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SUMMARY: A method is proposed that aims at identifying clusters of individuals

that show similar patterns when observed repeatedly. We consider linear mixed mod-

els which are widely used for the modeling of longitudinal data. In contrast to the

classical assumption of a normal distribution for the random effects a finite mixture

of normal distributions is assumed. Typically, the number of mixture components

is unknown and has to be chosen, ideally by data driven tools. For this purpose an

EM algorithm-based approach is considered that uses a penalized normal mixture as

random effects distribution. The penalty term shrinks the pairwise distances of clus-

ter centers based on the group lasso and the fused lasso method. The effect is that

individuals with similar time trends are merged into the same cluster. The strength of

regularization is determined by one penalization parameter. For finding the optimal

penalization parameter a new model choice criterion is proposed.

KEY WORDS: EM algorithm; fused lasso; group lasso; linear mixed models; longitu-

dinal data
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1 Introduction

Linear mixed models (LMM) which were proposed by Laird and Ware (1982) are a

common tool for the modeling of longitudinal data. The model can be written as

yi|bi
ind.∼ N(X iβ +Zibi, σ

2Ini) i = 1, . . . , n, (1)

where yi contains the response values observed for subject i at observation times

ti1, . . . , tini . Here Ini is the identity matrix with dimension ni. Population effects

are included in the parameter β whereas bi represents the individual-specific effects.

X i and Zi denote the corresponding individual design matrices. All observations

yij are normally distributed conditional on the random effects and are regarded as

independent with the same variance σ2. The classical assumption in (1) is a Gaussian

distribution for the random effects, i.e. bi i.i.d. N(0,D), see, for example, Verbeke

and Molenberghs (2000) and Ruppert et al. (2003). While this choice is mathemat-

ically convenient, it often is questionable in applications for several reasons. The

normal distribution is symmetric, unimodal and has light tails. Since the distribu-

tional assumption is made on unobserved quantities, it is typically hard to validate

these properties based on estimates. Possible skewness and multimodality (arising,

for example, from an unconsidered grouping structure in the data) may be masked

when checking the normal distribution in terms of estimated random effects. In con-

trast to this homogeneity model the heterogeneity model introduced by Verbeke and

Lesaffre (1996) is much more flexible. It assumes

bi ∼
N∑

h=1

πhN(µh,D), (2)

where π1, . . . , πN are mixture weights. Several extensions and alternatives to this

heterogeneity model have been proposed in the following. For example, Gaffney and

Smyth (2003) used random effects regression mixtures in the context of curve clus-

tering. Approaches for clustering functional data were proposed by James and Sugar

(2003) and Liu and Yang (2009). By contrast Celeux et al. (2005), Ng et al. (2006)

and Scharl et al. (2010) dealt with mixtures of linear mixed effects models. While

Booth et al. (2008) proposed an extension of this concept by including the partition

as parameter, De la Cruz-Meśıa et al. (2008) generalized the approach to a mixture

of non-linear hierarchical models. Villarroel et al. (2009) extended the heterogeneity

model to allow for a multivariate response variable. In addition, a heteroscedastic

normal mixture in the random effect distribution for multiple longitudinal markers

was considered by Komárek et al. (2010) for linear mixed models and by Komárek

and Komárková (2012) for generalized linear mixed models. However, in all these ap-
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proaches the number of mixture components has to be chosen. A data driven choice

of this number can be achieved by penalization of pairwise distances of cluster centers

by a group fused lasso penalty term. In contrast to approaches that aim at penal-

izing the reparameterized mixture weights (Komárek and Lesaffre (2008) or Heinzl

and Tutz (2011)) the “penalized heterogeneity approach” introduced here reduces the

number of clusters by penalizing the cluster centers in the form

√
N · q

∑

h<l

‖µh − µl‖. (3)

The idea of the penalty term is the following: If two cluster locations are very similar

in terms of the Euclidean distance ‖ · ‖, these clusters should be fused. Therefore

only the relevant clusters are expected to remain in the model. Fusion methods in

regression modeling, but with quite differing penalty terms, have been proposed by

Tibshirani et al. (2005). Penalty terms that include vectors, as is needed here, have

been considered by Yuan and Lin (2006) but not in a fusion context. It should be

noted that the factor
√
N · q, where q denotes the dimension of random effects, is used

for incorporating the number of parameters to estimate. For inference, we extend the

traditional Expectation-Maximization (EM) algorithm (Dempster et al., 1977) used

in the heterogeneity model of Verbeke and Molenberghs (2000) by adding the penalty

term (3) multiplied with a penalty parameter to the logarithm of the complete but

not fully observed likelihood (see Section 2.1). To find the optimal penalty parameter

we introduce a new model choice criterion which is based on the concept of Braun

et al. (2012) (see Section 2.2). The usefulness of our approach is demonstrated by

two applications (see Section 3) and a simulation study (see Section 4).

It will be shown that our penalized heterogeneity approach is much more flexible than

the conventional homogeneity model and allows to determine the number of clusters

automatically. Regularization allows to identify the underlying clusters and cluster

individuals in longitudinal studies.
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2 Linear Mixed Models with Group Fused Lasso

Penalty

2.1 Estimation

For the model introduced in Section 1 we give an EM algorithm which is based

on derivations by McLachlan and Peel (2000) and McLachlan and Krishnan (1997)

and is similar to the algorithm used by Verbeke and Molenberghs (2000) but in-

cludes the penalty term (3). Let the parameters be collected in ξ = (π,γ)T where

π = (π1, . . . , πN)T comprises the mixture weights and γ is the vector containing

all the remaining parameters β,µ1, . . . ,µN ,D, σ
2. In the following the order of

µ1, . . . ,µN is determined by the corresponding weights in decreasing order under the

restrictions
∑N

h=1 πh = 1 and
∑N

h=1 πhµh = 0. The latter ensures E(yi) = X iβ.

The cluster membership of each individual can be described by latent variables

zi := (zi1, . . . , ziN)T where zih = 1 if subject i belongs to cluster h and 0 otherwise.

Marginalization over the random effects yields the complete model with observed data

yi as well as unobserved data zi:

yi|zi
ind.∼ N(X iβ +Ziµh, V i), i = 1, . . . , n,

zi
i.i.d.∼ M(1,π), i = 1, . . . , n,

(4)

with V i = ZiDZ
T
i +σ2Ini and M(·) representing the multinomial distribution. The

likelihood function corresponding to (4) is given by

L(ξ) =
n∏

i=1

N∏

h=1

[πh fih(yi;γ)]zih ,

where fih(·) denotes the density function of N(X iβ + Ziµh, V i). The penalized

log-likelihood we propose is

lP (ξ) =
n∑

i=1

N∑

h=1

zih[log πh + log fih(yi;γ)]− λ
√
N · q

∑

h<l

‖µh − µl‖, (5)

where λ indicates the penalty parameter. Obviously for λ = 0 the penalization term

drops out. We will use an EM algorithm procedure which alternates between taking

the expectation of lP (ξ) over all unobserved zih in the E-step and maximization of

the expected value in the M-step instead of maximizing the penalized incomplete

likelihood function based only on the observed data directly. The steps have the

following form.
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E-step

Collecting all observed data in y = (yT
1 , . . . ,y

T
n )T the E-step we get

Q(ξ|ξ(t)) = E
(
lP (ξ)|y, ξ(t)

)
=

=
n∑

i=1

N∑

h=1

πih(ξ(t))[log πh + log fih(yi;γ)]− λ
√
N · q

∑

h<l

‖µh − µl‖,

where πih(ξ(t)) is the probability at iteration t that subject i belongs to cluster h and

is given by

πih(ξ(t)) =
fih(yi;γ

(t))π
(t)
h∑N

l=1 fil(yi;γ
(t))π

(t)
l

.

M-step

For simplicity, in the following we write πih := πih(ξ(t)) but it should be noted that

for the M-step it is essential that πih is fixed from the last iteration t because then

one can use that Q(ξ|ξ(t)) is the sum of two components, Q(π|ξ(t)) and Q(γ|ξ(t)),
and the optimization problem in the M-step can be separated into two parts: The

maximization of

Q(π|ξ(t)) =
n∑

i=1

N∑

h=1

πih log πh

with respect to π and the maximization of

Q(γ|ξ(t)) =
n∑

i=1

N∑

h=1

πih log fih(yi;γ)− λ
√
N · q

∑

h<l

‖µh − µl‖

with respect to γ. The first optimization problem yields

πh =
1

n

n∑

i=1

πih, h = 1, . . . , N.

In the second part of the M-step one obtains the current state for γ by alternat-

ing between the maximization of Q(γ|ξ(t)) with respect to β, to µ1, . . . ,µN and to

the variance parameters D and σ2. Conditional on the current state of the other

parameters the maximization of β results in

β =

(
n∑

i=1

XT
i V

−1
i X i

)−1( n∑

i=1

(
XT

i V
−1
i yi −

N∑

h=1

πihX
T
i V

−1
i Ziµh

))
.
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For the maximization of µ1, . . . ,µN given β and the variance parameters as well as

for the maximization of the variance parameters given β and µ1, . . . ,µN a numerical

procedure like the Nelder-Mead method is necessary.

Choice of starting values

For EM algorithms it is essential how to choose the starting values because the (pe-

nalized) incomplete log-likelihood is ascending at each step and the algorithm can

converge to a local maximum. Because in each M-step the fusion of clusters is inves-

tigated it is sensible to choose starting values for an agglomerative clustering method.

Therefore each subject starts in its own cluster. Thus, in the beginning there are

N = n clusters with weights πh = 1/N , h = 1, . . . , N . As starting values for the

cluster locations µ1, . . . ,µN we consider the predicted random effects b1, . . . , bn of

the previously fitted LMM with Gaussian random effect distribution. This fit yields

starting values for β, σ2 and D, too. To reduce computation time it is sometimes

advisable to choose N < n if the number of individuals is high. Then one obtains

starting values for the cluster centers by a k-means clustering of predicted random

effects of the former fitted LMM. However, the algorithm starts with N clusters and

successively merges clusters until there is no further ascent of the penalized incom-

plete log-likelihood. If two clusters centers µh and µl are fused only one of these

parameters is kept and the other one is deleted with the effect that the number of

clusters N is reduced by one. In general, our penalized heterogeneity approach can

be seen as an agglomerative cluster analysis but based on a regression model. After

convergence we get the cluster membership by the matrix of estimated πih. Individual

i is assigned to that cluster h for which π̂ih is maximal. Based on the weights of all

clusters the prediction of the random effects has the form

b̂i = D̂ZT
i V̂

−1
i (yi −X iβ̂) + (Iq − D̂ZT

i V̂
−1
i Zi)

N∑

h=1

π̂ihµ̂h,

which can be shown by using derivations from Lindley and Smith (1972).

Implementation

All computations are implemented in C++ to allow for an efficient treatment of

loop-intensive calculations and to reduce the typically slow convergence of the EM al-

gorithm. They are made easily accessible by a wrapper function within an R-package

which will be soon provided. All variables are standardized internally for calculations.

For updating the cluster centers and the variance parameters we use an implemen-

tation of the Nelder-Mead algorithm in C++ (library ASA047) which was used by

Papageorgiou and Hinde (2012) for similar tasks. For reflection, extension and con-
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traction coefficients we choose the common settings 1.0, 2.0 and 0.5 respectively. See

Nelder and Mead (1965) and O’Neill (1971) for more technical details of the algo-

rithm. Note that for ensuring that the covariance matrix D is nonnegative-definite

we parameterize the concerning variance parameters by the entries of a lower trian-

gular matrix L according to the Cholesky decomposition D = LLT . Then D is

nonnegative-definite for each L and positive-definite (and so invertible, too) if L is a

matrix with exclusively nonzero diagonal entries (Lindstrom and Bates, 1988).

2.2 Model Choice: Predictive Cross-Validation

In general, optimal penalization parameters can be chosen by cross-validation or in-

formation criteria such as Akaike information criterion (AIC) or Bayesian information

criterion (BIC). In normal linear mixed models the AIC is not as straightforward as

in normal linear models (compare Vaida and Blanchard (2005) and Greven and Kneib

(2010)). For the penalized heterogeneity approach, the evaluation of the marginal or

conditional AIC is even more complicated. Hence we prefer a cross-validation ap-

proach. Braun et al. (2012) introduced a new predictive cross-validation approach for

model choice in linear mixed models with Gaussian distributed random effects that is

based on the ”mixed” cross-validation approach proposed by Marshall and Spiegelhal-

ter (2003). An advantage of this approach is that in contrast to full cross-validation

the model must be fitted only once which saves computing time. In general, each ob-

served response value yobs is compared to the corresponding predictive distribution,

for example, by the continuous ranked probability score (CRPS)

CRPS(yobs) = −
∫ ∞

−∞
(P (Yobs ≤ r)− 1(yobs ≤ r))2 dr ,

where P symbolizes the predictive distribution of the random variable Yobs. If the

predictive distribution is a normal distribution with estimated mean µ and estimated

standard deviation σ, the continuous ranked probability score will take the form

CRPS(yobs) = σ̂

[
1√
π
− 2ϕ

(
yobs − µ̂

σ̂

)
− yobs − µ̂

σ̂

(
2Φ

(
yobs − µ̂

σ̂

)
− 1

)]
. (6)

Here ϕ(·) denotes the density function and Φ(·) the distribution function of the

standard normal distribution. For linear mixed models Braun et al. (2012) con-

sider the predictive distribution of the random variable yij conditional on the other

given response values yi,−j := (yi1, . . . , yi,j−1, yi,j+1, . . . , yini)
T of the same subject for

i = 1, . . . , n and j = 1, . . . , ni. They argue that there is only a low danger of con-

servatism due to ignoring the individual random effect as well as the real response

value even though the model choice criterion is based on full data. When assuming
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normally distributed random effects one also obtains for the distribution of yij|yi,−j a

normal distribution. Unfortunately in our case this distribution is not normal. Thus

we extend the approach of Braun et al. (2012) to work in our scenario. We exploit

that in the case of known cluster membership the conditional distribution is normal.

Because the cluster membership is not known the continuous ranked probability score

is weighted by the estimated weights

WCRPS(yij) =
N∑

h=1

π̂hCRPSh(yij),

where CRPSh(yij) is given by formula (6) with yobs := yij as well as

µ̂ := xT
ijβ̂ + zTijµ̂h + zijD̂Z

T
i,−j

(
σ̂2Ini−1 +Zi,−jD̂Z

T
i,−j

)−1
·

·(yi,−j −X i,−jβ̂ −Zi,−jµ̂h),

σ̂ :=

(
zijD̂z

T
ij − zijD̂ZT

i,−j

(
σ̂2Ini−1 +Zi,−jD̂Z

T
i,−j

)−1
Zi,−jD̂zTij + σ̂2

)1/2

.

This can be shown by derivations from Braun et al. (2012). Here xij is the jth row of

X i while X i,−j symbolizes the matrix X i without row j (analog for zij and Zi,−j).

Thus µ̂ and σ̂ are the parameters of the distribution of yij|yi,−j, zih = 1. Finally,

the mean of the weighted continuous ranked probability score is taken over to all

measurement points. The best value for the penalization parameter λ is that where

the mean of the weighted continuous ranked probability score is maximal.
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3 Applications

3.1 Hormonotherapy
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Fig. 1: Heights of rat skulls across age.

In the following the practical use of our model is illustrated by considering the cranio-

facial growth of male rats. The data were collected in an experiment at the Catholic

University of Leuven with the aim to analyze the effect of testosterone on the growth

of rats (Verdonck et al., 1998). Therefore 50 male rats have been randomized to

either a control group or to one of the two treatment groups that differ in the dose

of the drug Decapeptyl, which inhibits the testosterone production. The response

of interest is the distance (in pixels) between well-defined points of the skull that

characterize the height of skull. These heights have been measured for each rat every

10 days starting at the age of 50 days and the treatment began at the age of 45 days,

see Verbeke and Molenberghs (2000) for more information about the data. Figure 1

shows different levels of heights of the skulls and a positive time trend which varies

from rat to rat. According to Figure 2 there seems to be a negative effect of the drug

Decapeptyl on the growth of rats but the three groups are relatively mixed and can

not be clearly separated.

To examine how many and which clusters can be found in these data the penalized

heterogeneity approach with a group fused lasso penalty is considered. As suggested

by Verbeke and Lesaffre (1999) and also used in the analyzes of Verbeke and Molen-

berghs (2000) and Fahrmeir et al. (2007) the age of rat i at measurement j is trans-

formed by tij = log(1 + age)ij to get a linear time trend. In analogy to Verbeke and

Molenberghs (2000) and Fahrmeir et al. (2007) the time trends in each group are
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(a) Control group
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(b) Low dose
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(c) High dose

Fig. 2: Heights of rat skulls across age depending on treatment group.
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Fig. 3: Weighted continuous ranked probability score depending on λ.

modeled as fixed effects and a random intercept is included. We additionally use a

random slope to incorporate individual deviations of the time trend.

In summary we consider the following model for the height y of the skull of rat i at

measurement j

yij|bi ind.∼ N(β0 + bi0 + (β1 + β2Li + β3Hi + bi1)tij, σ
2), i = 1, . . . , 50, j = 1, . . . , ni,

with effect-coded variables Li and Hi for a low respectively for a high dose of drug.

For the centered i.i.d. random effects bi = (bi0, bi1)
T we assume a mixture distribution

of Gaussian components with penalized cluster centers (see Section 1). The four rats

for which only one measurement was available were excluded because for these no

reasonable random slope can be predicted. For faster computations the algorithm
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Fig. 4: Clustering of rats by penalized heterogeneity approach with λ = 0.011.

starts with 20 clusters. Figure 3 suggests to choose the penalization parameter λ =

0.011. The resulting fit can be seen in Figure 4.

The thick line symbolizes the population effect whereas the thin lines display the

cluster centers. Observations belonging to the same cluster are marked with the

same symbol. To each thin line the corresponding symbol is added to visualize which

cluster center belongs to which cluster. The global intercept β̂0 = 68.658 can be

interpreted as the mean height at the beginning of the treatment while the global

slope β̂1 = 7.248 forms the mean growth of rat skulls in the considered time period.

The expected negative effect of the drug Decapeptyl can be seen from the estimates

β̂2 = 0.082 and β̂3 = −0.459 which can be interpreted as deviations from the overall

time tend. For rats which had been exposed to a low dose of the drug (0.082) the

growth is considerably less than in the control group (0.376). For rats in the high

dose group the growth is even lower (−0.459). These results are more intuitive than

the results obtained by Verbeke and Molenberghs (2000). In their analysis the rats

which had been exposed to a low dose show a higher growth than these in the control

group though the drug has a negative effect on the growth for a high dose. Obviously

our penalized mixture of normal distributions as random effects distribution is much

more adequate than a simple normal distribution for these data with a underlying

grouping structure.

Three clusters are detected by our model. While there are only low discrepancies

in the random slopes (µ̂11 = −0.100, µ̂21 = 0.061, µ̂31 = 0.382) the base levels are

quite different. Cluster 2 (π̂2 = 0.435) shows the highest intercept which is about

µ̂20 = 1.706 higher than the overall intercept. By comparison in Cluster 1 (π̂1 = 0.503)

the base level is considerably lower (µ̂10 = −0.912). Cluster 3 (π̂3 = 0.062) contains
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Fig. 5: Distribution of the two treatment groups respectively the control group in the three clusters

corresponding to a penalized heterogeneity approach with λ = 0.011.

the three rats with the lowest base level (µ̂30 = −4.578). As can be seen from Figure

5 response types collected in the clusters come from all groups. In cluster 1 rats of the

high dose group are in the majority followed by rats of the control group. In cluster

2 in particular rats which had been exposed to a low dose of the drug are found.

3.2 Lung Function Growth
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Fig. 6: Logarithmic forced expiratory volume in one second of girls across age: raw data (left) and

clustering by penalized heterogeneity approach with λ = 0.0175 (right).

The second data example deals with lung function growth of girls in Topeka (USA).

These data are a subsample from the six cities study of air pollution and health in

Dockery et al. (1983). Our sample consists of 100 girls, with a minimum of two and

a maximum of twelve observations over time. Although a cluster structure is not
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evident from looking at the raw data (Figure 6, left) our approach is able to identify

clusters in the data. Again we consider a random slope model

log(fev1)ij|bi ind.∼ N(β0 + bi0 + (β1 + bi1)ageij, σ
2), i = 1, . . . , 100, j = 1, . . . , ni,

for modeling the logarithmic forced expiratory volume in one second (fev1) subject

to age and use a finite mixture as random effects distribution with a group fused

lasso penalty. Because of the comparably large number of individuals we start with

N = 30 clusters instead of 100.
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Fig. 7: Cluster locations and corresponding random effects of penalized heterogeneity approach with

λ = 0.0175 for lung function growth data.

In Figure 6 (right) the clustering structure is visualized but it is hard to see which

girls are merged to the same cluster. Figure 7 makes clear how the clustering of

our approach works. Here on the axes the intercepts and the slopes are drawn.

The filled square at coordinates (0,0) symbolizes the population effect. All other

icons represent deviations from the population effect. The big bold ones represent

the cluster locations µh and the thin small ones the random effects bi. Girls that

are assigned to the same cluster are marked with the same symbol and are arranged

around the three cluster locations in the form of ellipses. It is easily seen that subjects

with random effects that are similar in the meaning of a low Euclidean distance belong

to the same cluster.
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4 Simulation Study

4.1 Setting

In the following simulation study the performance of our penalized heterogeneity

approach is evaluated. The study aims at clarifying in which data situations our

approach improves estimation compared to the commonly used LMM with Gaussian

random effects distribution and to the heterogeneity model by Verbeke and Lesaffre

(1996). Note that the estimated number of clusters and the estimated clustering in

general have an essential impact on the prediction accuracy of the random effects. Of

course for the prediction of bi it is reasonable to borrow information from other

subjects which show a similar behavior and so belong to the same cluster while

incorporating dissimilar individuals impairs the prediction accuracy. For examining

this trade-off we compare the usual LMM with normal random effects distribution

(one cluster model) using the R-function lmer() from the lme4 package by Bates et al.

(2011) to our penalized heterogeneity approach at which the penalization parameter

λ is determined by predictive cross-validation (see section 2.2). Furthermore, the

heterogeneity model by Verbeke and Lesaffre (1996) with a finite unpenalized mixture

of normal distributions as random effects distribution is considered, too, where the

number of mixture components is identified by the same predictive cross-validation

criterion. More precisely, in the simulation study we investigate the impact of the

number of observations per unit and the separation between clusters. We generated

data sets assuming a simple linear trend model

yij = β0 + bi0 + (β1 + bi1)tij + εij, i = 1, . . . , n, j = 1, . . . , ni

with i.i.d. errors εij ∼ N(0, σ2). The centered i.i.d. random effects bi = (bi0, bi1)
T

follow a mixture distribution with three Gaussian components:

bi ∼ 0.4 ·N(µ1,D) + 0.3 ·N(µ2,D) + 0.3 ·N(µ3,D), i = 1, . . . , n,

imitating a population consisting of three clusters of overlapping subpopulations.

Throughout the simulations, we set n = 20 and

σ2 = 0.25,

(
β0

β1

)
=

(
2

1

)
, D =

(
σ2
b0

σb01

σb01 σ2
b1

)
=

(
0.02 0.01

0.01 0.02

)
.

We vary, however, the number of individual observations ni, the centers µ1, µ2 and

µ3 of the clusters and the locations of observation times tij. To produce longitudinal

data with varying numbers of repeated observations per unit i, we set ni = 2 + Xi,

where Xi follows a Poisson distribution with rate ν. Setting ν = 1 corresponds

to longitudinal data with only few (3 on average) repeated observations per unit,

14



ν = 3 to a moderate number and ν = 5 to (comparably) large numbers of repeated

observations. For given ni, observation times are generated from

ti1 ∼ U(0, 1), i = 1, . . . , n,

tij ∼ U(ti,j−1 + 0.5, ti,j−1 + 1.5), i = 1, . . . , n, j = 2, . . . , ni,

where U(·) denotes the uniform distribution. In this way, different numbers ni(s) and

measuring times tij(s) are generated in each simulation run s = 1, . . . , 100. Similarly,

different “true” random effects bi(s) are drawn from the Gaussian mixture distribution

in each simulation run. For the cluster locations, we chose

µ1 =

(
−2.25

1

)
, µ2 =

(
0.75

−1.2

)
, µ3 =

(
2.25

−2/15

)

corresponding to clearly separated clusters,

µ1 =

(
−1.5

0.75

)
, µ2 =

(
0.5

−0.9

)
, µ3 =

(
1.5

−0.1

)

corresponding to moderately separated clusters,

µ1 =

(
−0.75

0.5

)
, µ2 =

(
0.25

−0.6

)
, µ3 =

(
0.75

−1/15

)

corresponding to substantially overlapping clusters.

Combining these different settings for observations times and clusters results in nine

different scenarios. For each of them, the prediction accuracy of the random effects

as well as the estimation results of the fixed effects are compared for all considered

models. More concretely, in each simulation run s, we calculate the average prediction

error

PEk(s) =
1

n

n∑

i=1

(
b̂∗ik(s)− b∗ik(s)

)2
, k = 0, 1

for uncentered random intercepts b∗i0 = β0 + bi0 and random slopes b∗i1 = β1 + bi1. In

addition, the estimation accuracy of the fixed effects is investigated by the relative

bias RBk = 100 · (β̂k − βk)/βk, k = 0, 1.
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4.2 Results

In the following, we summarize results of the nine combinations. For all scenarios we

illustrate the empirical distribution of PE0(s) values obtained from simulation run

s = 1, . . . , 100 by box plots. The corresponding figures of the random slopes are not

shown because these are very similar to those of the random intercepts.

Clearly separated clusters

Figure 8 (top) displays trace plots of typical longitudinal data generated in the setting

of clearly separated clusters, which show that cluster effects can easily be detected

visually. On the left, there are only a few observations for each subject while on

the right the mean of the number of repeated measurements is 5 corresponding to

several observations. Figure 8 (bottom) demonstrates that in both cases the penalized

heterogeneity approach detects three clusters. Again, in this type of plot the thick line

shows the overall effect and the thin lines visualize the means of the resulting clusters.

Which observation is assigned to which cluster is marked by the same symbol.
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Fig. 8: Trace plots (top) and clustering by penalized heterogeneity approach with clearly separated

clusters for few individual observations (ν = 1) (left) and several individual observations (ν = 3)

(right).

Table 1 and Figure 9 show the simulation results in the setting of clearly separated

clusters. The denotation ”normal” labels the homogeneity model with normally dis-

tributed random effects. In the heterogeneity model the random effects follow a
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”finite mixture” as specified in equation (2) where the number of mixture compo-

nents has been determined by predictive cross-validation. In contrast to this discrete

optimization the approach proposed here uses a penalty term which is determined

by a smoothing parameter. It is seen that the penalization approach outperforms

the homogeneity model and the heterogeneity model for few observations as well as

for several and many observations. It is especially remarkable that the ”penalized

mixture” yields a better prediction accuracy than in the ”finite mixture” although

in both cases the same criterion for finding the best number of clusters is used. The

reason for that is that for optimization in our penalized heterogeneity approach a

closer grid is applied. This is the main justification for our model. Apart from that it

can be seen that the more repeated measurements per unit are in the data the better

is the prediction accuracy of the penalized heterogeneity approach. Overall there is

only a small bias concerning the estimation of fixed effects.
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Fig. 9: Box plots of PE0 with clearly separated clusters for few individual observations (left), several

individual observations (middle) and many individual observations (right).

ν = 1 ν = 3 ν = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

normal 0.373 0.185 -4.091 2.068 0.222 0.054 -1.048 4.710 0.148 0.015 -2.127 0.957

penalized mix 0.318 0.161 -3.530 5.267 0.075 0.015 -3.113 3.938 0.065 0.006 -0.452 0.987

finite mix 0.371 0.186 -4.065 2.241 0.201 0.042 -1.312 5.463 0.086 0.008 -0.453 1.743

Table 1: Medians of PEk and RBk with k = 0, 1 for clearly separated clusters.

Moderately separated clusters

When the differences between clusters get smaller the penalized heterogeneity ap-

proach still outperforms the homogeneity model and the heterogeneity model, espe-

cially in the case of several and many individual observations (Figure 11 and Table

2), although in the trace plots (Figure 10) the underlying cluster structure is hard to

see.
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Fig. 10: Trace plots with moderate separated clusters for few individual observations (ν = 1) (left)

respectively several individual observations (ν = 3) (right).

ν = 1 ν = 3 ν = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

normal 0.335 0.164 -2.112 1.912 0.207 0.046 -0.751 2.204 0.138 0.015 -1.122 0.750

penalized mix 0.329 0.155 -2.538 1.982 0.092 0.019 -0.116 2.962 0.068 0.007 -0.870 0.295

finite mix 0.336 0.164 -2.084 1.832 0.172 0.036 -0.481 2.756 0.064 0.007 -1.231 0.887

Table 2: Medians of PEk and RBk with k = 0, 1 for moderately separated clusters.
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Fig. 11: Box plots of PE0 with moderately separated clusters for few individual observations (left),

several individual observations (middle) and many individual observations (right).
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Substantially overlapping clusters
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Fig. 12: Trace plots with substantially overlapping clusters for several individual observations (ν = 3)

(left) respectively many individual observations (ν = 5) (right).

For data sets like in Figure 12 it would be tempting to use a LMM with normally

distributed random effects. Nevertheless even in these settings for penalized het-

erogeneity approaches prediction errors are significantly lower for several and many

observations (Figure 13 and Table 3). Only for few observations the classical LMM

with normal random effects distribution outperforms the penalized heterogeneity ap-

proach. Here, different patterns in the data are taken seriously. Thus there is a

low risk of overfitting the data in the case of few individual observations. Overall

the accuracy of estimates of the heterogeneity model and the penalized heterogeneity

approach are quite similar.

ν = 1 ν = 3 ν = 5

PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1 PE0 PE1 RB0 RB1

Normal 0.245 0.111 -1.247 1.563 0.160 0.037 0.036 2.304 0.114 0.013 -0.207 1.004

penalized mix 0.255 0.112 -1.906 1.228 0.154 0.032 0.512 1.622 0.086 0.009 0.181 0.854

finite mix 0.252 0.110 -1.356 1.497 0.159 0.033 0.050 1.690 0.078 0.008 -0.095 1.126

Table 3: Medians of PEk and RBk with k = 0, 1 for substantially overlapping clusters.

In summary, we draw the following conclusion: The penalized heterogeneity approach

yields the better predictions for random effects in terms of prediction errors the clearer

the clusters differ and the more observations are in the data. Except for substantially

overlapping clusters with few observations the prediction error is considerably reduced

by using penalization methods.
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Fig. 13: Box plots of PE0 with substantially overlapping clusters for few individual observations

(left), several individual observations (middle) and many individual observations (right).

5 Concluding Remarks

We introduced a penalized heterogeneity approach for linear mixed models which

assumes a finite mixture of normal distributions for the random effects distribution

and which penalizes the number of mixture components by fusing the cluster centers

via a group fused lasso penalty term. The approach aims at clustering individuals

for longitudinal data. We presented an EM algorithm for estimating all parameters

in detail. A simulation study showed that our approach basically outperforms the

classical linear mixed model with normal random effects distribution and the hetero-

geneity model. Furthermore, the usefulness of our model is demonstrated in two data

examples: We identified similarities in the development of growth of rats depending

on the treatment group and showed that our model is able to detect a underlying

cluster structure in the lung function growth data which can not be seen easily in the

raw data.

20



References

Bates, D., M. Maechler, and B. Bolker (2011). lme4: Linear Mixed-Effects Models

Using S4 Classes. R package version 0.999375-42.

Booth, J. G., G. Casella, and J. P. Hobert (2008). Clustering using objective functions

and stochastic search. Journal of the Royal Statistical Society B 70, 119–139.

Braun, J., L. Held, and B. Ledergerber (2012). Predictive cross-validation for the

choice of linear mixed-effects models with application to data from the swiss HIV

cohort study. Biometrics 68, 53–61.

Celeux, G., O. Martin, and C. Lavergne (2005). Mixture of linear mixed models for

clustering gene expression profiles from repeated microarray experiments. Statistical

Modelling 5, 243–267.

De la Cruz-Meśıa, R., F. A. Quintana, and G. Marshall (2008). Model-based clustering

for longitudinal data. Computational Statistics & Data Analysis 52, 1441–1457.

Dempster, A. P., N. M. Laired, and D. B. Rubin (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society B

39, 1–38.

Dockery, D. W., C. S. Berkey, J. H. Ware, F. E. Speizer, and B. G. Ferris (1983).

Distribution of fvc and fev1 in children 6 to 11 years old. American Review of

Respiratory Disease 128, 405–412.

Fahrmeir, L., T. Kneib, and S. Lang (2007). Regression - Modelle, Methoden und

Anwendungen. Berlin: Springer.

Gaffney, S. J. and P. Smyth (2003). Curve clustering with random effects regres-

sion mixtures. In C. M. Bishop and B. J. Frey (Eds.), Proceedings of the Ninth

International Workshop on Artificial Intelligence and Statistics. Key West, FL.

Greven, S. and T. Kneib (2010). On the behaviour of marginal and conditional AIC

in linear mixed models. Biometrika 97, 773–789.

Heinzl, F. and G. Tutz (2011). Clustering in linear mixed models with Dirichlet

process mixtures using EM algorithm. Technical Report 115, Ludwig-Maximilians-

University Munich.

James, G. M. and C. A. Sugar (2003). Clustering for sparsely sampled functional

data. Journal of the American Statistical Association 98, 397–408.

21
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