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SUMMARY: In linear mixed models the assumption of normally distributed random

effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet pro-

cess mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of

distributions assumptions the specification allows to estimate clusters of observations

with a similar random effects structure identified. An Expectation-Maximization al-

gorithm is given that solves the estimation problem and that exhibits advantages

over in this framework usually used Markov chain Monte Carlo approaches. The

method is evaluated in a simulation study and applied to dynamics of unemployment

in Germany as well as lung function growth data.
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1 Introduction

Linear mixed models (LMM) are a common tool for the modeling of longitudinal

data. The classical model has the form

yij|bi ind.∼ N(xTijβ + zTijbi, σ
2), i = 1, . . . , n, j = 1, . . . , ni, (1)

where yij denotes the response observed for subject i at observation times tij with

ti1 < . . . < tij < . . . < tini . Population effects of covariates xij are collected in the

parameter vector β whereas individual-specific effects of covariates zij are represented

in the parameter vector bi. The classical assumption in (1) is a Gaussian distribution

for the random effects, i.e. bi i.i.d. N(0,D), see for example Verbeke and Molenberghs

(2000) and Ruppert et al. (2003). While this choice is mathematically convenient,

in applications it is often questionable for several reasons. The normal distribution

is symmetric, unimodal and has light tails. Since the distributional assumption is

made on unobserved quantities, it is typically hard to validate these properties based

on estimates. Possible skewness and multimodality (arising, for example, from an

unconsidered grouping structure in the data) may be masked when checking the

normal distribution in terms of estimated random effects. A finite mixture of normal

distributions as a random effects distribution suggested, for example, by Verbeke and

Lesaffre (1996), Verbeke and Molenberghs (2000), and Grün (2008) is much more

flexible. One assumes

bi ∼
N∑

h=1

πhN(µh,D), (2)

where π1, . . . , πN are mixture weights. The number of mixture components is un-

known and has to be chosen. A data driven choice of this number is desirable and

could be achieved by a penalization of the mixture weights πh. For example, Komarék

and Lesaffre (2008) penalized differences between reparametrized weights. In contrast,

Magder and Zeger (1996) used component specific covariance matrices subject to the

constraint that their determinants are greater than or equal to some minimum value.

In this paper we present a new penalization approach. The basic concept is to shrink

the weights πh towards zero in order to reduce the number of clusters. Therefore

we consider a Dirichlet process mixture (DPM) for the random effects distribution

and use the stick breaking procedure of the Dirichlet process (see Ferguson, 1973, for

the theory behind the Dirichlet process and Sethuraman, 1994, for the stick breaking

presentation of the Dirichlet process). The main advantage of Dirichlet processes is

the cluster property: by using a DPM for the random effects distribution we obtain

automatically a clustering of individuals. Under the assumption that the population

can be described by few clusters we want to identify and interpret them. Since a
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Dirichlet process allows to specify a prior on probability measures, it has been mainly

used in the Bayesian inference for density estimation and random effects models. For

linear mixed models, Dirichlet process priors for random effects were first proposed

by Kleinman and Ibrahim (1998).

We aim at establishing the Dirichlet process as a tool for frequentist modeling. There-

fore, instead of using Markov chain Monte Carlo (MCMC) methods, which are usually

applied for estimation in random effects models with Dirichlet processes (compare for

example Heinzl et al., 2011), we extend the traditional Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) used in the heterogeneity model of Verbeke

and Molenberghs (2000) and call it DPM-EM model. We will show that the EM al-

gorithm has an essential advantage over MCMC methods, where Dirichlet processes

are concerned. In summary, on the one hand our DPM-EM model is a regularization

approach for the number of mixture components in (2). On the other hand our model

is a method to obtain clustering of individuals in longitudinal data.

The paper is organized as follows: In Section 2.1 the model hierarchy as well as the

cluster property of Dirichlet processes are illustrated. In Section 2.2 we present our

DPM-EM algorithm in detail. Simulation results can be seen in Chapter 3 while

applications are shown in Chapter 4. Finally Chapter 5 subsumes the main aspects

of our approach.

2 Linear mixed models with Dirichlet process mix-

tures

2.1 Model hierarchy

Collecting observations yij, j = 1, . . . , ni, for individual i in the vector yi, model (1)

can be written in matrix notation as

yi|bi
ind.∼ N(X iβ +Zibi, σ

2I) i = 1, . . . , n,

where I is the identity matrix and X i and Zi denote the individual design matri-

ces constructed from covariates xij and zij, respectively. For the random effects

distribution, we assume a hierarchical Gaussian mixture

bi|θi ind.∼ N(θi,D), i = 1, . . . , n,

θi
i.i.d.∼ G, i = 1, . . . , n,

G ∼ DP (α,G0).

(3)

Here, the Dirichlet process DP (α,G0) is a distributional assumption for the unknown
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mixing distribution G. A special feature of the Dirichlet process is, that each real-

ization of G is a discrete probability measure. So in the DPM specification, choosing

a Dirichlet process for the θi, i = 1, . . . , n, creates ties among these and therefore

forms clusters of subjects whereas each subject still has its own unique random ef-

fects value. In general, there are k ≤ n clusters and θ1, . . . ,θn can be represented by

cluster locations µ1, . . . ,µk and cluster allocation variables. Although in theory there

is an automatic clustering structure induced by the Dirichlet process, some practical

problems arise in the Bayesian context from using MCMC methods: One obtains a

clustering of subjects within each iteration, but it is unclear how these can merged

into an universal clustering. Several operations exist to handle this (see for example

Fritsch and Ickstadt, 2009), but due to the high number of possible clusterings, these

methods are typically not feasible in larger problems. The advantage of the EM algo-

rithm over MCMC methods is that the EM algorithm converges to fixed values, while

MCMC methods converge to distributions. So with EM type algorithms the cluster

property of the Dirichlet process can be used directly.

The strength of clustering and therefore the number of clusters is determined by the

parameter α, which controls the confidence in the base distribution G0. According to

the relationship between Bayesian and likelihood inference we choose a diffuse uniform

distribution on (−∞,∞) for G0. So, in principle, no cluster location is preferred over

others.

In practice, inference with Dirichlet processes can be handled by using the stick break-

ing representation of the Dirichlet process in its truncated version (see for example

Ishwaran and James, 2002)

G =
N∑

h=1

πh δµh ,

where δµh denotes the Dirac measure on µh. Hence, the unknown distribution G is

represented as a weighted sum of point masses with random weights πh linked to the

locations µh. The weights can be constructed through the stick breaking procedure

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

where Be(·) denotes the beta distribution. In the truncated version vN = 1 ensures

that the sum of weights πh is one. Sethuraman (1994) showed that for µh
i.i.d.∼ G0

(in the limit N → ∞) the probability measure of G is given by DP (α,G0). The

truncated version still is a good approximation because the random weights decrease

stochastically as the index h grows (Ishwaran and James, 2001). This is obvious by

the recursive definition of weights
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Fig. 1: Construction of π1, π2, . . . by stick breaking.

πh = vh

(
1−

∑

l<h

πl

)
, h = 1, . . . , N,

which gives the procedure its name and is visualized in Figure 1. It works as follows:

first, for getting π1 a piece is broken away from a stick of length one. Next, from the

remainder of the stick, 1 − π1 breaks a further piece away and calls it π2 and so on.

So for large h the weights get very small and can be omitted. More mathematically,

E(
∑∞

h=N+1 πh) converges to zero exponentially with N → ∞ (Ohlssen et al., 2007).

It should be noted that N can also be seen as the maximum number of clusters. So

in our simulations and applications, we truncate the stick breaking representation at

N = min{n, 100}.
In summary, by using the stick breaking procedure the distribution assumption for

the random effects (3) can be rewritten as

bi|v i.i.d.∼ ∑N
h=1 πhN(µh,D), i = 1, . . . , n,

πh = vh
∏

l<h(1− vl), h = 1, . . . , N,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

(4)

where v = (v1, . . . , vN−1)T symbolizes reparameterized weights. Therefore for the
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Fig. 2: Realizations of G ∼ DP (α,G0) with G0 = N(0, 1)

random effects distribution we get a finite mixture of normal distributions in which

the number of mixture components with πh 6= 0 is penalized. See Figure 2 for

an illustration of two discrete probability measures simulated by Dirichlet processes

with different values of α. Obviously α controls the number of cluster locations µh

with weights πh 6= 0 and thus the effective number of clusters. In the following

the order of µ1, . . . ,µN is given by the corresponding weights in decreasing order

under the restrictions
∑N

h=1 πhµh = 0 and
∑N

h=1 πh = 1. The first restriction ensures

E(yi) = X iβ. The second constraint is standard and is automatically fulfilled by

vN = 1.

2.2 Inference

In the following, we give an EM algorithm for the LMM described in Section 2.1. The

algorithm is based on derivations by McLachlan and Peel (2000) and McLachlan and

Krishnan (1997) and is similar to the algorithm used by Verbeke and Molenberghs

(2000) but includes a penalty term. Let ξ = (α,v,γ)T , where γ is the vector con-

taining all the remaining parameters β,µ1, . . . ,µN ,D, σ
2. The cluster membership

of each individual can be described by the latent variable zi := (zi1, . . . , ziN)T where

zih = 1 if subject i belongs to cluster h and 0 otherwise. Marginalization over the

random effects yields the complete model with observed data yi as well as unobserved

data zi:
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yi|zi
ind.∼ N(X iβ +Ziµh, V i), i = 1, . . . , n,

zi|v i.i.d.∼ M(1,π), i = 1, . . . , n,

vh
i.i.d.∼ Be(1, α), h = 1, . . . , N − 1,

(5)

with V i = ZiDZ
T
i + σ2I and M(·) symbolizing the multinomial distribution. This

model can either be parameterized by π = (π1, . . . , πN)T or by v. Since the latter

parametrization simplifies calculations it is used in the following. Nevertheless, only

for a compact presentation, we write πh instead of vh
∏

l<h(1 − vl). The likelihood

function corresponding to (5) is given by

LP (ξ) =
n∏

i=1

N∏

h=1

[πh fih(yi;γ)]zih · αN−1
N−1∏

h=1

(1− vh)α−1.

Here fih(·) denotes the density function of N(X iβ + Ziµh, V i). Finally, as log-

likelihood one obtains

lP (ξ) =
n∑

i=1

N∑

h=1

zih[log πh + log fih(yi;γ)] + (N − 1) logα + (α− 1)
N−1∑

h=1

log(1− vh).

This function can either be seen as log-posterior in the Bayesian context or as pe-

nalized log-likelihood whose penalization term results from the stick breaking pro-

cedure of the Dirichlet process. Obviously for α = 1 the penalization term drops

out. According to the general EM algorithm procedure we alternate between taking

the expectation of lP (ξ) over all unobserved zih in the E-step and maximization of

this expected value in the M-step instead of maximizing the penalized incomplete

likelihood function based only on the observed data directly.

E-step

Collecting all observed data by y = (yT1 , . . . ,y
T
n )T for the E-step we get

Q(ξ|ξ(t)) = E
(
lP (ξ)|y, ξ(t)

)
=

=
n∑

i=1

N∑

h=1

πih(ξ
(t))[log πh + log fih(yi;γ)] + (N − 1) logα + (α− 1)

N−1∑

h=1

log(1− vh),

where πih(ξ
(t)) is the probability that subject i belongs to cluster h and is given by

πih(ξ
(t)) =

fih(yi;γ
(t))π

(t)
h∑N

l=1 fil(yi;γ
(t))π

(t)
l

.
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M-step

For clarity, in the following we write πih := πih(ξ
(t)) but note that for the M-step it is

essential that πih is fixed from the last iteration t because then using that Q(ξ|ξ(t))
is the sum of Q(α,v|ξ(t)) and Q(γ|ξ(t)) the optimization problem in the M-step can

be separated into two parts: The maximization of

Q(α,v|ξ(t)) =
n∑

i=1

N∑

h=1

πih log πh + (N − 1) logα + (α− 1)
N−1∑

h=1

log(1− vh)

with respect to α and v and the maximization of

Q(γ|ξ(t)) =
n∑

i=1

N∑

h=1

πih log fih(yi;γ)

with respect to γ. The first optimization problem is solved by alternating updates of

the first order conditions

v̂h =

∑n
i=1 πih∑n

i=1

∑N
l=h πil + α− 1

, h = 1, . . . , N − 1. (6)

and

α̂ =
1−N∑N−1

h=1 log(1− vh)
Without further restrictions it could happen that v̂h /∈ [0, 1]. To avoid this we use

the following correction approach: Update v̂h by (6) for increasing h. If v̂h∗ > 1 set

v̂h to 1 for h = h∗, . . . , N − 1. This constraint for v̂ is equivalent to the following

restriction on π̂ by using the stick breaking procedure:

π̂h =





1
n+α−1

∑n
i=1 πih, for h < h∗

1−∑h−1
l=1 πl for h = h∗

0 for h > h∗

where h∗ is the lowest index h for which
∑h

l=1 π̂l > 1 is fulfilled. Here the idea of

the penalization approach becomes evident. First note that for α = 1 we get the

usual estimates for π̂h and no restrictions are needed. Compared to these estimates,

for α ∈ (0, 1), all weights π̂h for h < h∗ are stretched by the factor n
n+α−1 , while all

weights π̂h for h > h∗ are set to zero. The amount of stretching is controlled by the

parameter α. If α ≈ 0 a very strong clustering is achieved while for larger values of α

only few clusters drop out. In general, the algorithm starts with N = n clusters and

successively merges clusters until there is no further ascent of the penalized incomplete

log-likelihood. Rearranging the weights after each step has the effect that only the

relevant clusters keep positive probabilities. So the LMM with DPM as a random
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effects distribution can be seen as an agglomerative cluster analysis. In order to avoid

log(0) we choose v̂h = 1− 10−300 instead of v̂h = 1 in the algorithm. Then π̂h ≈ 0 for

h > h∗.

In the second part of the M-step we get the estimate for γ by alternating separate

maximization of Q(γ|ξ(t)) to β, µ1, . . . ,µN and to the variance parameters D and

σ2. Conditional on the actual state of the other parameters the maximization of β

results in

β̂ =

(
n∑

i=1

XT
i V̂ iX i

)−1( n∑

i=1

(
XT

i V̂ iyi −
N∑

h=1

πihX
T
i V̂ iZiµ̂h

))
.

Setting the derivative of Q(γ|ξ(t)) with respect to µh, h = 1, . . . , N , given β̂, D̂ and

σ̂2 yields

µ̂h =

(
n∑

i=1

πihZ
T
i V̂ iZi

)−1( n∑

i=1

πihZ
T
i V̂ iZi(yi −X iβ̂)

)
.

For the simultaneous maximization of the variance parameters given β̂ and µ̂1, . . . , µ̂N

a numerical procedure like the Nelder-Mead method is necessary.

Stop criterion

The EM algorithm stops if the penalized incomplete log-likelihood is not ascending

any more. Then after convergence we get the cluster membership by the matrix of

estimated πih. Individual i is assigned to that cluster h for which π̂ih is maximal. If

there are a lot of small weights π̂h we get only few relevant clusters k. Based on the

weights of all clusters the random effects are predicted by

b̂i = D̂ZT
i V̂

−1
i (yi −X iβ̂) + (I − D̂ZT

i V̂
−1
i Zi)

N∑

h=1

π̂ihµ̂h.

This result can be shown by using derivations from Lindley and Smith (1972).

Choice of starting values

For EM algorithms it is essential how to choose the starting values because the (pe-

nalized) incomplete log-likelihood is ascending at each step and the algorithm can

converge to a local but not a global maximum. Because there is an agglomerative

attempt in each M-step it is reasonable to choose starting values for an agglomerative

clustering method generally. Therefore each subject starts in its own cluster. So

there are n = N clusters with weights πh = 1/N , h = 1, . . . , N in the beginning.

As cluster locations µ1, . . . ,µN we consider the predicted random effects b1, . . . , bn
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of the former fitted LMM with Gaussian random effect distribution. This fit yields

starting values for β, σ2 and D, too. For α we use zero as starting value to induce a

very strong clustering.

Implementation

All computations are implemented in C++, allowing for an efficient treatment of

loop-intensive calculations and with regard to slow convergence of the EM algorithm,

and are made easily accessible by providing an R wrapper function. All variables are

standardized internally for calculations. For updating variance parameters we use an

implementation of the Nelder-Mead algorithm in C++ (library ASA047). For the

reflection, extension and contraction coefficients we choose the common settings 1.0,

2.0 and 0.5 respectively. See Nelder and Mead (1965) and O’Neill (1971) for more

technical details of the algorithm. Note that for ensuring that the covariance matrix

D is nonnegative-definite we parameterize the concerning variance parameters by the

entries of a lower triangular matrix L according to the Cholesky decomposition:

D = LLT .

Then D is nonnegative-definite for each L and positive-definite (and so invertible,

too) if L is a matrix with exclusively nonzero diagonal entries (Lindstrom and Bates,

1988).

3 Simulation study

3.1 Setting

In the following simulation study the performance of the DPM-EM is evaluated. The

study aims at clarifying in which data situations our approach improves estimation

compared to the LMM with a normal distribution or a finite mixture of normal

distributions as random effects distribution. Note that for prediction accuracy of

random effects there is a trade-off with regard to the assumed number of clusters: On

the one hand for prediction of bi it makes sense to borrow information from other

similar subjects. On the other hand it is not reasonable to incorporate individuals

which show a basically different behavior. For examining this trade-off we compare

the commonly used LMM with Gaussian random effects distribution (one cluster

model) as well as the three, five, and ten cluster model to our DPM-EM model

with a data driven choice for the number of clusters. Moreover, in the simulation

study we investigate the impact of the number of observations within clusters and

the separation between clusters. We generated data sets assuming a simple linear
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trend model

yij|bi ind.∼ N(β0 + bi0 + (β1 + bi1)tij, σ
2), i = 1, . . . , n, j = 1, . . . , ni.

The centered i.i.d. random effects bi = (bi0, bi1)
T follow a mixture distribution with

three Gaussian components:

bi ∼ 0.4N(µ1,D) + 0.3N(µ2,D) + 0.3N(µ3,D), i = 1, . . . , n,

imitating a population consisting of three clusters of overlapping subpopulations.

Throughout the simulations, we set n = 20 and

σ2 = 0.25,

(
β0

β1

)
=

(
2

1

)
, D =

(
σ2
b0

σb01

σb01 σ2
b1

)
=

(
0.02 0.01

0.01 0.02

)
.

We vary, however, the number of individual observations ni, the centers µ1, µ2 and

µ3 of the clusters and the locations of observation times tij. To produce longitudinal

data with varying numbers of repeated observations per unit i, we set ni = 2 + Xi,

where Xi follows a Poisson distribution with rate λ. Setting λ = 1 corresponds

to longitudinal data with only few (3 on average) repeated observations per unit,

λ = 3 to a moderate number and λ = 5 to (comparably) large numbers of repeated

observations.

For given ni, observation times are generated from

ti1 ∼ U(0, 1), i = 1, . . . , n,

tij ∼ U(ti,j−1 + 0.5, ti,j−1 + 1.5), i = 1, . . . , n, j = 2, . . . , ni,

where U(·) denotes the uniform distribution. In this way, different numbers n
(s)
i

and t
(s)
ij are generated in each simulation run s = 1, . . . , 100. Similarly, different

“true” random effects b
(s)
i are drawn from the Gaussian mixture distribution in each

simulation run. For the cluster locations, we chose

µ1 =

(
−2.25

1

)
, µ2 =

(
0.75

−1.2

)
, µ3 =

(
2.25

−2/15

)

corresponding to clearly separated clusters,

µ1 =

(
−1.5

0.75

)
, µ2 =

(
0.5

−0.9

)
, µ3 =

(
1.5

−0.1

)

corresponding to moderately separated clusters,

µ1 = µ2 = µ3 =

(
0

0

)
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corresponding to only one cluster.

Combining these different settings for observations times and clusters results in nine

different scenarios. For each of them, we compare the estimation results from the

DPM-EM algorithm with results based on Gaussian random effects using the R-

function lmer() from the lme4 package and with results of models using a unpenalized

(α = 1) finite normal mixture as random effects distribution. In each simulation run

s, we calculate the average prediction error

PEk(s) =
1

n

n∑

i=1

(
b̂∗ik(s)− b∗ik

)2
, k = 0, 1

for uncentered random intercepts b∗i0 = β0 + bi0 and random slopes b∗i1 = β1 + bi1. In

addition, the estimation accuracy of the fixed effects is investigated by the relative

bias RBk = 100 · (β̂k − βk)/βk, k = 0, 1.

3.2 Results

In the following, we summarize results of the nine combinations. For some sce-

narios the empirical distribution of PEk(s) values obtained from simulation run

s = 1, . . . , 100 is represented through box plots.
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Fig. 3: Trace plots (top) and clustering by DPM-EM model (bottom) with clearly separated clusters

for few individual observations (λ = 1) (left) and a moderate number of observations on individuals

(λ = 3) (right).
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Clearly separated clusters

Figure 3 (top) displays trace plots of typical longitudinal data generated in the setting

of clearly separated clusters, that shows that cluster effects can easily be detected

visually. On the left, there are only a few observations for each subject while on the

right the mean of the number of repeated measurements is 5 corresponding to several

observations. Not surprisingly the DPM-EM model detects three clusters in both

cases (Figure 3 (bottom)). The thick line shows the overall effect and the thin lines

visualize the means of the resulting clusters. Which observation is assigned to which

cluster is marked by the same symbol.
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Fig. 4: Box plots of PE0 with clearly separated clusters for few individual observations (λ = 1)

(left) and a moderate number of observations on individuals (λ = 3) (right).

LMMs with DPM penalty substantially improve upon results based on a misspecified

Gaussian random effects assumption, especially in the case of several and many ob-

servations (see Table 1 and, for example, Figure 4). In general, models with a finite

mixture as random effects distribution yield better predictions for random effects

than the classical LMM with normally distributed random effects. Of course, the

best prediction can be observed for the model with fixed N = 3 clusters because this

model is exactly the same as in the data generating process. However, the DPM-EM

model shows quite similar results although in this case the number of clusters was

determined by the model itself. The DPM-EM model as well as the other models

show a small bias concerning the estimation of fixed effects. The bias tends to be a

bit higher in the DPM-EM model.
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λ = 1 λ = 3 λ = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

Normal 0.373 0.185 -4.091 2.068 0.222 0.054 -1.048 4.710 0.148 0.015 -2.127 0.957

DPM-EM 0.135 0.063 -6.818 4.697 0.060 0.012 -5.212 6.935 0.048 0.006 -1.377 0.887

N = 3 0.111 0.058 -3.698 4.313 0.054 0.011 -2.914 5.197 0.045 0.005 -0.457 1.741

N = 5 0.145 0.062 -2.906 4.802 0.072 0.015 -2.760 4.387 0.050 0.006 -0.243 2.026

N = 10 0.222 0.112 -3.331 2.062 0.101 0.020 -2.188 6.324 0.080 0.008 -0.240 1.514

Table 1: Medians of PEk and RBk with k = 0, 1 for clearly separated clusters

Moderately separated clusters
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Fig. 5: Trace plots with moderate separated clusters for few individual observations (λ = 1) (left)

respectively many individual observations (λ = 5) (right).

In the following the differences between clusters get smaller. See Figure 5 for two

typical trace plots in the case of few respectively many individual observations. Still

the DPM-EM model outperforms both the homogeneity model (LMM with normal

random effect distribution) and the unpenalized heterogeneity model with N = 5 and

N = 10 clusters (Figure 6). Only the ”true” model with N = 3 clusters is able to

feature a lower error in predicting the random effects. Note that the superiority of the

DPM-EM model over the classical linear mixed model with normal random effects

distribution is even higher in the case of many individual observations.

λ = 1 λ = 3 λ = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

Normal 0.335 0.164 -2.112 1.912 0.207 0.046 -0.751 2.204 0.138 0.015 -1.122 0.750

DPM-EM 0.204 0.114 -6.088 4.673 0.082 0.018 -3.104 2.335 0.048 0.005 -0.920 1.117

N = 3 0.175 0.097 -3.799 2.111 0.063 0.014 -0.108 3.193 0.043 0.005 -1.275 0.945

N = 5 0.224 0.122 -3.091 2.028 0.082 0.018 -0.108 3.089 0.050 0.006 -1.226 0.693

N = 10 0.274 0.140 -2.987 1.381 0.126 0.025 -0.344 3.114 0.082 0.008 -1.304 1.469

Table 2: Medians of PEk and RBk with k = 0, 1 for moderately separated clusters
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Fig. 6: Box plots of PE0 with moderate separated clusters for few individual observations (λ = 1)

(left) respectively many individual observations (λ = 5) (right).

Only one cluster

When regarding Figure 7 and Table 3 for only one cluster, we can conclude the

following: Only the LMM with normal random effect distribution which is the ”true”

model in this setting is better than the DPM-EM model. The background for this

feature is that the DPM-EM model detects sometimes more than one cluster in the

data. Different patterns in the data are taken seriously. Nevertheless the DPM-

EM model exhibits lower prediction errors than all unpenalized heterogeneity models

because in the majority of cases less clusters than three are observed by the DPM-EM

model.

λ = 1 λ = 3 λ = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

Normal 0.034 0.020 -0.277 -1.081 0.029 0.007 0.605 -0.911 0.023 0.004 -0.163 -0.261

DPM-EM 0.045 0.022 0.004 -1.465 0.040 0.009 0.437 -0.003 0.035 0.005 -0.091 -0.205

N = 3 0.066 0.027 0.372 -1.242 0.045 0.010 0.916 -0.848 0.036 0.005 -0.077 -0.421

N = 5 0.083 0.034 0.277 -1.218 0.053 0.012 0.493 -1.035 0.045 0.006 -0.782 -0.299

N = 10 0.101 0.038 0.582 -1.804 0.062 0.012 0.499 -1.417 0.061 0.006 -0.166 -0.384

Table 3: Medians of PEk and RBk with k = 0, 1 for only one cluster

In summary, we draw the following conclusion: The DPM-EM models yield the better

estimates for random effects − in terms of prediction errors − the clearer the clusters

differ and the more observations are in the data. It makes a good job both for nor-

mally distributed random effects and for random effects following a mixture of three

normal distributions and is only a little bit inferior to the corresponding correctly

specified model. Thus the DPM-EM model turns out to be very flexible without risk
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Fig. 7: Box plots of PE0 with only one cluster for few individual observations (λ = 1) (left)

respectively many individual observations (λ = 5) (right).

of misspecifying the model like it can happen for the homogeneity model and the

unpenalized heterogeneity model.

4 Applications

4.1 Unemployment

The practical use of the proposed method is investigated in two data examples. First,

the variation of the unemployment over the federal states of Germany across time is

considered (Weise et al., 2011). We examine the unemployment rate of each federal

state from 2005 to 2010 in order to identify differences between states. Figure 8 shows

different levels of the unemployment rates and a negative time trend which can be

regarded as approximately linear. Therefore we consider a random slope model for

the annual average of the unemployment rate yij of state i and measurement j

yij|bi ind.∼ N(β0 + bi0 + (β1 + bi1)yearij, σ
2), i = 1, . . . , 16, j = 1, . . . , 6.

Since there is no symmetric unimodal variation of the individual intercepts about

the overall mean it would not be appropriate to assume a Gaussian random effect

distribution. Instead, the centered i.i.d. random effects bi = (bi0, bi1)
T follow a

mixture distribution of Gaussian components with penalized mixture weights (4).

We are looking for clustering the federal states in order to expose which states show

similar behavior. Only for a better interpretability we change the zero point of the
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Fig. 8: Unemployment in the federal states of Germany across time

time variable to 2005. Thus, during calculations the time variable is labeled by

0, 1, . . . , 5 for the years 2005, 2006, . . . 2010.

Figure 9 shows the population effect (thick line) as well as the cluster effects (thin

lines). Observations belonging to the same cluster are marked with the same symbol.

Our DPM-EM model detects three clusters with estimated weights π1 = 0.467, π2 =

0.425 and π3 = 0.108: The southern federal states Bayern, Baden-Württemberg and

Rheinland-Pfalz are assigned to cluster 3 which features the lowest unemployment

rate and the weakest decrease over time.

β µ1 µ2 µ3

13.719 4.361 -3.139 -6.468

-1.007 -0.353 0.277 0.436

Table 4: Estimators for the fixed effects and the cluster locations.

Table 4 shows that here the base level in 2005 is -6.468 lower compared to the overall

unemployment rate 13.719. In the south also the decrease of the unemployment rate

is less distinct than in the other states. A similar effect can be observed in cluster

2. Here, the gap to the global intercept is considerably smaller. Furthermore, there

is one cluster with a much more higher base level and a stronger decrease of the

unemployment rates. It is remarkable that these states are all in Eastern Germany
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Fig. 9: Clustering of federal states by DPM-EM model

or city states. Only the city state Hamburg makes an exception to that feature and

belongs to cluster 2.

cluster j

1 2 3

1 Schleswig-Holstein 0 0.998 0.002

2 Hamburg 0 1 0

3 Niedersachsen 0 0.999 0.001

4 Bremen 1 0 0

5 Nordrhein-Westfalen 0 1 0

6 Hessen 0 0.941 0.059

7 Rheinland-Pfalz 0 0.421 0.579

state i 8 Baden-Württemberg 0 0.007 0.993

9 Bayern 0 0.012 0.988

10 Saarland 0 0.997 0.003

11 Berlin 1 0 0

12 Brandenburg 1 0 0

13 Mecklenburg-Vorpommern 1 0 0

14 Sachsen 1 0 0

15 Sachsen-Anhalt 1 0 0

16 Thüringen 1 0 0

Table 5: Matrix of π̂ij .

Table 5 shows the estimated probabilities πij. Here, it can be seen that for most of

the states the assignment to a specific cluster is very distinct. Only for Rheinland-

Pfalz the probability for cluster 3 and cluster 2 is very similar. The parameter α

which controls the number of clusters is estimated by α̂ = 0.00155. It is a typical

feature that estimates of α are very small. This means that the strongest clustering

as allowed by the data is the best one.
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4.2 Lung function growth

In the second application the lung function growth of girls in Topeka (USA) is exam-

ined by our DPM-EM model. These data are a subsample from the six cities study

of air pollution and health in Dockery et al. (1983). The response variable is the

logarithmic forced expiratory volume in one second (fev1). Our sample consists of

100 girls, with a minimum of two and a maximum of twelve observations over time.

Again, we use a linear mixed model with random intercepts and random slopes

log(fev1)ij|bi ind.∼ N(β0 + bi0 + (β1 + bi1)ageij, σ
2), i = 1, . . . , 100, j = 1, . . . , ni,

6 8 10 12 14 16 18

0.
0

0.
5

1.
0

1.
5

age

lo
g(

fe
v1

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Fig. 10: Clustering of lung function growth data by DPM-EM model

and a DPM as random effects distribution (4). While the plot of all measurements

over time (Figure 10) is not very informative because of the large number of mea-

surements, the clustering effect of the DPM-EM model can be seen much easily from

Figure 11. Here the axes represent the intercepts and slopes respectively. The square

at coordinates (0,0) marks the population effect. All other icons are interpreted as

deviations from the population effect. The thick big ones symbolize the cluster loca-

tions µh, the thin small ones the random effects bi. Girls which assigned to the same

cluster are marked with the same symbol and are arranged around the three cluster

locations in the form of ellipses.
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Fig. 11: Cluster locations and corresponding random effects for lung function growth data

5 Conclusion

We introduced a linear mixed models with a DPM for the random effects distribution

in order to penalize the number of clusters in the finite mixture of normal distribution.

While models with Dirichlet processes are typically fitted by Bayesian methods like

MCMC we used the EM algorithm because then the cluster property of the Dirichlet

process can be used directly. So our method can be called an agglomerative clustering

approach of individuals for longitudinal data. The DPM-EM algorithm itself was

presented in detail. Furthermore, we showed in a simulation study that our approach

outperforms the classical linear mixed model in the case of a underlying grouping

structure. Applications of this DPM-EM algorithm were demonstrated by considering

unemployment data and lung function growth data.
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