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Abstract

Risk and, thus, the volatility of financial asset prices plays a major role in financial
decision making and financial regulation. Therefore, understanding and predicting
the volatility of financial instruments, asset classes or financial markets in general is
of utmost importance for individual and institutional investors as well as for central
bankers and financial regulators.

In this paper we investigate new strategies for understanding and predicting finan-
cial risk. Specifically, we use componentwise, gradient boosting techniques to identify
factors that drive financial–market risk and to assess the specific nature with which
these factors affect future volatility. Componentwise boosting is a sequential learning
method, which has the advantages that it can handle a large number of predictors and
that it—in contrast to other machine-learning techniques—preserves interpretation.

Adopting an EGARCH framework and employing a wide range of potential risk
drivers, we derive monthly volatility predictions for stock, bond, commodity, and for-
eign exchange markets. Comparisons with alternative benchmark models show that
boosting techniques improve out–of–sample volatility forecasts, especially for medium–
and long–run horizons. Another finding is that a number of risk drivers affect volatility
in a nonlinear fashion.
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1 Introduction

The relevance of understanding and adequately modeling the volatility of financial markets
has – again – become evident in view of the recent market turbulences. The purpose of
this paper is to use boosting techniques in order to identify forces driving market volatility,
to assess the nature of their impact and to improve prediction. Our analysis is based on a
monthly frequency and uses a wide range of potential predictors to model volatility.

In finance and macroeconomics, volatility forecasts are of exceptional importance: They
are needed for calculation of common risk measures, such as the Value at Risk (VaR)
and Expected Shortfall (ES), for the calculation of time-varying betas, conditional Sharpe
ratios, and time-varying covariances for portfolio optimization and asset allocation and for
the determination of the dynamic volatility in option valuation. A survey showing the
importance of volatility beyond economics can be found in Andersen et al. (2006); and the
survey of VaR forecasting strategies as given in Kuester et al. (2006).

The purpose of this paper is twofold: First, we identify the financial and macroeco-
nomic factors which influence the volatility in different markets and assess their impact on
volatility. Second, we forecast the volatility for different horizons and compare our method
with a GARCH(1,1) model (Bollerslev, 1986), the benchmark in this field.

Whereas attempts to predict returns have a long tradition in the literature (e.g. Goyal
and Welch, 2003, Welch and Goyal, 2008, Cochrane and Piazzesi, 2005, Lustig et al., 2011),
the prediction of volatility using macroeconomic and financial variables has received less
attention.

Explicit modeling of volatility started with Engle (1982) and Bollerslev (1986) and has
become an important and fruitful field in finance. Still, only few studies analyze the influ-
ence of financial and macroeconomic variables on the predictability of volatility. Examples
are Schwert (1989), Engle et al. (2008), Paye (2012) and Christiansen et al. (2010). Schw-
ert (1989) analyzes the relation of stock volatility and macroeconomic factors, like GDP
fluctuations, economic activity and financial leverage, by employing autoregressive models.
Engle et al. (2008) use inflation and industrial production by combining a daily GARCH
process with a mixed data sampling (MIDAS) polynomial applied to monthly, quarterly, or
bi-annual macroeconomic variables. Paye (2012) and especially Christiansen et al. (2010)
extend the set of macroeconomic factors and asset classes. Both focus on the conventional
linear model with log-transformed realized volatility being used as a normalized response.
Lagged volatility, financial and macroeconomic factors are included as regressors. Chris-
tiansen et al. (2010) additionally use a Bayesian model averaging (BMA) approach but
restrict the set of potential models again to the linear case. All these studies suggest that
there is no general agreement on how to meaningfully predict volatility using financial and
macroeconomic explanatory variables. The fact that different sample sizes, periods, mod-
els, forecasting evaluation criteria were employed in these analyses also contributes to the
opaqueness.
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Due to the unobservable nature of the variance we can either use the realized volatility
as proxy and run conventional mean regression models, as done in the examples above, or
estimate it latently.

The adequacy of the two strategies has been investigated in Claessen and Mittnik (2002)
and Corsi et al. (2008). We follow the second strategy in this paper. Based on a broad set of
macroeconomic and financial factors, we set up a flexible econometric model capable of di-
rectly modeling nonlinear influences of the factors on the volatility. Therefore, our approach
is much in the spirit of GARCH modeling of the conditional variance (through the returns)
rather than the linear modeling of the conditional mean (trough some transformation of
the realized volatility).

Whereas the previous literature has mainly concentrated on stock market volatility (one
exception is Christiansen et al., 2010), we analyze four asset classes, namely stocks, bonds,
commodities, and foreign exchange. We identify sets of driving forces, which, in part, affect
volatility in a highly nonlinear fashion. This also extends the previous literature, which
exclusively focused on linear influences of the predictors.

In our approach we use a version of the componentwise, gradient boosting (Bühlmann
and Yu, 2003, Bühlmann and Hothorn, 2007), tailored to simultaneously select relevant
factors and estimate the nature of their impact on the volatility. Boosting is especially
suitable in this context since it addresses multicollinearity problems by shrinking effects
towards zero and is, therefore, expected to improve out-of-sample predictions.

Volatility estimation with gradient boosting was first proposed by Audrino and Bühlmann
(2003), who adopted a GARCH-type prediction model. They assume a stationary return
process, yt = σtεt with εt ∼ N(0, 1), and an extremely general dependence structure be-
tween σt and past returns which lacks, however, any interpretability. Thus, their approach
is suited only for prediction. A fairly similar model with neural networks as base-learners
and the notable extension of a simultaneous conditional mean estimation was proposed by
Matías et al. (2010). Bühlmann and McNeil (2002) developed an alternative nonparamet-
ric first-order GARCH solution. They propose another strategy for GARCH(1,1) modeling
which allows interpretation.

The fundamental idea of volatility estimation by boosting, which is at the heart of our
paper, was originally proposed by Audrino and Bühlmann (2009). Our model differs in sev-
eral aspects, two of which are particularly important. First, we go beyond the GARCH(1,1)
specification by allowing longer history and exogenous factors to enter the model. It turns
out that inclusion of macroeconomic factors considerably improves the understanding of
the volatility dynamics. Second, we employ componentwise predictor selection instead of
the componentwise knot selection in a tensor spline estimation technique in Audrino and
Bühlmann (2009). This leads to a genuinely different model, which has the positive side
effect of no subjective decisions as the order of the penalized B-Splines that model the past
returns and variance. More recently, Mayr et al. (2012) developed a boosting technique
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in the spirit of the Generalized Additive Models for Location Scale and Shape (GAMLSS,
Rigby and Stasinopoulos, 2005) which extends the estimation even beyond the first two
moments.

The paper is structured as follows. In Section 2, the boosting algorithm for estimating
the variance is explained in some detail. We additionally present a short illustration. Sec-
tion 3 contains a description of the data. In Section 4, we model the comovement between
the regressors and the volatility and conduct an extensive forecasting study. Section 5
concludes.

2 Econometric Model

2.1 Gradient Boosting

We model along the lines of Nelson (1991) and adopt the exponential ARCH framework,
allowing, however, for flexible relationships between volatility and a large number of poten-
tial risk drivers (plus seasonal components), so that the number of components may even
exceed the number of the available observations.

The proposed model is of the form

yt = exp(ηt/2)εt

ηt = β0 + ftime(t) + fyear(nt) + fmonth(mt) +
s∑

j=1

fj(yt−j) +

q∑

k=1

p∑

j=1

fk,j(xk,t−j)

= η(zt−1),

(2.1)

where returns yt = log(Pt/Pt−1) are derived from the observed prices P1, . . . ,PT , εt ∼
N(0, 1) , zt−1 = (1, t, nt,mt, yt−1, . . . , yt−s, x1,t−1, . . . , x1,t−p, . . . , xq,t−1, . . . , xq,t−p)> ∈ Rr
is the realization of the r-dimensional random variable Z, r = s+ qp+ 4, with none of the
functions, f·(·), being specified in advance. The function fmonth(mt), mt ∈ {1, 2, . . . , 12},
is intended to capture deterministic seasonal patterns in volatility, fyear(nt), nt describes
the typical annual fluctuations which occur throughout the sample period, and ftime(t), t ∈
{1, . . . , T}, models the volatility trend. The functions fj(yt−j), j = 1, . . . , s, capture the
influence of past returns, and fk,j(xk,t−j), j = 1, . . . , q are functions of additional, exoge-
nous, lagged factors. The structure of all f.(.) is very general and can be chosen to flexibly
suit the circumstances: in our case, regression trees fit the abbrupt volatility changes well.
Regression trees are a nonparametric approach which essentially accomplishes two tasks: a)
to recursively partition the predictor domain into groups with similar response values, and
b) to assign a constant value for the response within each group. A good explanation of the
underlying algorithms behind regression trees can be found in Breiman et al. (1984). We
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use conditional inference trees (Hothorn et al., 2006) because they guarantee unbiased vari-
able selection. Therefore, the model can be interpreted as a regime volatility model which
partitions the predictor space according to the levels of the conditional variance. Linear
estimations, non-parametric smooth estimations of f.(.) or combinations of both extend the
scope of the model considerably and are easily accessible in the R add–on package mboost
(R Development Core Team, 2012, Hothorn et al., 2011).

The estimation of η is done non-parametrically via componentwise, gradient boosting.
Boosting is a general method to estimate a single complex model, step by step, in a series
of models that are to advantage combined into one. The model should not immediately
produce an overfitted estimate in the first iteration. Therefore, we control the bias-variance
mean squared error (MSE) trade-off by using a low-variance high-bias model. Subsequent
iterations reduce this bias while the variance increases at a slower rate (Bühlmann and Yu,
2003).

Boosting, in its original form as proposed by Freund and Schapire (1996), was intended
to solve two–class classification problems by maximizing the confidence, or the “margins”,
of a binary classificator. It suffices that the classificator, called base-learner is performing
only slightly better than random guessing in order to form arbitrary good accuracy (Kearns
and Valiant, 1994, Schapire et al., 1998).

Later, boosting was placed into a regression framework by Friedman (2001) who ex-
plained it as a functional gradient descent (FGD) technique. This interpretation of boosting
is also shared by Breiman (1998, 1999), Friedman et al. (2000) and Mason et al. (2000) who
view it as a function optimization approach strikingly similar to the well known steepest-
descent optimization. In our case, boosting estimates η by minimizing the expectation of a
loss function L, such that

η∗ = arg min
η

EL(yt, η(zt−1)) (2.2)

and exp (η∗(zt−1)) = V (yt|Z = zt−1). Since we use the derivative of L (see (2.5) below),
L is assumed to be differentiable with respect to η. In practice, our goal is to seek for a
solution of (2.2) not in the function space, but in the space spanned by the data. This
requires the parametrization of η of the form

η∗ = η(z; β̂) = arg min
β

1

T

T∑

t=1

L(yt, η(zt;β)). (2.3)

The solution of (2.3) is found by successively reducing the empirical loss. Boosting
iteratively builds up the solution in small steps, where each step is based on the previous
ones. The final parameter estimates can be expressed as an additive sum of the former
estimates. Hence, boosting is a sequential learning method that preserves interpretation—
a property which does not apply to other parallel–learning techniques, such as bagging or
random forests.
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A careful specification of the loss function, L, leads to an estimation of the desired
characteristic of the conditional distribution, here, the conditional variance. In the appli-
cation below, we assume yt|zt−1 ∼ N(0, eηt), so that the negative conditional log-likelihood
function is the empirical loss function given by

Lt =
1

2

[
ηt +

y2t
eηt

]
(2.4)

(after some simplifications) with the corresponding negative gradient given by

gt = −∂Lt
∂ηt

=
1

2

[
−1 +

y2t
eηt

]
. (2.5)

Boosting favors the direction that reduces the empirical loss most, i.e., the direction
specified by the negative gradient. This means that we seek the solution in the data
space by fitting the covariates against the negative gradient. Instead of fitting all covariates
simultaneously, they are fitted separately against the gradient through base-learners. This is
typically, but not necessarily, a well-known statistical model, such as linear regression, GAM
or regression–tree which specify the connection between the response and the covariates.
At each boosting step only one covariate is included, namely the one which most correlates
with the negative gradient, i.e., the steepest direction to the loss minimum.

We fit the separate covariates against the negative gradient via regression–trees with two
nodes, i.e., stumps. Stumps being naturally inflexible cannot fit the whole signal, coming
even from a single covariate, at once. This is especially true when the fitted coefficients are
additionally shrunken against zero as proposed by Friedman (2001). The “right” amount of
shrinkage is justified empirically and can be safely varied between 1% and 10%, essentially
altering only the computational time. Fitting the base learner changes the next evaluation
of the gradient, and repeating this procedure makes the covariates and the gradient more
and more orthogonal.

Note, however, that the proposed method is extensible with any modelling procedure.
The choice of stumps as base-learners is not mandatory but, due to the abrupt changes
that are typical for the application below, was found to be especially advantageous over the
smooth P-Spline or the simple linear relationship between the covariates and the response.

Boosting forever with stumps would inevitably lead to a zero-bias model, not very
useful for prediction. This is why early stopping is crucial. Terminating the process on
time means that we exclude the covariates not selected by that time. An optimal number
of boosting steps is determined by bootstrapping which samples from the data points as
if they were originating from a multinomial distribution with probabilities 1/T . Thus, each
sample uses roughly 64% percent of the original data (with replacement) for training and
the remaining, unselected, data points are used for evaluation. We repeat this twenty five
times for a large number of boosting steps and choose the step number that produces the
lowest out-of-sample loss on average. In summary, the boosting algorithm reads as follows:
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1. Initialize the function estimate η̂[0]t = log
(

1
T−1

∑T
t=1(yt − ȳ)2

)
, ȳ = 1

T

∑T
t=1 yt, t =

1, . . . , T .

2. Specify the set of base-learners via regression trees: f.(zt) =
∑J

j=1 γjIRj (zt), ∀zt ∈ zt.
We use stumps so each tree has only two leaves, i.e., J = 2. Denote the number of
base-learners by r and set m = 0.

3. Increase m by one.

4. (a) Compute the negative gradient (2.5) and evaluate η̂[m−1](zt), i = 1, . . . , T .
(b) Estimate the negative gradient by using the stumps specified in Step 2. This

yields r vectors where each vector is an estimate of the gradient.
(c) Select the base-learner f̂ [m] that most correlates with the gradient according to

the residual-sum-of-squares criterion. Therefore, f̂ [m] is the selected estimate of
the gradient vector.

(d) Update the current estimate by setting η̂[m] = η̂[m−1]+νf̂ [m], where ν is regarded
as a shrinkage parameter or as a step size.

5. Iterate Steps 3 and 4 until the final step determined by the stopping condition.

2.2 An Illustration

Even though we restrain the simulation from being too exhaustive, it is worth illustrating
volatility boosting with a small artificial example. Using the following model

yt = exp(ηt/2)εt

ηt = 0.2 + 0.5 · x1,t − 0.4 · x2,t + 1.2 · I[1,2](x3,t)+
0 · x4,t + 0 · x5,t + 0 · x6,t

(2.6)

with εt ∼ N(0, 1) and xi,t being the t-th observation of Xi ∼ U [0, 4], i = 1, . . . , 6, and
t = 1, . . . , T with T = 800. Note that only the first three covariates contribute to the
volatility — the first two linearly, the third via a jump. The last three covariates are
irrelevant. We choose linear base-learners for all but the third predictor which is fitted with
a regression-tree base-learner. The model for boosting is then given by

yt = exp(ηt/2)εt

ηt = β0 + β1x1,t + β2x2,t +
J∑

j=1

γjIRj (x3,t) + β4x4,t + β5x5,t + β6x6,t.
(2.7)

The aim is to estimate the β’s and γ’s as close as possible to the true values. This means
that X4, X5 and X6 are preferably not selected by the boosting algorithm, requiring the
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Figure 1: Partial volatility estimation of model (2.6). The volatility is measured by ηt (i.e.,
the log scale), depending on each covariate separately. The non-parametric estimation of
the partial volatility in X3 is zero-mean centered.

values for β4, β5 and β6 to be exactly zero. Further, we care for partitioning the domain
of X3 at the right places, i.e., identifying the region [1, 2], in order to discover the true
dynamics.

Figure 1 shows the estimated partial volatility on the log scale. Without any fine tuning
or expert calibration, the underlying volatility dynamics are modeled well. Early stopping
of boosting ensures that the redundant predictors are never selected: β4 = β5 = β6 = 0.
With regard to the estimated parameters, β̂1 = 0.46, β̂2 = −0.39 and X3 shows the largest
jump in [1, 2] in its domain. The result in Figure 1 is typical in the sense that the deviations
of several hundred repetitions were negligibly small.

If we translate the log scale from Figure 1 into the standard deviation we get an esti-
mation of the whole conditional density. Figure 2 shows the theoretical partial densities
for the first three covariates with the central 95% interquantile range depicted in darker
color. Figure 3 shows the empirical conditional density for simulated observations. It is
evident that the changing volatility is captured very well. This is confirmed by a 95.12%
coverage rate. The contribution of each covariate is readily observable and interpretable:
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Figure 2: Partial conditional density estimations for the first three covariates. The dark
lines show the estimated 95% interquantile range, the lighter colored lines represent the
tails.

an increase in X1 causes larger variance; X2 negatively correlates with the variance; the
variance markedly grows for X3 ∈ [1, 2]; all other components do not affect the variance
and the conditional density remains indifferent when linked to X4, X5 or X6. Clearly, such
detailed insight into the volatility dynamics greatly improves our understanding about fac-
tors driving the volatility in financial markets and should give rise to better forecasts. This
intuition is thoroughly investigated in the subsequent sections.

3 Data Set

We analyze the predictability of volatility in four different markets, namely, stocks, bonds,
commodities, and foreign exchange. The equity market is represented by the S&P500
futures contract traded on the Chicago Mercantile Exchange. For the bond market, we use
10-year Treasury note futures contracts traded on the Chicago Board of Trade (CBOT).
The commodity market is represented by Standard & Poor’s GSCI commodity index. As
a proxy for the foreign exchange market we use a trade-weighted portfolio provided by
the Federal Reserve Bank of St. Louis. It is a weighted average of the foreign exchange
value of the U.S. dollar against a subset of the broad index currencies that circulate widely
outside the country of issue, including the Euro Area, Canada, Japan, United Kingdom,
Switzerland, Australia, and Sweden. Our data set covers 332 months and spans the period
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Figure 3: The observations yt are depicted in black. The blue lines represent the 95%-
interquantile range of the conditional density.

February 1983 to September 2010.

3.1 Measures for Volatility

Volatility is inherently unobserved, or latent, and its measurement is a challenge. Since the
work of Andersen et al. (2003), realized volatility has become an accepted proxy for the
true, but latent, integrated volatility. In this paper, monthly realized volatility is calculated
by lower frequent, i.e., daily, returns. The realized volatility RVi,t for asset class i in month
t is given by

RVi,t = log

Mt∑

τ=1

r2i,t,τ , t = 1, . . . , T (3.1)

where ri,t,τ denotes the τth daily return of asset i in month t, andMt the number of trading
days in month t. The realized volatility for all markets in our study is depicted in Figure 4.
We regard the realized volatility as the unobservable, “true” volatility. A justification and
review of this concept is given by Andersen et al. (2006).

10



lo
g(

σ R
V

2
) −10

−8

−6

−4

−2

−10

−8

−6

−4

−2

Foreign exchange

Stock

1983 1988 1993 1998 2003 2008

Commodity

Bond

1983 1988 1993 1998 2003 2008

Figure 4: The logarithm of the monthly realized volatility as defined in Equation (3.1).

3.2 Financial and Macroeconomic Factors

We use an exhaustive set of macroeconomic and financial factors as potential explanatory
variables. Our set of predictors is compiled from different sources. We include (transfor-
mations of) the explanatory variables used by Welch and Goyal (2008) for predicting stock
market returns. These variables are included in Table 1 and involve the following factors:
dividend price ratio, book to market ratio, net equity expansion, cross sectional premium,
term spread, relative T-bill rate, relative Bond rate, long term bond return, T-bill rate, de-
fault spread. In addition, we include the Fama French factors: U.S. market excess return,
size factor and value factor.

The set of predictors contains also the Pastor and Stambaugh (2003) liquidity factor,
return on the MSCI world index, TED spread, i.e., the difference between 3 month LIBOR
rate and T-Bill rate, the Cochrane and Piazzesi (2005) bond factor, the return on the CRB
spot index, carry trade factor and return on dollar risk factor introduced by Lustig et al.
(2011), FX average bid-ask spread (Menkhoff et al. (2011)).

Moreover, we include the following macroeconomic variables: M1 growth, investor sen-
timent, purchasing manager index, housing starts, inflation, industrial production growth
and orders. Finally, we take up the Financial Stability Index (FSI) for advanced economies,
which was developed by the International Monetary Fund. A detailed overview of the in-
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cluded macroeconomic and financial factors can be found in Table 1.

3.3 Forecasting Strategy

Our forecasted period covers June 2002 to September 2010. We use a rolling window scheme
for forecasting. Starting with a time window of size 230, we shift it onwards in order to
produce 100 one-period ahead forecasts.1 Therefore, each volatility forecast is carried out
by a “new model,” based only on the past 230 observations. Further, applying a direct
forecasting approach2 we produce multi-period forecasts for one through six months.

For all 26 factors we include the first and second lag in our model, i.e., q = 26 and
p = 2 in (2.7). Our regressors are augmented by the first and second lag of the realized
volatility (s = 2) to capture state dependence and autoregressive behavior. We consider all
factors with their lags simultaneously in addition to the seasonal components. This results
in r = 58 predictors in total.

Since the true volatility is latent, it is common to utilize the squared returns y2t as a
noisy estimator for the squared volatility σ2t . We, however, avoid this due to the extremely
low signal to noise ratio. Therefore, we evaluate the forecasting performance in terms of
the mean squared error between the “true” (realized) volatility, as defined in (3.1), and our
forecasts. The t-th squared error in the i-th market is defined as

ERRt = (RVi,t − ηt)2, t = 1, . . . , T. (3.2)

We conduct direct forecasting which slightly alters the model given in (2.7) such that

yt+h = exp(ηt/2)εt+h

ηt = β0 + ftime(t) + fyear(nt) + fmonth(mt) +

s∑

j=1

fj(yt−j) +

q∑

k=1

p∑

j=1

fk,j(xk,t−j)

= η(zt−1),

(3.3)

for h = 0, . . . , 5. Note that h refers to a h+ 1 period–ahead forecast.

4 Empirical Results

In this section we present the results for all markets in detail. Specifically we report which
factors influence the realized volatility. One important finding is that the influence is highly
nonlinear. This is confirmed by a forecasting exercise similar to the one proposed here with

1Two observations are “lost” due to the lag operator.
2Direct forecasting in nonlinear time series context via boosting can be found in Robinzonov et al. (2012).
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Table 2: Theil’s U

Horizon FX_major GSCI SP TNOTE
1 1.032 1.072 0.998 1.047
2 1.011 0.866 0.988 1.017
3 0.918 0.923 0.893 1.000
4 0.931 0.901 0.852 0.981
5 0.968 0.790 0.870 0.943
6 0.959 0.714 0.835 0.885

Table 3: Out-of-sample R2

FX_major GSCI SP TNOTE
-0.066 -0.150 0.004 -0.096
-0.023 0.250 0.024 -0.034
0.158 0.149 0.202 0.000
0.133 0.189 0.274 0.038
0.063 0.376 0.243 0.111
0.080 0.491 0.303 0.218

the sole difference in the base-learners being linear models (instead of regression trees). The
resulting forecasts (not shown here) were of notably lower accuracy. It appears that this
phenomenon has not been analyzed in the literature before and offers valuables insights
into the nature of the impact of the risk drivers.

In addition to detailing the “anatomy of volatility,” we compare the out-of-sample fore-
casts of our boosting procedure with the forecasts of a GARCH specification for different
horizons, an application which is of great importance in practice.

4.1 Forecast Evaluation

In order to evaluate the out-of-sample forecasts we report descriptive statistics like Theil’s
U, the out-of-sample R2 as in Campbell and Thompson (2008). In the subsequent sec-
tions we provide a more in-depth view of each market’s volatility drivers and a graphical
representation of the forecasting study.

In the following, ηMi,t+1 denotes the forecasts of our model, ηBi,t+1 the forecasts of the
benchmark model. Theil’s U is defined as the quotient of the root mean squared error
(RMSE) of our model and the RMSE of the benchmark model. A value smaller than
one indicates that our model outperforms the benchmark model in terms of forecasting
accuracy. The results are given in Table 2. For the commodity and stock markets nearly
all values are smaller than 1 and indicate advantageous prediction for our model. For the
bond and foreign exchange markets this is the case for horizons longer than two months. As
confirmed by the tests later, even the first two months can be regarded as indistinguishable
in terms of forecasting accuracy. Thus, our boosting strategy is at least as good as GARCH
in the short run and typically better in medium– and long–term horizons.

Another descriptive forecast evaluation criterion is the out-of-sample R2 as proposed by
Campbell and Thompson (2008). The out-of-sample R2 is calculated as

R2
OOS = 1−

∑T−1
t=R

(
RVi,t+1 − ηMi,t+1

)2

∑T−1
t=R

(
RVi,t+1 − ηBi,t+1

)2 (4.1)
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Table 4: Modified Diebold-Mariano test results

Horizon FX_major GSCI SP TNOTE
1 0.630 0.790 0.4901 0.8585
2 0.555 0.011 ** 0.4407 0.6330
3 0.215 0.114 0.1039 0.5011
4 0.288 0.071 * 0.0519 * 0.3568
5 0.370 0.016 ** 0.0496 ** 0.1542
6 0.355 <0.01 *** 0.0112 ** 0.0297 **

where T denotes the total sample size and R the initialization period. We show the results
for this criterion in Table 3 and the interpretation remains essentially the same as for Theil’s
U statistic.

Our model and the benchmark model are non-nested which allows us to apply the test
of Diebold and Mariano (1995) resp. the modified version of Harvey et al. (1997) in order to
compare forecasting accuracies. The null hypothesis is that the GARCH forecasting error
is smaller than the boosting forecasting error. Therefore, rejection of the null hypothesis
favours our method. In Table 4 we provide the p-values of the modified Diebold-Mariano
test for different forecasting horizons. The additional information of the exogenous factors,
as well as the regime estimation obtained by boosting clearly improves the forecasting
accuracy in the commodity market for horizons longer than one month. This is also evident
in the stock market for medium– and long–term forecasting. We would also like to mention
that all cases, especially the insignificant ones, remain insignificant when we invert the null
hypothesis, namely that boosting performs better than GARCH. This confirms our finding
that boosting forecasts at least as good as GARCH in short–terms and better in medium–
and long–terms.

4.2 Stock Market

4.2.1 Driving Factors

The stock market is represented by the S&P500. When modeling the influence of the
explanatory variables via regression trees, we identify the financial stability index (FSI),
the lagged realized volatility, relative bond rate (RBR), the lagged returns, the U.S. market
excess return and the CRB spot index as main drivers. Due to the built-in lag and factor
selection in our approach, all other factors were excluded. Furthermore, not all lags are
considered as influential. For example, the lagged returns, U.S. market excess return, CRB
spot index enter through their first lag in the model, whereas FSI (Figure 5) and realized
volatility (Figure 6) have a greater, long-lived impact and enter with the additional second
lag.
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(b) Fitted function for FSI (second lag)

Figure 5: Financial stability index (FSI)

The Financial Stress Index for advanced economies was developed by the IMF and
comprises seven variables capturing three financial market segments, i.e., banking, securities
markets and exchange markets. The motivation for and detailed composition of the FSI is
given in Cardarelli et al. (2009). Figure 5 clearly shows several regimes for the FSI index
when related to volatility. Values of the FSI above 7.5 lead to a considerable volatility
increase in the following month — roughly 0.3 on the log scale as shown in Figure 5(a)
which corresponds to 16% increase in the volatility. Furthermore, the considerable influence
of the FSI is confirmed by a long lived impact of its movements. Positive changes in FSI
moderately increase the volatility even two months from now, while negative changes reduce
it.

Past realized volatility is also found to be very influential. Small values of the realized
volatility, i.e., log(σ̂2RV) < −7 shown in Figure 6(a) or σ̂RV < 0.03, cause a decrease in the
volatility next month. From approximately log(σ̂2RV) > −6, or σ̂RV > 0.05, onwards the
influence becomes positive, i.e., the volatility is expected to increase in a highly nonlinear
fashion. The long lived impact of the realized volatility, again, is confirmed by the selection
of the second lag as shown in Figure 6(b).

We further findd that positive changes of the S&P500 slightly decrease volatility, while
negative changes below 10% drastically increase it by 10%. Small negative changes, between
−10% and zero, of the S&P500 mildly increase volatility. The relative bond rate (RBR)
causes a considerable increase in volatility by 28% when it increases above one percent.
Positive U.S. market excess returns have a moderate calming effect on the market while
negative values below −2.5% increase volatility by 2%.
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(a) Fitted function for the realized volatility
(first lag).
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(b) Fitted function for the realized volatility
(second lag).

Figure 6: Lagged realized volatility as defined in Equation 3.1.

4.2.2 Forecasting

Another important question is how boosting performs in terms of forecasting accuracy as
compared to the GARCH model, which is a common benchmark and hardly outperformed.

Figure 7 summarizes the mean squared errors of our boosting approach and the GARCH
for 100 forecasts. The general impression is that boosting performs at least as good as
GARCH in terms of forecasting accuracy. Even though having smaller error variance,
boosting does not seem to outperform GARCH(1,1) for one– or two period–ahead forecasts.
This is confirmed by the modified Diebold-Mariano test (Harvey et al., 1997) shown in
Section 4.1, Table 4. However, we find boosting to significantly outperform GARCH for
medium– to long–term forecasts and Figure 7 offers the graphical explanation behind this
statement.

4.3 Commodity Market

4.3.1 Driving Factors

The volatility of the commodity market is influenced by the past realized volatility, the
net equity expansion, the Cochrane Piazessi factor and U.S. market excess return. The
Cochrane Piazessi factor has a long lived impact through both of its lags, while the net
equity expansion has an influence through its second lag. A remarkable finding for this

17



S&P500

0.0

0.5

1.0

1.5

2.0

2.5

Horizon = 1●

●

●

●

●
●

●

●

●

●

●

GARCH

Boo
sti

ng

Horizon = 2
●

●

GARCH

Boo
sti

ng

Horizon = 3

●

●

●

●

GARCH

Boo
sti

ng

Horizon = 4

●

●

●

●

●

GARCH

Boo
sti

ng

Horizon = 5

●
●

●

●

●

●

GARCH

Boo
sti

ng

Horizon = 6
●

●

GARCH

Boo
sti

ng

variable

GARCH

Boosting

Figure 7: Forecasting comparison of the MSE between GARCH(1,1) and our model for the
stock market.

market is the fact that since 1998 the volatility has, on average, increased by 12% compared
to the preceding period 1983 to 1997.

The lagged realized volatility has a highly nonlinear influence as shown in Figure 8.
Highly negative values of the lagged realized volatility, i.e., values below −6.5, reduce the
volatility by roughly 0.2 on the log scale or −10% of σ. Values above −6.5 lead to an
increase of the volatility in the commodity market, especially at −4 there is a jump and the
volatility is increased by approximately 60%. The net equity expansion has an increasing
effect on volatility if it is below −3%, otherwise it slightly decreases volatility. U.S. market
excess returns above −2% lower the volatility, otherwise they increase it. The pattern is
similar for the Cochrane Piazessi factor, except that the threshold is 2% in this case.

4.3.2 Forecasting

For the out-of-sample forecasting our method on average outperforms the GARCH model
for all horizons as can be seen in Figure 9. Theil’s U (see Section 4.1) supports this result.
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Figure 8: Lagged realized volatility.

For all horizons except for the first one Theil’s U is below 1. For six months ahead forecasts
Theil’s U decreases to 0.714 which indicates that the boosting model is superior to the
GARCH model regarding predictive performance especially for medium and long horizons.
The modified Diebold and Mariano (1995) test confirms this.

4.4 Bond Market

4.4.1 Driving Factors

When modeling the base functions with regression trees we find that the default spread,
change of the money supply (M1), change of the purchasing manager index, net equity
expansion, relative bond rate, change of consumer sentiment and book to market ratio
drive the volatility in the bond market.

For the default spread we find a clear threshold which identifies two volatility regimes.
A default spread growth of 1.1% or more leads to an increase in volatility by 7%, otherwise
it decreases it by roughly 4%. The relative bond rate has an effect on volatility only if
it is higher than 1% which leads to a 10% higher volatility. The change of the consumer
sentiment and the book to market ratio show a similar pattern: below a certain threshold,
5% growth of the consumer sentiment and 0.72 book to market ratio, they have no influence
on the volatility at all. Only if they exceed this threshold the volatility grows. An expansive
monetary policy, i.e. changes of the money supply above 5% increase the volatility in the
bond market by approximately 10%. Smaller expansions, or reduction of the money supply,
decrease the volatility by 6.8%.
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Figure 9: Forecasting comparison of the MSE between GARCH(1,1) and our model for the
commodity market.

4.4.2 Forecasting

The results of the out-of-sample forecasts evaluated by the MSE are given in Figure 10. We
use again direct forecasts for the one to six months ahead. For the short run predictions
it is a neck-and-neck race, while for the longer horizons boosting tends to deliver better
forecasts on average. This can also be seen in Table 2 with Theil’s U being smaller than 1
for the horizons of four, five and six months. However, the only forecasting period where
boosting is found to significantly outperform GARCH was six months in advance (Table 4).
Our results also confirm that macroeconomic and financial factors are in particular useful
for medium– and long–term forecasts.
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Figure 10: Forecasting comparison of the MSE between GARCH(1,1) and our model for
the bond market.

4.5 Foreign Exchange Market

4.5.1 Driving Factors

The volatility of foreign exchange market is driven by the financial stability, default spread,
realized volatility, TED spread, U.S. market excess return, long term rate of return, change
of the money supply and several other factors. Periods of high financial stress, defined by
values of the FSI index larger than five, drive up volatility by 12%, whereas low financial
stress asymmetrically decreases volatility by a much smaller amount, i.e., less than 1%.
Similarly to the other markets, values of the realized volatility in the past month which are
smaller than −7 on the log scale, or σ̂RV < 0.03, have a slight calming effect on volatility.
Values above this cutoff considerably increase volatility by 15%. U.S. market returns seem
to influence volatility only if they are below −10%. In this case they increase the volatility.
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Figure 11: Forecasting comparison of the MSE between GARCH(1,1) and our model for
the FX market.

4.5.2 Forecasting

In line with the previous literature, it appears to be very challenging providing useful
forecasts of the foreign exchange volatility. This is especially true for the lower frequency
suggested by the monthly observations. Still, our model predictions are on the level of the
GARCH forecasts as can be seen in Figure 11. For the horizons of three to six months
Theil’s U is below 1 but none of the tests were significant.

5 Conclusions

In this paper, we analyze the volatility of four asset classes, namely, stocks, commodities,
bonds and foreign exchange. This wide range of markets, coupled with an exhaustive set of
macro and financial drivers, offers a fairly comprehensible overview on financial volatility.
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Working with monthly data, we use boosting with regression trees as base-learners
in order to identify influential macro and financial factors in different volatility regimes.
Specifically, we use componentwise boosting tailored to sorting out irrelevant predictors,
or some of their lags. Boosting is well suited for model selection and estimation in an
unified framework with many (possibly highly correlated) potential predictors. Therefore,
all drivers considered are simultaneously included with their first and second lag, along with
some deterministic (seasonal) components in a regression-type of model. It is important to
note that the proposed strategy can cope with “wide” data (?) models, i.e., situations in
which the number of predictors exceed the number of observations. In our case, we typically
have 58 predictors and 230 observations.

After introducing our modeling strategy we provided some elucidating examples, based
on simulated data, in order to emphasize the understanding. Our empirical results give
insight into the “anatomy” of volatility by: a) identifying small groups of influential drivers
for each market and b) estimating thresholds for each driver which partition its domain
into areas with similar volatility movements.

One finding is that the relationship between the financial drivers and volatility is highly
nonlinear. This is an important finding, given that the literature almost exclusively con-
centrates on linear volatility dynamics.

We conduct out-of-sample forecasts for different horizons to compare our model with the
benchmark model in this field, namely GARCH(1,1) model. The forecasting performance is
evaluated in terms of mean squared prediction errors of the ex-ante estimates of both models
relative to the ex-post realized volatility estimation. Realized volatility is, therefore, used as
a proxy for the unobserved volatility. We gain favourable results for stocks and commodities.
In these two markets, we significantly outperform the GARCH model. Especially for longer
horizons our approach increases the predictive power when compared to GARCH.

In the bond and foreign exchange markets we obtain forecasts that are, for short hori-
zons, at least as good as the GARCH benchmark and slightly better, although significantly
unproven, in medium– to long–term periods.

References

Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX (2006). “Volatility and Cor-
relation Forecasting.” In G Elliott, C Granger, A Timmermann (eds.), Handbook
of Economic Forecasting, volume 1, chapter 15, pp. 777–878. Elsevier. doi:10.1016/
S1574-0706(05)01015-3. URL http://www.sciencedirect.com/science/article/pii/
S1574070605010153.

Andersen TG, Bollerslev T, Diebold FX, Labys P (2003). “Modeling and Forecasting Re-
alized Volatility.” Econometrica, 71(2), 579–625.

23



Audrino F, Bühlmann P (2003). “Volatility Estimation with Functional Gradient
Descent for Very Highdimensional Financial Time Series.” Journal of Computa-
tional Finance, 6(3), 65–89. URL ftp://ftp.stat.math.ethz.ch/Research-Reports/
Other-Manuscripts/buhlmann/fgd1corr.pdf.

Audrino F, Bühlmann P (2009). “Splines for Financial Volatility.” Journal of the
Royal Statistical Society, Series B: Statistical Methodology, 71(3), 655–670. doi:
10.1111/j.1467-9868.2009.00696.x. URL http://dx.doi.org/10.1111/j.1467-9868.
2009.00696.x.

Bollerslev T (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal
of Econometrics, 31(3), 307–327. ISSN 0304-4076. doi:10.1016/0304-4076(86)90063-1.
URL http://www.sciencedirect.com/science/article/pii/0304407686900631.

Breiman L (1998). “Arcing Classifiers.” The Annals of Statistics, 26(3), 801–824.

Breiman L (1999). “Prediction Games and Arcing Algorithms.” Neural computation, 11(7),
1493–1517. doi:doi:10.1162/089976699300016106.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). “Classification and Regression
Trees.” Wadsworth, Belmont, (CA).

Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and
Model Fitting.” Statistical Science, 22(4), 477–505. doi:10.1214/07-STS242. With dis-
cussion, URL http://dx.doi.org/10.1214/07-STS242.

Bühlmann P, McNeil AJ (2002). “An Algorithm for Nonparametric GARCH Modelling.”
Computational Statistics & Data Analysis, 40(4), 665–683. ISSN 0167-9473. doi:10.1016/
S0167-9473(02)00080-4. URL http://www.sciencedirect.com/science/article/pii/
S0167947302000804.

Bühlmann P, Yu B (2003). “Boosting with the L2 Loss: Regression and Classification.”
Journal of the American Statistical Association, 98(462), 324–339. ISSN 01621459. URL
http://www.jstor.org/stable/30045243.

Campbell JY, Thompson SB (2008). “Predicting Excess Stock Returns Out of Sample: Can
Anything Beat the Historical Average?” Review of Financial Studies, 21(4), 1509–1531.

Cardarelli R, Elekdag S, Lall S (2009). “Financial Stress, Downturns, and Recoveries.” IMF
Working Paper WP/09/100, International Monetary Fund.

Christiansen C, Schmeling M, Schrimpf A (2010). “A Comprehensive Look at Finan-
cial Volatility Prediction by Economic Variables.” CREATES Research Papers 2010-
58, School of Economics and Management, University of Aarhus. URL http://ideas.
repec.org/p/aah/create/2010-58.html.

24



Claessen H, Mittnik S (2002). “Forecasting Stock Market Volatility and the Informational
Efficiency of the DAX-Index Options Market.” European Journal of Finance, 8(3), 302–
321. doi:10.1080/13518470110074828. URL http://www.tandfonline.com/doi/abs/
10.1080/13518470110074828.

Cochrane JH, Piazzesi M (2005). “Bond Risk Premia.” American Economic Review, 95(1),
138–160.

Corsi F, Mittnik S, Pigorsch C, Pigorsch U (2008). “The Volatility of Realized Volatility.”
Econometric Reviews, 27(1-3), 46–78. doi:10.1080/07474930701853616. URL http://
www.tandfonline.com/doi/abs/10.1080/07474930701853616.

Diebold FX, Mariano RS (1995). “Comparing Predictive Accuracy.” Journal of Business &
Economic Statistics, 13(3), 253–263.

Engle RF (1982). “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation.” Econometrica, 50(4), 987–1007.

Engle RF, Ghysels E, Sohn B (2008). “On the Economic Sources of Stock Market Volatility.”
Working paper series. doi:10.2139/ssrn.971310.

Freund Y, Schapire R (1996). “Experiments With a New Boosting Algorithm.” In Pro-
ceedings of the Thirteenth International Conference on Machine Learning Theory, pp.
148–156. San Francisco: Morgan Kaufmann Publishers Inc., San Francisco, CA.

Friedman JH (2001). “Greedy Function Approximation: A Gradient Boosting Machine.”
The Annals of Statistics, 29(5), 1189–1232. ISSN 00905364. URL http://www.jstor.
org/stable/2699986.

Friedman JH, Hastie T, Tibshirani R (2000). “Additive Logistic Regression: A Statistical
View of Boosting.” The Annals of Statistics, 28, 337–407. With discussion.

Goyal A, Welch I (2003). “Predicting the Equity Premium with Dividend Ratios.” Man-
agement Science, 49(5), 639–654.

Harvey D, Leybourne S, Newbold P (1997). “Testing the Equality of Prediction Mean
Squared Errors.” International Journal of Forecasting, 13(2), 281–291.

Hastie T, Tibshirani R, Friedman J (2008). The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. 2nd edition. Springer. URL http://www-stat.stanford.
edu/~tibs/ElemStatLearn/.

Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B (2011). Model-Based Boosting.
R package version 2.1-1, URL http://CRAN.R-project.org/package=mboost.

25



Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Con-
ditional Inference Framework.” Journal of Computational and Graphical Statistics,
15(3), 651–674. doi:10.1198/106186006X133933. URL http://statmath.wu-wien.ac.
at/~zeileis/papers/Hothorn+Hornik+Zeileis-2006.pdf.

Kearns M, Valiant L (1994). “Cryptographic Limitations on Learning Boolean Formulae
and Finite Automata.” Journal of the Association for Computing Machinery, 41(1), 67–
95. ISSN 0004-5411. doi:10.1145/174644.174647. URL http://dx.doi.org/10.1145/
174644.174647.

Kuester K, Mittnik S, Paolella MS (2006). “Value-at-Risk Prediction: A Comparison of
Alternative Strategies.” Journal of Financial Econometrics, 4(1), 53–89. doi:10.1093/
jjfinec/nbj002. URL http://jfec.oxfordjournals.org/content/4/1/53.abstract.

Lustig H, Roussanov N, Verdelhan A (2011). “Common Risk Factors in Currency Markets.”
Review of Financial Studies, 24(11), 3731–3777.

Mason L, Baxter J, Bartlett PL, Frean M (2000). “Functional Gradient Techniques for
Combining Hypotheses.” In AJ Smola, PL Bartlett, B Schölkopf, D Schuurmans (eds.),
Advances in Large Margin Classifiers, pp. 221–246. MIT Press.

Matías JM, Febrero-Bande M, González-Manteiga W, Reboredo JC (2010). “Boost-
ing GARCH and Neural Networks for the Prediction of Heteroskedastic Time Se-
ries.” Mathematical and Computer Modelling, 51(3-4), 256–271. ISSN 0895-7177. doi:
10.1016/j.mcm.2009.08.013. URL http://www.sciencedirect.com/science/article/
pii/S0895717709002726.

Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012). “Generalized Additive Models
for Location, Scale and Shape for High Dimensional Data – a Flexible Approach Based
on Boosting.” Journal of the Royal Statistical Society: Series C (Applied Statistics), pp.
no–no. ISSN 1467-9876. doi:10.1111/j.1467-9876.2011.01033.x. In print, URL http:
//dx.doi.org/10.1111/j.1467-9876.2011.01033.x.

Menkhoff L, Sarno L, Schmeling M, Schrimpf A (2011). “Carry Trades and Global Foreign
Exchange Volatility.” CEPR Discussion Papers 8291, C.E.P.R. Discussion Papers.

Nelson DB (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach.”
Econometrica, 59(2), 347–370. ISSN 00129682. URL http://www.jstor.org/stable/
2938260.

Pastor L, Stambaugh RF (2003). “Liquidity Risk and Expected Stock Returns.” Journal
of Political Economy, 111(3), 642–685.

Paye BS (2012). “Deja Vol: Predictive Regressions for Aggregate Stock Market Volatility
Using Macroeconomic Variables.” Journal of Financial Economics, (forthcoming).

26



R Development Core Team (2012). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL http://www.R-project.org/.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale
and Shape.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3),
507–554. doi:10.1111/j.1467-9876.2005.00510.x. URL http://dx.doi.org/10.1111/j.
1467-9876.2005.00510.x.

Robinzonov N, Tutz G, Hothorn T (2012). “Boosting Techniques for Nonlinear Time Series
Models.” AStA Advances in Statistical Analysis, 96, 99–122. ISSN 1863-8171. doi:
10.1007/s10182-011-0163-4. URL http://dx.doi.org/10.1007/s10182-011-0163-4.

Schapire R, Freund Y, Bartlett P, Lee W (1998). “Boosting the Margin: A New Explanation
for the Effectiveness of Voting Methods.” The annals of statistics, 26(5), 1651–1686.

Schwert GW (1989). “Why Does Stock Market Volatility Change over Time?” Journal of
Finance, 44(5), 1115–53.

Welch I, Goyal A (2008). “A Comprehensive Look at The Empirical Performance of Equity
Premium Prediction.” Review of Financial Studies, 21(4), 1455–1508.

27


