. Finally Chapter 5 subsumes the main aspects

of our approach.

2 Linear mixed models with Dirichlet process mix-

tures

2.1 Model hierarchy

Collecting observations y;;, j = 1,...,n;, for individual 7 in the vector y,, model (1)

can be written in matrix notation as

Y;|bi £ N(XiB+ Zb;, o°I) i=1,...,n,

where I is the identity matrix and X; and Z; denote the individual design matri-
ces constructed from covariates x;; and z;;, respectively. For the random effects

distribution, we assume a hierarchical Gaussian mixture

bz‘ez " N(Hz,D), i:].,...,’n,,
e i=1,...,n, (3)
G ~ DP(O(,GQ).

U

U

Here, the Dirichlet process DP(«, Gy) is a distributional assumption for the unknown



mixing distribution G. A special feature of the Dirichlet process is, that each real-
ization of GG is a discrete probability measure. So in the DPM specification, choosing
a Dirichlet process for the 0;, i = 1,...,n, creates ties among these and therefore
forms clusters of subjects whereas each subject still has its own unique random ef-
fects value. In general, there are k < n clusters and 6, ..., 8, can be represented by
cluster locations g4, . .., p; and cluster allocation variables. Although in theory there
is an automatic clustering structure induced by the Dirichlet process, some practical
problems arise in the Bayesian context from using MCMC methods: One obtains a
clustering of subjects within each iteration, but it is unclear how these can merged
into an universal clustering. Several operations exist to handle this (see for example
Fritsch and Ickstadt, 2009), but due to the high number of possible clusterings, these
methods are typically not feasible in larger problems. The advantage of the EM algo-
rithm over MCMC methods is that the EM algorithm converges to fixed values, while
MCMC methods converge to distributions. So with EM type algorithms the cluster
property of the Dirichlet process can be used directly.

The strength of clustering and therefore the number of clusters is determined by the
parameter o, which controls the confidence in the base distribution Gy. According to
the relationship between Bayesian and likelihood inference we choose a diffuse uniform
distribution on (—o0, 00) for Gy. So, in principle, no cluster location is preferred over

others.

In practice, inference with Dirichlet processes can be handled by using the stick break-
ing representation of the Dirichlet process in its truncated version (see for example

Ishwaran and James, 2002)

N

G = Zﬂ-héﬂh’

h=1
where ¢, denotes the Dirac measure on p,;,. Hence, the unknown distribution G is
represented as a weighted sum of point masses with random weights 7, linked to the

locations ;. The weights can be constructed through the stick breaking procedure

T = ][, —w), h=1,...,N,

U R Be(1, a), h=1,...,N—1,
where Be(-) denotes the beta distribution. In the truncated version vy = 1 ensures
that the sum of weights 7, is one. Sethuraman (1994) showed that for p,, S Go
(in the limit N — o00) the probability measure of G is given by DP(a,Gy). The
truncated version still is a good approximation because the random weights decrease
stochastically as the index h grows (Ishwaran and James, 2001). This is obvious by

the recursive definition of weights
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which gives the procedure its name and is visualized in Figure 1. It works as follows:

first, for getting 7 a piece is broken away from a stick of length one. Next, from the

remainder of the stick, 1 — m; breaks a further piece away and calls it 75 and so on.

So for large h the weights get very small and can be omitted. More mathematically,

E(3"p2 ni1™h) converges to zero exponentially with N — oo (Ohlssen et al., 2007).

It should be noted that N can also be seen as the maximum number of clusters. So

in our simulations and applications, we truncate the stick breaking representation at
N = min{n, 100}.

In summary, by using the stick breaking procedure the distribution assumption for

the random effects (3) can be rewritten as

where v = (vy,..

i.1.d.

blv " SN mu Ny, D), i=1,...,n,

Th = UhHl<h<1_Ul)7 h = 17"'aN7 (4)
Uh RS- Be(1, a), h=1,...,N—1,

., on_1)T symbolizes reparameterized weights. Therefore for the
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Fig. 2: Realizations of G ~ DP(«,Gy) with Go = N(0,1)

random effects distribution we get a finite mixture of normal distributions in which
the number of mixture components with 7, # 0 is penalized. See Figure 2 for
an illustration of two discrete probability measures simulated by Dirichlet processes
with different values of a. Obviously « controls the number of cluster locations p,,
with weights 7, # 0 and thus the effective number of clusters. In the following
the order of pq,...,py is given by the corresponding weights in decreasing order
under the restrictions Zthl Thit, = 0 and Zflvzl 7, = 1. The first restriction ensures
E(y;) = X,;8. The second constraint is standard and is automatically fulfilled by

UN:1.

2.2 Inference

In the following, we give an EM algorithm for the LMM described in Section 2.1. The
algorithm is based on derivations by McLachlan and Peel (2000) and McLachlan and
Krishnan (1997) and is similar to the algorithm used by Verbeke and Molenberghs
(2000) but includes a penalty term. Let & = (o, v,~)T, where ~ is the vector con-

2. The cluster membership

taining all the remaining parameters 3, py, ..., puy, D, 0
of each individual can be described by the latent variable z; := (21, ..., 2 N)T where
zin = 1 if subject ¢ belongs to cluster h and 0 otherwise. Marginalization over the
random effects yields the complete model with observed data y, as well as unobserved

data z;:



&

in.

yi|zi ~ N(Xl,B—i—le,h, Vl), 1= 1,...,71,
zlo K M(Lm), i=1,....m, (5)
o R Be(1, o), h=1,...,N—1,

with V; = Z;DZ] + ¢*I and M(-) symbolizing the multinomial distribution. This
model can either be parameterized by @ = (7,...,mx)? or by v. Since the latter
parametrization simplifies calculations it is used in the following. Nevertheless, only
for a compact presentation, we write 7, instead of v, [],_,,(1 — v;). The likelihood

function corresponding to (5) is given by

n N N—
Hﬂ'hfzh yw’y H 1_Uh

1=1 h=1

Here fi,(-) denotes the density function of N(X;8 + Z;u,, V;). Finally, as log-

likelihood one obtains

n N N-1
= Z Z zinflog T, + 1og fin(y;; )] + (N — 1) loga + (a — 1) Z log(1 — vp).
i=1 h=1 h=1

This function can either be seen as log-posterior in the Bayesian context or as pe-
nalized log-likelihood whose penalization term results from the stick breaking pro-
cedure of the Dirichlet process. Obviously for &« = 1 the penalization term drops
out. According to the general EM algorithm procedure we alternate between taking
the expectation of [p(&) over all unobserved z;, in the E-step and maximization of
this expected value in the M-step instead of maximizing the penalized incomplete

likelihood function based only on the observed data directly.

E-step
Collecting all observed data by y = (yT,...,y2)T for the E-step we get

QUEIE™) = B (1p(&)ly.€) =

=

-1

n N
=Y ) man(€)llog mh + log fin(yi; ¥)] + (N — Dloga+ (a — 1) > " log(1 —vy),
i=1 h=1 1

>
Il

where (€ (t)) is the probability that subject ¢ belongs to cluster h and is given by

Fn(ysy )

Tin (£(t)) .
SN Fulys A ®)r?




M-step

For clarity, in the following we write m;;, := Wih(f(t)) but note that for the M-step it is
essential that 7y, is fixed from the last iteration ¢ because then using that Q(€]¢€®)
is the sum of Q(a, v[€") and Q(v|€") the optimization problem in the M-step can

be separated into two parts: The maximization of

n N N-1
Qa,v|EW) = Z th logm, + (N —1)loga+ (o — 1) Z log(1 — vy)
i=1 h=1 h=1

with respect to @ and v and the maximization of

n N
Q(~Ig") = Z Z"Tih log fin(y:;v)

i=1 h=1
with respect to «v. The first optimization problem is solved by alternating updates of

the first order conditions

Gp— Z};‘ﬂmh . h=1,...,N—1. (6)
Dz Dpep Tt —1

and

1—-N
}]:[:_11 log(1 — vy)

Without further restrictions it could happen that 0, ¢ [0,1]. To avoid this we use

o=

the following correction approach: Update v, by (6) for increasing h. If 05« > 1 set
vp to 1 for h = h*,..., N — 1. This constraint for v is equivalent to the following

restriction on 7v by using the stick breaking procedure:

1 n *
Prar—y Zi:l Tin, for h <h

~ h—1
Th=9q 1—=> ., m for h = h*

0 for h > h*

where h* is the lowest index h for which Zlh:l m > 1 is fulfilled. Here the idea of
the penalization approach becomes evident. First note that for « = 1 we get the
usual estimates for 7, and no restrictions are needed. Compared to these estimates,
o=, while all

weights 7, for h > h* are set to zero. The amount of stretching is controlled by the

for a € (0,1), all weights 7, for b < h* are stretched by the factor

parameter a. If a &~ 0 a very strong clustering is achieved while for larger values of «
only few clusters drop out. In general, the algorithm starts with N = n clusters and
successively merges clusters until there is no further ascent of the penalized incomplete
log-likelihood. Rearranging the weights after each step has the effect that only the
relevant clusters keep positive probabilities. So the LMM with DPM as a random

8



effects distribution can be seen as an agglomerative cluster analysis. In order to avoid
log(0) we choose 0, = 1 —1073% instead of 95, = 1 in the algorithm. Then 7, & 0 for
h > h*.

In the second part of the M-step we get the estimate for v by alternating separate
maximization of Q(’y]é(t)) to B, py,. ..,y and to the variance parameters D and
o?. Conditional on the actual state of the other parameters the maximization of 3

results in

n 1, N
=1 i=1 h=1

Setting the derivative of Q(v|€®) with respect to g, h =1,..., N, given 3, D and

6?2 yields

n -1 n

i=1 =1

For the simultaneous maximization of the variance parameters given 3 and ft, ..., ft

a numerical procedure like the Nelder-Mead method is necessary.

Stop criterion

The EM algorithm stops if the penalized incomplete log-likelihood is not ascending
any more. Then after convergence we get the cluster membership by the matrix of
estimated 7;;,. Individual 7 is assigned to that cluster A for which 7;;, is maximal. If
there are a lot of small weights 7, we get only few relevant clusters k. Based on the

weights of all clusters the random effects are predicted by

N
b= DZIV, (y,— X.B) + (I-DZTV,'Z) " #unis,.
h=1

This result can be shown by using derivations from Lindley and Smith (1972).

Choice of starting values

For EM algorithms it is essential how to choose the starting values because the (pe-
nalized) incomplete log-likelihood is ascending at each step and the algorithm can
converge to a local but not a global maximum. Because there is an agglomerative
attempt in each M-step it is reasonable to choose starting values for an agglomerative
clustering method generally. Therefore each subject starts in its own cluster. So
there are n = N clusters with weights 7, = 1/N, h = 1,..., N in the beginning.

As cluster locations pq, ...,y we consider the predicted random effects by,..., b,



of the former fitted LMM with Gaussian random effect distribution. This fit yields
starting values for 3, 0 and D, too. For o we use zero as starting value to induce a

very strong clustering.

Implementation

All computations are implemented in C++, allowing for an efficient treatment of
loop-intensive calculations and with regard to slow convergence of the EM algorithm,
and are made easily accessible by providing an R wrapper function. All variables are
standardized internally for calculations. For updating variance parameters we use an
implementation of the Nelder-Mead algorithm in C++ (library ASA047). For the
reflection, extension and contraction coefficients we choose the common settings 1.0,
2.0 and 0.5 respectively. See Nelder and Mead (1965) and O’Neill (1971) for more
technical details of the algorithm. Note that for ensuring that the covariance matrix
D is nonnegative-definite we parameterize the concerning variance parameters by the

entries of a lower triangular matrix L according to the Cholesky decomposition:

D=LL".

Then D is nonnegative-definite for each L and positive-definite (and so invertible,
too) if L is a matrix with exclusively nonzero diagonal entries (Lindstrom and Bates,
1988).

3 Simulation study

3.1 Setting

In the following simulation study the performance of the DPM-EM is evaluated. The
study aims at clarifying in which data situations our approach improves estimation
compared to the LMM with a normal distribution or a finite mixture of normal
distributions as random effects distribution. Note that for prediction accuracy of
random effects there is a trade-off with regard to the assumed number of clusters: On
the one hand for prediction of b; it makes sense to borrow information from other
similar subjects. On the other hand it is not reasonable to incorporate individuals
which show a basically different behavior. For examining this trade-off we compare
the commonly used LMM with Gaussian random effects distribution (one cluster
model) as well as the three, five, and ten cluster model to our DPM-EM model
with a data driven choice for the number of clusters. Moreover, in the simulation
study we investigate the impact of the number of observations within clusters and

the separation between clusters. We generated data sets assuming a simple linear

10



trend model

ind.

Yii|bi ~ N(Bo + bio + (51 + bir)tis, 02), t=1,....,n, j=1,...,n,.

The centered i.i.d. random effects b; = (b0, bﬂ)T follow a mixture distribution with

three Gaussian components:
b, ~ 04 N(py,D)+0.3N(uy, D) +03N(pg, D), i=1,...,n,

imitating a population consisting of three clusters of overlapping subpopulations.

Throughout the simulations, we set n = 20 and

2 2 0.02 0.01
o = 0.25, bo ) _ . D= 7w o .
b1 1 Obyy O, 0.01 0.02

We vary, however, the number of individual observations n;, the centers p,, u, and
w3 of the clusters and the locations of observation times ¢;;. To produce longitudinal
data with varying numbers of repeated observations per unit ¢, we set n; = 2 + X,
where X; follows a Poisson distribution with rate A. Setting A = 1 corresponds
to longitudinal data with only few (3 on average) repeated observations per unit,
A = 3 to a moderate number and A = 5 to (comparably) large numbers of repeated

observations.

For given n;, observation times are generated from

til ~ U(O,l), izl,...,n,
tij ~ U(ti7j—1+0-57ti7]‘—1+1-5)7 izl,...,n, j:2,...,ni,

(s)

7

where U(-) denotes the uniform distribution. In this way, different numbers n
and tfj) are generated in each simulation run s = 1,...,100. Similarly, different
“true” random effects bgs) are drawn from the Gaussian mixture distribution in each

simulation run. For the cluster locations, we chose

[ =225 (07 o 22
M1 = 1 ) Mo = 19 9 M3 = _2/15

corresponding to clearly separated clusters,

[ -15 {05 [ 15
=g )0 P27 oo )0 BT\ o

corresponding to moderately separated clusters,

0
B = Mo = K3 = 0

11



corresponding to only one cluster.

Combining these different settings for observations times and clusters results in nine
different scenarios. For each of them, we compare the estimation results from the
DPM-EM algorithm with results based on Gaussian random effects using the R-
function 1mer () from the 1me4 package and with results of models using a unpenalized
(v = 1) finite normal mixture as random effects distribution. In each simulation run

s, we calculate the average prediction error

PEs) =23 (b - 1) k=01

n <
=1

for uncentered random intercepts b}, = [y + b;p and random slopes b, = 81 + b;1. In

addition, the estimation accuracy of the fixed effects is investigated by the relative

bias RBk =100 - (Bk — ﬁk)/ﬁk, k= O, 1.

3.2 Results

In the following, we summarize results of the nine combinations. For some sce-
narios the empirical distribution of PEj(s) values obtained from simulation run

s =1,...,100 is represented through box plots.

Fig. 3: Trace plots (top) and clustering by DPM-EM model (bottom) with clearly separated clusters
for few individual observations (A = 1) (left) and a moderate number of observations on individuals
(A = 3) (right).

12



Clearly separated clusters

Figure 3 (top) displays trace plots of typical longitudinal data generated in the setting
of clearly separated clusters, that shows that cluster effects can easily be detected
visually. On the left, there are only a few observations for each subject while on the
right the mean of the number of repeated measurements is 5 corresponding to several
observations. Not surprisingly the DPM-EM model detects three clusters in both
cases (Figure 3 (bottom)). The thick line shows the overall effect and the thin lines
visualize the means of the resulting clusters. Which observation is assigned to which

cluster is marked by the same symbol.
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Fig. 4: Box plots of PEy with clearly separated clusters for few individual observations (A = 1)

(left) and a moderate number of observations on individuals (A = 3) (right).

LMMs with DPM penalty substantially improve upon results based on a misspecified
Gaussian random effects assumption, especially in the case of several and many ob-
servations (see Table 1 and, for example, Figure 4). In general, models with a finite
mixture as random effects distribution yield better predictions for random effects
than the classical LMM with normally distributed random effects. Of course, the
best prediction can be observed for the model with fixed N = 3 clusters because this
model is exactly the same as in the data generating process. However, the DPM-EM
model shows quite similar results although in this case the number of clusters was
determined by the model itself. The DPM-EM model as well as the other models
show a small bias concerning the estimation of fixed effects. The bias tends to be a
bit higher in the DPM-EM model.
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A=1 A=3 A=5
H PE PE; RBy | RB; PEy | PE; RBy | RB; ‘ PEq PE; RBy | RB;
Normal 0. 373 0.185 | -4.091 | 2.068 || 0.222 | 0.054 | -1.048 | 4.710 || 0.148 | 0.015 | -2.127 | 0.957
DPM-EM || 0.135 | 0.063 | -6.818 | 4.697 || 0.060 | 0.012 | -5.212 | 6.935 || 0.048 | 0.006 | -1.377 | 0.887
0.111 | 0.058 | -3.698 | 4.313 || 0.054 | 0.011 | -2.914 | 5.197 || 0.045 | 0.005 | -0.457 | 1.741
0.145 | 0.062 | -2.906 | 4.802 || 0.072 | 0.015 | -2.760 | 4.387 || 0.050 | 0.006 | -0.243 | 2.026
0.222 | 0.112 | -3.331 | 2.062 || 0.101 | 0.020 | -2.188 | 6.324 || 0.080 | 0.008 | -0.240 | 1.514

Table 1: Medians of PE}y and RBy with k = 0,1 for clearly separated clusters

Moderately separated clusters

®
ﬁ _
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> >
<
o
~
T T T T T T © T T T T T
0 1 2 3 4 5 0 2 4 6 8 10
t t
Fig. 5: Trace plots with moderate separated clusters for few individual observations (A = 1) (left)

respectively many individual observations (A =

5) (right).

In the following the differences between clusters get smaller. See Figure 5 for two
typical trace plots in the case of few respectively many individual observations. Still
the DPM-EM model outperforms both the homogeneity model (LMM with normal
random effect distribution) and the unpenalized heterogeneity model with N = 5 and
N = 10 clusters (Figure 6). Only the "true” model with N = 3 clusters is able to
feature a lower error in predicting the random effects. Note that the superiority of the
DPM-EM model over the classical linear mixed model with normal random effects

distribution is even higher in the case of many individual observations.

A=1 A=3 =
H PEy | PE1 | RBy | RBy PEy | PE1 | RByg RB, ‘ PEy | PEl \ RBO | RBy
Normal 0. 335 0.164 | -2.112 | 1.912 || 0.207 | 0.046 | -0.751 | 2.204 || 0.138 | 0.015 | -1.122 | 0.750
DPM-EM || 0.204 | 0.114 | -6.088 | 4.673 || 0.082 | 0.018 | -3.104 | 2.335 || 0.048 | 0.005 | -0.920 | 1.117
0.175 | 0.097 | -3.799 | 2.111 || 0.063 | 0.014 | -0.108 | 3.193 || 0.043 | 0.005 | -1.275 | 0.945
0.224 | 0.122 | -3.091 | 2.028 || 0.082 | 0.018 | -0.108 | 3.089 || 0.050 | 0.006 | -1.226 | 0.693
0.274 | 0.140 | -2.987 | 1.381 || 0.126 | 0.025 | -0.344 | 3.114 || 0.082 | 0.008 | -1.304 | 1.469

Table 2: Medians of PEy and RBy, with k = 0,1 for moderately separated clusters

14
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Fig. 6: Box plots of PE, with moderate separated clusters for few individual observations (A = 1)

(left) respectively many individual observations (A = 5) (right).

Only one cluster

When regarding Figure 7 and Table 3 for only one cluster, we can conclude the
following: Only the LMM with normal random effect distribution which is the ”true”
model in this setting is better than the DPM-EM model. The background for this
feature is that the DPM-EM model detects sometimes more than one cluster in the
data. Different patterns in the data are taken seriously. Nevertheless the DPM-
EM model exhibits lower prediction errors than all unpenalized heterogeneity models

because in the majority of cases less clusters than three are observed by the DPM-EM

model.
A=1 A=3 =5

PE, PE, RBy RB; PE, PE, RBo RB, PE, PE1 RBo RB,
Normal 0.034 0.020 -0.277 -1.081 0.029 0.007 0.605 -0.911 0.023 0.004 -0.163 -0.261
DPM-EM 0.045 0.022 0.004 -1.465 0.040 0.009 0.437 -0.003 0.035 0.005 -0.091 -0.205
N =3 0.066 0.027 0.372 -1.242 0.045 0.010 0.916 -0.848 0.036 0.005 -0.077 -0.421
N =5 0.083 0.034 0.277 -1.218 0.053 0.012 0.493 -1.035 0.045 0.006 -0.782 -0.299
N =10 0.101 0.038 0.582 -1.804 0.062 0.012 0.499 -1.417 0.061 0.006 -0.166 -0.384

Table 3: Medians of PE) and RBy with k = 0,1 for only one cluster

In summary, we draw the following conclusion: The DPM-EM models yield the better
estimates for random effects — in terms of prediction errors — the clearer the clusters
differ and the more observations are in the data. It makes a good job both for nor-
mally distributed random effects and for random effects following a mixture of three
normal distributions and is only a little bit inferior to the corresponding correctly
specified model. Thus the DPM-EM model turns out to be very flexible without risk

15



©
S [Te}
N
)3
1o}
9
o
C\! .
o
2 :
° 8
Te}
° = [
™ | ° - o °
o ° _ ' 5
e ‘ !
o | 8
8 . ' o B
: S | S o :
S : —_ ! ! : © o ! ! !
o | : 1 8 | : : ’—‘
o I =] \
I =
; ' '  — ‘ ' !
= - - = = ‘ - T
© T T T T T = T T T T T
Normal DPMEM  N=3 N=5  N=10 Normal DPMEM  N=3 N=5  N=10

Fig. 7: Box plots of PE, with only one cluster for few individual observations (A = 1) (left)

respectively many individual observations (A = 5) (right).

of misspecifying the model like it can happen for the homogeneity model and the

unpenalized heterogeneity model.

4 Applications

4.1 Unemployment

The practical use of the proposed method is investigated in two data examples. First,
the variation of the unemployment over the federal states of Germany across time is
considered (Weise et al., 2011). We examine the unemployment rate of each federal
state from 2005 to 2010 in order to identify differences between states. Figure 8 shows
different levels of the unemployment rates and a negative time trend which can be
regarded as approximately linear. Therefore we consider a random slope model for

the annual average of the unemployment rate y;; of state ¢ and measurement j

y”|bZ ”fz-c'l N(/30+bi0+(61+bi1)y€arij, 0'2)7 izl,...,16, ]:1,,6

Since there is no symmetric unimodal variation of the individual intercepts about
the overall mean it would not be appropriate to assume a Gaussian random effect
distribution. Instead, the centered i.i.d. random effects b, = (bio,bﬂ)T follow a
mixture distribution of Gaussian components with penalized mixture weights (4).

We are looking for clustering the federal states in order to expose which states show

similar behavior. Only for a better interpretability we change the zero point of the
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Fig. 8: Unemployment in the federal states of Germany across time

time variable to 2005. Thus, during calculations the time variable is labeled by
0,1, ..., 5 for the years 2005, 2006, ... 2010.

Figure 9 shows the population effect (thick line) as well as the cluster effects (thin
lines). Observations belonging to the same cluster are marked with the same symbol.
Our DPM-EM model detects three clusters with estimated weights m; = 0.467, my =
0.425 and w3 = 0.108: The southern federal states Bayern, Baden-Wiirttemberg and
Rheinland-Pfalz are assigned to cluster 3 which features the lowest unemployment

rate and the weakest decrease over time.

B \ By \ o \ M3 \
13.719 | 4.361 | -3.139 | -6.468
-1.007 | -0.353 | 0.277 | 0.436

Table 4: Estimators for the fixed effects and the cluster locations.

Table 4 shows that here the base level in 2005 is -6.468 lower compared to the overall
unemployment rate 13.719. In the south also the decrease of the unemployment rate
is less distinct than in the other states. A similar effect can be observed in cluster
2. Here, the gap to the global intercept is considerably smaller. Furthermore, there
is one cluster with a much more higher base level and a stronger decrease of the

unemployment rates. It is remarkable that these states are all in Eastern Germany
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Fig. 9: Clustering of federal states by DPM-EM model

or city states. Only the city state Hamburg makes an exception to that feature and

belongs to cluster 2.

cluster j
1 2 3
1 Schleswig-Holstein 0 0.998 0.002
2 Hamburg 0 1 0
3 Niedersachsen 0 0.999 0.001
4 Bremen 1 0 0
5 Nordrhein-Westfalen 0 1 0
6 Hessen 0 0.941 0.059
7 Rheinland-Pfalz 0 0.421 0.579
state ¢ 8 Baden-Wiirttemberg 0 0.007 0.993
9 Bayern 0 0.012 0.988
10 Saarland 0 0.997 0.003
11 Berlin 1 0 0
12 Brandenburg 1 0 0
13 Mecklenburg-Vorpommern 1 0 0
14 Sachsen 1 0 0
15 Sachsen-Anhalt 1 0 0
16 Thiiringen 1 0 0

Table 5: Matrix of ;.

Table 5 shows the estimated probabilities 7;;. Here, it can be seen that for most of
the states the assignment to a specific cluster is very distinct. Only for Rheinland-
Pfalz the probability for cluster 3 and cluster 2 is very similar. The parameter «
which controls the number of clusters is estimated by & = 0.00155. It is a typical
feature that estimates of o are very small. This means that the strongest clustering

as allowed by the data is the best one.
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4.2 Lung function growth

In the second application the lung function growth of girls in Topeka (USA) is exam-
ined by our DPM-EM model. These data are a subsample from the six cities study
of air pollution and health in Dockery et al. (1983). The response variable is the
logarithmic forced expiratory volume in one second (fevl). Our sample consists of
100 girls, with a minimum of two and a maximum of twelve observations over time.

Again, we use a linear mixed model with random intercepts and random slopes

log(fevl)w|bz m;igl N(/Bo—f-blo—F (51 +bi1)ageij, 0'2), 1= 1,...,100, ] = ]_,...,TLZ‘,

15
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Fig. 10: Clustering of lung function growth data by DPM-EM model

and a DPM as random effects distribution (4). While the plot of all measurements
over time (Figure 10) is not very informative because of the large number of mea-
surements, the clustering effect of the DPM-EM model can be seen much easily from
Figure 11. Here the axes represent the intercepts and slopes respectively. The square
at coordinates (0,0) marks the population effect. All other icons are interpreted as
deviations from the population effect. The thick big ones symbolize the cluster loca-
tions py,, the thin small ones the random effects b;. Girls which assigned to the same
cluster are marked with the same symbol and are arranged around the three cluster

locations in the form of ellipses.
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Fig. 11: Cluster locations and corresponding random effects for lung function growth data

5 Conclusion

We introduced a linear mixed models with a DPM for the random effects distribution
in order to penalize the number of clusters in the finite mixture of normal distribution.
While models with Dirichlet processes are typically fitted by Bayesian methods like
MCMC we used the EM algorithm because then the cluster property of the Dirichlet
process can be used directly. So our method can be called an agglomerative clustering
approach of individuals for longitudinal data. The DPM-EM algorithm itself was
presented in detail. Furthermore, we showed in a simulation study that our approach
outperforms the classical linear mixed model in the case of a underlying grouping
structure. Applications of this DPM-EM algorithm were demonstrated by considering

unemployment data and lung function growth data.
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