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Abstract This paper presents a strategic model of risk-taking behavior in
contests. Formally, we analyze an n-player winner-take-all contest in which
each player decides when to stop a privately observed Brownian Motion with
drift. A player whose process reaches zero has to stop. The player with
the highest stopping point wins. Contrary to the explicit cost for a higher
stopping time in a war of attrition, here, higher stopping times are riskier,
because players can go bankrupt. We derive a closed-form solution of the
unique Nash equilibrium outcome of the game. In equilibrium, the trade-off
between risk and reward causes a non-monotonicity: highest expected losses
occur if the process decreases only slightly in expectation.
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1. Introduction

To provide more excitement for the players, the (online) gambling indus-

try introduced casino tournaments. The rules are simple: all participants

pay a fixed amount of money prior to the tournament—the “buy-in”—that

enters into the prize pool. In return, they receive chips, which they can invest

in the casino gamble throughout the tournament. At the end of the tourna-

ment, the player who has most chips wins a prize, which is the sum of the

buy-ins minus some fee charged by the organizers. Benefits are two-sided:

players restrict their maximal loss to the buy-in and enjoy a new, strategic

component of the game; the casino makes a sure profit through the fee it

charges.

The observability of each other’s chip stacks throughout the tournament

depends on the provider. The no-observability case is a good illustration

of our model—in equilibrium, players use the gamble even though it has a

negative expected value.1

In the model, each player decides when to stop a privately observed Brow-

nian Motion (Xt) with (usually negative) constant drift coefficient µ, con-

stant diffusion coefficient σ, and initial endowment x0. If a player becomes

bankrupt, i.e., Xt = 0, she has to stop. The player who stops at the highest

value wins a prize.

Instead of an explicit cost for a higher contest success (e.g., Lazear and

Rosen, 1981, Hillman and Samet, 1987), here, higher prizes are riskier. In

equilibrium, players maximize their winning probability rather than the ex-

pected value of the process. Hence, they do not stop immediately even if

the underlying process is decreasing in expectation. Intuitively, if all other

players stop immediately, it is better for the remaining player to play until

she wins a small amount or goes bankrupt, since she can ensure she wins an

arbitrarily small positive amount with a probability arbitrarily close to one.

In the unique equilibrium outcome, expected losses are non-monotonic

1Several online casinos use a leaderboard for the chip stacks. In most cases, however, it
updates with a delay to create more tension. In this variant, players should only play close
to the end of the contest to veil their realizations. The resulting equilibrium distributions
are equivalent to the no-observability case.
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in the expected value of the gamble—a more favorable gamble can lead to

higher expected losses. Intuitively, this results from the trade-off between

risk and reward: if the gamble has only a slightly negative expected value,

the relatively high probability of winning makes people stop later, which

increases expected losses. If the principal—who might have imperfect infor-

mation about drift—obtains wins or losses of the players, contests are not

a reliable compensation scheme, because even with a slightly negative drift,

the principal incurs a large loss.

The formal analysis proceeds as follows. Proposition 1 derives a necessary

formula for an implied stopping chance F (x) in the symmetric equilibrium

of an n-player game that pinpoints the unique candidate equilibrium distri-

bution. To do so, we exploit that each player has to be indifferent between

stopping and continuing at any point of her support at any point in time.

For the two-player case, Proposition 2 derives the equilibrium stopping

time that induces F (x) explicitly. It involves mixing whether to stop with a

chance that depends on the current state Xt. Proposition 4 extends Propo-

sition 1 and 2 to a two-player game with asymmetric starting values.

For more than two players, Proposition 3 ensures the existence of a stop-

ping time that induces F (x). Its proof relies on a result in probability theory

on the Skorokhod embedding problem. This literature—initiated by Sko-

rokhod (1961, 1965)—analyzes the conditions under which a stopping time

of a stochastic process exists that embeds, i.e., induces, a given probability

distribution; for an excellent survey article, see Oblój (2004). In the proof

of Proposition 3, we verify a sufficient condition from Pedersen and Peskir

(2001). This whole approach is new to game theory, and the main technical

contribution of this paper.

Proposition 5 provides the main characterization result: the general shape

of the expected value of the stopped processes is quasi-convex, falling, then

rising in the drift µ and in the variance σ. In particular, highest expected

losses occur if the process decreases only slightly in expectation.

Apart from casino tournaments, this paper provides a stylized model for

the following applications. First, consider a private equity fund that invests

in start-up companies. The value of the fund is mostly private information
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until maturity, because start-ups do not trade on the stock market and the

composition of the fund is often unknown. The model analyzes a competition

between fund managers in which, at maturity, the best performing manager

gets a prize—a bonus or a job promotion.

In this application, there are several possible reasons for a downward drift.

For instance, there may be no good investment opportunities in the market.

Moreover, the downward drift may capture the cost of paying an expert

to search for possible investments. The model predicts that the return on

investment is very sensitive to the profitability of investment opportunities.

In particular, a slightly negative drift is most harmful for the investors. In

this case, contestants behave as if they were risk-loving, which a payment

based on absolute success could avoid.

As a second example, consider a competition in a declining industry. In a

duopoly, for instance, firms compete to survive and get the monopoly profit.

Fudenberg and Tirole (1986) model the situation as a war of attrition—only

the firm who stays alone in the market wins a prize, but both incur costs

until one firm drops out.

In an interpretation of our model, managers of both firms decide if they

want to make risky investments—into R&D or stocks of other firms. Invest-

ments are costly, but could improve the firm’s value. When the duopoly

becomes unprofitable, the firm with the higher value wins—either by a take-

over battle or because the other firm cannot compete in a prize war—and its

manager keeps his job.

Our model predicts that managers choose very risky strategies. In par-

ticular, investors lose most money in expectation if investment opportunities

have a slightly negative expected value, which is consistent with being in

a declining industry. This effect increases in the asymmetry of the firms’

values. Intuitively, to satisfy the indifference condition for the stronger firm,

the weaker firm has to make up for its initial disadvantage by taking higher

risks.

1.1. Related Literature

Hvide (2002) investigates whether tournaments lead to excessive risk-

4



taking behavior. He modifies Lazear and Rosen (1981) by assuming that

players bear costs to raise their expected value, but can raise their variance

without costs. In equilibrium, they choose maximum variance and low effort.

Similarly, Anderson and Cabral (2007) scrutinize an infinite competition in

which two players, who observe each other, can update their binary choice of

variance continuously. In their model, flow payoffs depend on the difference

in contest success. In equilibrium, both players choose the risky strategy

until the lead of one player is above a threshold; in this case, the leader

switches to the save option.

In the literature on races, players balance a higher effort cost against

a higher winning probability. Moscarini and Smith (2007)—building on

a discrete time model of Harris and Vickers (1987)—analyze a two-person

continuous-time race with costly effort choice. In equilibrium, effort is in-

creasing in the lead of a player up to some threshold above which the laggard

resigns; for an application to political economy, see also Gul and Pesendorfer

(2010). These papers assume full observability of each other’s contest success

over time. In our model, however, stopping decisions and realizations of the

rivals are unobservable.

Regarding the assumptions on information and payoffs, the model most

resembles a silent timing game—as first explored in Karlin (1953), and most

recently, in Park and Smith (2008). The latter paper also generalizes the all-

pay war of attrition, and so assumes that later stopping times cost linearly

more. Contrary to a silent timing game, in the present paper, players do

not only possess private information about their stopping decision, but also

about the realization of their stochastic process.

Finally, the paper relates to the finance literature on gambling for res-

urrection; e.g., Downs and Rocke (1994). In this literature, managers take

unfavorable gambles for a chance to save their firms from bankruptcy. Here,

however, players take high risks to veil their contest outcomes.

We proceed as follows. Section 2 introduces the model. Section 3 de-

rives the unique equilibrium distribution. In Section 4, we state the main

characterization result, Proposition 5, and discuss its implications. Section

5 concludes.
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2. The Model

There are n agents i ∈ {1, 2, . . . , n} = N who face a stopping problem in

continuous time. At each point in time t ∈ R+, agent i privately observes

the realization of a stochastic process X i = (X i
t)t∈R+ with

X i
t = x0 + µt+ σBi

t .

The constant x0 > 0 denotes the starting value of all processes; see Section 4.3

for heterogeneous starting values. The drift µ ∈ R is the common expected

change of each process X i
t per time, i.e., E(X i

t+∆ − X i
t) = µ∆. The noise

term is an n-dimensional Brownian motion (Bt) scaled by σ ∈ R+.

2.1. Strategies

A strategy of player i is a stopping time τ i. This stopping time depends

only on the realization of his process X i
t , as the player only observes his

own process.2 Mathematically, the agents’ stopping decision until time t

has to be F it -measurable, where F it = σ({X i
s : s < t}) is the sigma algebra

induced by the possible observations of the process X i
s before time t. We

restrict agents’ strategy spaces in two ways. First, we require finite expected

stopping times, i.e., E(τ i) < ∞. Second, a player has to stop in case of

bankruptcy. More formally, we require τ i ≤ inf{t ∈ R+ : X i
t = 0} a.s..

To incorporate mixed strategies, we allow for randomized stopping times—

progressively measurable functions τ i(·) such that for every ri ∈ [0, 1], τ i(ri)

is a stopping time. Intuitively, agents can draw a random number ri from the

uniform distribution on [0, 1] before the game and play a stopping strategy

τ i(ri).

2.2. Payoffs

The player who stops his process at the highest value wins a prize, which

we normalize to one without loss of generality. Ties are broken randomly.

2The equilibrium of the model would be the same if the stopping decision was reversible
and stopped processes were constant.
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Formally,

πi =
1

k
1{Xi

τi
=maxj∈N Xj

τj
} ,

where k = |{i ∈ N : X i
τ i = maxj∈N X

j
τ j
}|. Hence, the game is a constant

sum game. All agents maximize their expected payoff, i.e., the probability of

winning the contest. This optimization is independent of their risk attitude.

2.3. Condition on the Parameters

To ensure equilibrium existence in finite time stopping strategies, we

henceforth impose a technical condition that places a positive upper bound

on µ—for a discussion, see Section 3.2.

Assumption 1. µ < log(1 + 1
n−1

) σ
2

2x0
.

3. Equilibrium Analysis

In this section, we first derive the unique candidate equilibrium distribu-

tion. Second, we prove equilibrium existence—this is not trivial as the game

has discontinuous payoffs and infinite strategy spaces. Our proof shows that

there exists a stopping time inducing the candidate equilibrium distribution.

We close the section with an extension to asymmetric starting values.

3.1. The Equilibrium Distribution

Every strategy of agent i induces a (potentially non-smooth) cumulative

distribution function (cdf) F i : R+ → [0, 1] of his stopped process, where

F i(x) = P(X i
τ i ≤ x).

The probability of a tie is non-zero only if the distributions of at least

two agents have a mass point above zero or the distributions of all agents

have a mass point at zero or both.3 The next lemma proves otherwise.

Lemma 1 (No Mass Points). In equilibrium, for every x > 0, no agent i ∈ N
has a mass point at x, i.e., P(X i

τ i = x) = 0. At least one agent has no mass

point at zero.

3As is common in economic literature, we do not consider the mathematical problem of
an accumulation of mass points (Cantor Construction); we thus assume that either there
is only a finite number of mass points or they have no accumulation point.
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We omit the proof and present a verbal argument instead, because the

proof is simply a specialization of the now standard logic in static game theory

with a continuous state space; e.g., Burdett and Judd (1983). As usual,

mixed strategies in a competitive game can have no interior mass point at

the same point in the state space (here, the same x), since this would create

a profitable deviation in one direction: With a slightly higher x, one raises

one’s win chance a boundedly positive probability with an arbitrarily small

loss, since one beats everyone with lower x and the one player with mass at

x; however, one agent can have a mass point at zero, since any other player

who can pass him would have already been bankrupt.

Lemma 1 renders the tie-breaking rule obsolete, because it implies that

the probability of a tie is zero. Denote the winning probability of player i

if he stops at X i
τi

= x by ui(x), where ui(x) : R+ → [0, 1]. As there are

no mass points away from zero, we can express ui(x) in terms of the other

agents’ cdf’s.

ui(x) = P(x > max
j 6=i

Xj
τ j

) +
1

k
P(x = max

j 6=i
Xj
τ j
})︸ ︷︷ ︸

=0

=
∏
j 6=i

P(Xj
τ j
≤ x) =

∏
j 6=i

F j(x) (1)

We call ui(·) the utility function of agent i given the distributions of other

agents. These utility functions are helpful to derive the equilibrium—a point

where each player maximizes E(ui(X i
τ i)) .

Denote the right endpoint of the support of the distribution of player i

by xi = sup{x : F i(x) < 1} and the left endpoint by xi = inf{x : F i(x) > 0}.
The right endpoint has to be finite, because agents can only use strategies

that stop almost surely in finite time. The following results establish nec-

essary conditions on ui and the distribution functions in equilibrium; the

proofs are in the appendix.

Lemma 2 (Strict Monotonicity). The utility ui of every agent i ∈ N is

strictly increasing on the interval [xi, xi].
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Lemma 3 (Indifference). For each player i, the utility ui(X i
t) is a local mar-

tingale on the interior of the support of his distribution, i.e., X i
t ∈ (xi, xi)⇒

E(dui(X i
t)|F it ) = 0.

Lemma 4 (Symmetry of the Equilibrium Distributions). The support of the

cdf of each player is identical and starts at zero.

All players share the same utility function. Hence, Lemma 3 and 4 directly

imply the following corollary:

Corollary 1. The unique equilibrium distributions are atomless and sym-

metric.

Hence, we henceforth suppress subscripts i. As the utility u does not

depend on time (∂u
∂t

= 0), by Itô’s lemma the expected change in utility per

marginal unit of time is

E(du(Xt)|Ft) = E
(

(µu′(Xt) +
σ2

2
u′′(Xt))dt+ u′(Xt)σdBt|Ft

)
= µu′(Xt) +

σ2

2
u′′(Xt)dt .

By Lemma 3, this expression vanishes for all x on the support of F , which

yields the following ordinary differential equation:

0 = µu′(x) +
σ2

2
u′′(x) .

For µ 6= 0, all solutions to this equation are of the form u(x) = α+β exp(−2µx
σ2 )

for all constants α, β ∈ R. To fix α and β, we use two constraints on u. First,

all players win with probability 1
n

in equilibrium (Corollary 1). In particular,

they do so when they stop immediately (Lemma 3). Second, the value of the

cdf at zero is zero, because the support is atomless (Corollary 1). Thus, we

get:

1

n
= u(x0) = α + β exp(

−2µx0

σ2
)

0 = u(0) = α + β .
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This system of equations uniquely determines α and β, and thereby also u

as

u(x) = min

{
1,

1

n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

}
.

It remains to construct the corresponding equilibrium distributions. For this

purpose, we insert the symmetry property of the equilibrium (Corollary 1)

into equation (1) to get

ui(x) =
n∏
j 6=i

F j(x) = F (x)n−1 ⇒ F (x) = n−1
√
ui(x) .

Hence, we characterize the unique candidate for an equilibrium distribution

as follows (for an illustration, see Figure 1):

Proposition 1. Assume µ 6= 0. A strategy profile is a Nash equilibrium, if

and only if each player’s strategy induces the cumulative distribution function

F (x) = min

{
1, n−1

√
1

n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

}
.

Proof. We have already proven that any equilibrium strategy is symmetric

and induces the distribution F . To complete the proof, we need to show

that no deviation gives a player a winning probability greater than 1
n
. Recall

that, by construction of F , ui(X i
t) is a supermartingale. By Doob’s optional

stopping theorem (Revuz and Yor, 2005, p.70), the stopped process ui(X i
τ i)

is also a supermartingale. Hence, E(ui(X i
τ i)) ≤ E(ui(xi0)) = 1

n
.

To complete the analysis, we scrutinize the special case in which X i
t is

a martingale, i.e., µ = 0. In this case, the first term in the differential

equation vanishes. The same calculation as in the case µ 6= 0 yields the

unique equilibrium distribution, where

F (x) = min

{
1, n−1

√
x

nx0

}
.

F (x) is continuous in µ at µ = 0, because the same formula follows by taking
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Figure 1: An example (µ = −0.1, x0 = 100, σ = 1) of the equilibrium cdf’s
for different sizes of players n.

limits in Proposition 1, using the approximation eA = 1 + A + O(A2) for

small A.

3.2. Equilibrium Strategies

So far, we have been silent about the existence of a finite time stopping

strategy τ inducing the equilibrium distribution F . For a given distribution

to be implementable in finite time stopping strategies, its right endpoint has

to be finite. Recall that

1 = F (x) = n−1

√
1

n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

.

Hence, the right endpoint x satisfies

x =
σ2

−2µ
log(n(exp(

−2µx0

σ2
)− 1) + 1) .

Consequently, the right endpoint is finite if and only if µ < − log(1− 1
n
) σ

2

2x0
,
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i.e., Assumption 1 holds; otherwise, no equilibrium in finite time stopping

strategies exists. Intuitively, if the drift becomes too large, for every point x,

the strategy, which stops only at 0 and x, reaches x with a probability higher

than 1
n
.

In the next step, we derive mixed strategies inducing the distribution F

in the two-player case to convey the main intuition. The construction uses a

mixture of deterministic threshold strategies to induce the final distribution.

To formalize this intuition, we introduce the martingale transformation φ :

R+ → R+, where

φ(x) =
exp(−2µx

σ2 )− 1

exp(−2µx0
σ2 )− 1

.

By Itô’s lemma (since φ′′/φ′ = −2µ/σ2), the process (φ(X i
t))t∈R+ is a mar-

tingale. In this case, F (x) = φ(x)/2.

Proposition 2 (Equilibrium Strategy for Two Players). If agent i randomly

selects a number α ∈ (0, 1] from a uniform distribution and stops if

τ i = inf{t : |φ(X i
t)− 1| ≥ α} ,

then the cumulative distribution function induced by this strategy equals F ,

i.e., P(X i
τ i ≤ x) = F (x).

Proof. By the martingale property of (φ(X i
t))t∈R+ , we get

P(φ(X i
τ i) = 1− α) = P(φ(X i

τ i) = 1 + α) =
1

2
.

As α is uniformly distributed on (0, 1] and agent i stops iff φ(X i
t) = 1 ± α,

the random variable φ(X i
τ i) is uniformly distributed on [0, 2]. It follows that

P(X i
τ i ≤ x) = P(φ(X i

τ i) ≤ φ(x)) =
φ(x)

2
= F (x) .

For more than two players, the feasibility proof requires an auxiliary

result from probability theory on the Skorokhod embedding problem. This
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literature studies whether a distribution is feasible by stopping a stochastic

process; in their terminology, there exists an embedding of a probability

distribution in the process. Skorokhod (1961, 1965) analyzes the problem

of embedding in Brownian motion without drift. In a recent contribution,

Pedersen and Peskir (2001) derive a necessary and sufficient condition for

general non-singular diffusions. They define the scale function S(·) by

S(x) =

∫ x

0

exp(−2

∫ u

0

µ(r)

σ(r)
dr)du = −σ

2

2µ
(exp(

−2µx

σ2
)− 1) .

Lemma 5 (Pedersen and Peskir, 2001, Theorem 2.1.). Let (Xt) be a non-

singular diffusion on R starting at zero, let S(·) denote its scale function

satisfying S(0) = 0, and let ν be a probability measure on R satisfying

|S(x)|ν(dx) < ∞ . Set m =
∫
R S(x)ν(dx). Then there exists a stopping

time τ∗ for (Xt) such that Xτ∗ ∼ ν if and only if one of the following four

cases holds:

1. S(−∞) = −∞ and S(∞) =∞ ;

2. S(−∞) = −∞, S(∞) <∞ and m ≥ 0 ;

3. S(−∞) > −∞, S(∞) =∞ and m ≤ 0 ;

4. S(−∞) > −∞, S(∞) <∞ and m = 0 .

Hence, to prove feasibility for our distribution F , it suffices to showm = 0.

Proposition 3 (Feasibility of the Equilibrium Distribution). There exists a

stopping strategy inducing the distribution F (·) from Proposition 1.

Proof. To verify the condition in Pedersen and Peskir (2001), we need a

process which starts in zero. Thus, we consider the process X̃t = Xt − X0.

After some transformations, we get S(x−x0) = −σ2

2µ
(1−exp(2µx0

σ2 ))(φ(x)−1).

This gives us

m =

∫
R
S(x− x0)f(x)dx

= −σ
2

2µ

(
1− exp(

2µx0

σ2
)

)(∫
R
φ(x)f(x)dx− 1

)
.
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Consequently, it remains to show
∫
R f(x)φ(x)dx = 1.

∫
R
f(x)φ(x)dx =

∫ x

0

(n−
1

n−1 )

n− 1
φ(x)−

n−2
n−1φ′(x)︸ ︷︷ ︸

f(x)

φ(x)dx

=

∫ φ(x)

φ(0)

(n−
1

n−1 )

n− 1
y

1
n−1 dy

=

[
(n−

1
n−1 )

n
y

n
n−1

]y=φ(x)=n

y=φ(0)=0

= 1 .

As m = 0, there exists an embedding for the distribution F by Theorem 2.1.

in Pedersen and Peskir (2001).4

Proposition 1 and 3 combined yield F as the unique equilibrium distri-

bution of the game.

3.3. An Extension: Asymmetric Starting Values

In this extension, we allow for heterogeneity in the starting values. To get

an analytical solution, we restrict attention to the two-player case—without

loss of generality x1
0 > x2

0. The proof of the following proposition is similar

to the proof of Proposition 1.

Proposition 4. In equilibrium, the cdf of the first player is

F 1(x) = min

{
1,

1

2

exp(−2µx
σ2 )− 1

exp(
−2µx10
σ2 )− 1

}
.

The cdf of the second player is

F 2(x) = min

{
1, ρ+ (1− ρ)

1

2

exp(−2µx
σ2 )− 1

exp(
−2µx10
σ2 )− 1

}
.

4An alternative proof of Proposition 3 would verify a result on embedding in Brownian
with drift from Grandits and Falkner (2000) for the process X̃t = Xt−X0

σ .
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Proof. The cdf of player 1 is the same as in the symmetric case. Thus, it is

feasible by Proposition 2. For player 2, consider the following strategy: First,

play until X2
t ∈ {0, x1

0}; then use the same stopping strategy as player 1 if he

reaches x1
0. This induces the above cdf, where the constant ρ—probability of

absorption in 0—fulfills

ρ =
exp(

−2µ(x10−x20)

σ2 )− 1

exp(
−2µ(x10−x20)

σ2 )− exp(
2µx20
σ2 )

.

As in the proof of Proposition 1, the expected winning probability for each

player in the above equilibrium candidate is the same as if he stops immedi-

ately. Furthermore, as ui(X i
t) is a supermartingale by construction, Doob’s

optional stopping theorem implies that the stopped processes ui(X i
τi

) are

supermartingales for any τi. Hence, no player can do better than to stop

immediately, which yields the equilibrium payoff. We show uniqueness of the

equilibrium in the appendix.

Compared to the symmetric case, the player with the lower starting value

takes more risks here. In particular, he loses everything with probability ρ

and takes the same gamble as player 1 with probability 1−ρ. Asymmetry in

the contest leads to higher percentage losses for a negative drift, because the

handicapped player takes higher risks to compensate his initial disadvantage.

4. Comparative Statics

This section analyzes how changes in the parameters affect the expected

value of the stopped processes. To determine the expected value, we first

calculate the density from the cdf in Proposition 1:

f(x) =
2µ

n(n− 1)σ2

2−n
n−1

√
exp(−2µx

σ2 )− 1

n(exp(−2µx0
σ2 )− 1)

exp(−2µx
σ2 )

1− exp(−2µx0
σ2 )

.

In what follows, we restrict attention to the two-player case for tractability;

in the appendix, we state the formula for the expected value for n players.

We use the density f to derive the expected value of the stopped processes
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Figure 2: An example (n = 2, x0 = 100) of the expected value of the stopped
processes E(Xτ ) depending on the drift µ for different values of variance σ.

for two players:

E(Xτ ) = Ef (x) =

∫ x

0

xf(x)dx

=
σ2

2µ
+ (1 +

1

2(exp(−2µx0
σ2 )− 1)

)(x0 −
σ2 log(2− exp(2µx0

σ2 ))

2µ
) .

The explicit formula of the expected value allows us to characterize its shape

in the following proposition—the proof is in the appendix.

Proposition 5. E(Xτ ) is quasi-convex, falling, then rising in µ. If µ < 0,

E(Xτ ) is quasi-convex, falling, then rising in σ.

Hence, an increase in the drift does not imply an increase in the expected

value of the stopped processes. Intuitively, for µ < 0, there are two oppos-

ing effects: an increase in the drift lowers the expected losses per time but

increases the expected stopping time. Similarly, as the variance increases,
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Figure 3: An example (n = 2, x0 = 100) of the expected value of the stopped
processes E(Xτ ) depending on the variance σ for different values of drift µ.

the gamble gets more attractive, but it also takes less time to implement the

equilibrium distribution.

From an economic point of view, Proposition 5 illustrates a drawback of

relative performance payments in risky environments: even if risky invest-

ment opportunities have only a slightly negative expected value, the principal

loses a lot in expectation. Intuitively, contestants only care about outper-

foming each other and thus behave as if they were risk-loving. A simple

linear compensation scheme based on absolute performance would avoid this

drawback.

4.1. A Comparison to Related Models

In the static two-player contest of Lazear and Rosen (1981), contest suc-

cess depends on the effort choice and the realization of a random variable. In

their framework, contests are suitable to induce the optimal amount of effort.

If, in our two-player model, agents had to specify a fixed date at which they

stop, they would stop immediately for negative values of the drift. Hence, to

17



obtain our results, we need a dynamic decision problem for each player.

The equilibrium distributions in the present paper are similar to those of

all-pay auctions with complete information (e.g., Hillman and Samet, 1987,

or Baye et al., 1996).5 In both settings, the joint equilibrium distribution

of the other players makes each player indifferent. The trade-off between a

higher risk and a higher chance to win the prize thus serves as an implicit

cost. In contrast to the all-pay auction, all players participate actively in the

contest in any equilibrium.

5. Conclusion

We have studied a new continuous’ time model of contests. Contrary

to the previous literature, players face a trade-off between a higher winning

probability and a higher risk. If there are no good investment opportunities

available, e.g., in a declining industry, contestants behave as if they were risk-

loving—they invest in projects with negative expected returns. According to

our main characterization result, Proposition 5, this problem is most severe

for the natural case in which the drift is close to zero.

From a technical point of view, this paper has developed a new method to

verify equilibrium existence. The approach via Skorokhod embeddings seems

promising to analyze other models without observability, because there are

many sufficient conditions available in the probability theory literature.

6. Appendix

Proof of Lemma 2: Assume, by contradiction, there exists an interval I =

(a, b) ⊂ [xi, xi] such that ui(x) =
∏

j 6=i F
j(x) is constant for all x ∈ I. We

distinguish three cases:

(i) For all players j 6= i, F j(a) = 1 . Hence, by optimality, player i stops

with probability 1 whenever at maxj 6=i x
j. This implies maxj 6=i x

j ≤ a ≤ xi

and player i wins for sure. Player j can deviate profitably and stop only if

she hits 0 or xi, which contradicts the equilibrium assumption.

5Complete information about valuations in the all-pay auction corresponds to complete
information about starting values in this paper.
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(ii) There exists a player j 6= i with F j(b) = 0. Hence, in equilibrium,

no player ever stops in the interval (0, xj), but at least two players stop with

positive probability in every ε-ball around xj. To stop at xj (with ui(xj) = 0

by Lemma 1) is strictly worse than to continue until X i
t ∈ {0,maxj x

j}. By

continuity (Lemma 1), the argument extends to an ε-neighborhood of xj.

This contradicts the equilibrium assumption of weak optimality of stopping

in (xj, xj + ε).

(iii) No player j 6= i stops in I, but (i) and (ii) do not hold. Hence,

player i does not stop in I. Denote by x̃ the infimum of points above b at

which a player stops. At x̃ (and, by continuity at an ε-neighborhood of x̃), it

is strictly better to continue until Xj
t ∈ { b+a2

,maxj x
j} than to stop, which

contradicts the equilibrium assumption.

Proof of Lemma 3: We define Φ(x) =
∏n

i=1 F
i(x) = F i(x)ui(x). Denote the

set of players who stop at x by M(x) ⊆ N , i.e.,

M(x) = {i ∈ {1, . . . , n} : (F i)′(x) 6= 0} .

By Lemma 2, |M(x)| ≥ 2 for all mini∈N x
i < x < maxi∈N x

i. For notational

convenience, we omit the point x, at which all functions are evaluated, i.e.,

we write F i,M instead of F i(x),M(x). Furthermore, we write E(dui(x))

shorthand for E(dui(X i
s)|F is) given X i

s = x. For every agent k /∈M , we have:

|M |Φ′ =
∑
i∈M

(F iui)′ =
∑
i∈M

(
F iui

′
+ F i′ui

)
=
∑
i∈M

F iui
′
+
∑
i∈N

F i′ui︸ ︷︷ ︸
Φ′

⇔ (|M | − 1)Φ′ =
∑
i∈M

F iui
′

⇒ (|M | − 1)F kuk
′
=
∑
i∈M

F iui
′

⇒ (|M | − 1)F kuk ′′ =
∑
i∈M

(
F iui

′′
+ F i′ui

′
)
.

We calculate the expected change in winning probability of player k if he
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continues to play for an infinitesimally short time E(duk):

(|M | − 1)F kE(duk) = (|M | − 1)F k(µuk
′
+
σ2

2
uk
′′
)

= µ(|M | − 1)F kuk
′
+
σ2

2
(|M | − 1)F kuk ′′

= µ
∑
i∈M

F iui
′
+
σ2

2

∑
i∈M

(
F iui

′′
+ F i′ui

′
)

=
∑
i∈M

(µui
′
+
σ2

2
ui
′′︸ ︷︷ ︸

=E(dui)=0

)F i +
∑
i∈M

F i′ui
′︸ ︷︷ ︸

>0

> 0 .

As agent i ∈M stops with strictly positive probability in any neighborhood

of x, he is indifferent between the strategy that stops at x and any other

strategy that stops in a small neighborhood of x. Thus, E(dui(x)) = 0.

So far, we have shown that E(dui(x)) = 0 if i ∈ M(x) and E(dui(x)) > 0 if

i /∈ M(x). For every agent i, there exists an interval I ⊂ [xi, xi] such that

i ∈ M(x) for every x ∈ I. Whenever X i
t = x ∈ I, agent i is indifferent

between the strategy that stops immediately and the strategy τ = inf{t : t ∈
{xi, xi}}. Formally,

0 = ui(x)− E(ui(Xτ ))

= ui(x)− E(ui(x) +

∫ τ

t

µui
′
(X i

s) +
σ2

2
ui
′′
(X i

s)ds+

∫ τ

t

ui
′
(X i

s)σdBs)

= E(

∫ τ

t

µui
′
(X i

s) +
σ2

2
ui
′′
(X i

s)ds) = ui(x) + E(

∫ τ

t

E(dui(X i
s))) .

The process enters every interval and E(dui(x)) is non-negative for all x ∈
[xi, xi]. Hence, the expectation E(

∫ τ
t
E(dui(X i

s))) can only be zero if E(dui(x)) =

0 almost surely.

Proof of Lemma 4: By contradiction, assume maxi x
i 6= 0. Thus, to stop at

X i
t = xi (and, by continuity in a neighborhood of this point) is strictly worse
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than to continue until Xj
t ∈ {0,maxi x

i}; this contradicts optimality.

Assume there exists players i and j such that xi > xj. Assume player j

reaches his right endpoint at time t, Xj
t = xj. By the same argument as in

Lemma 3, the continuation strategy τ = inf{s ≥ t : Xj
s ∈ {xj − ε, xi}} is

strictly better than to stop at xj, which contradicts optimality.

Proof of Proposition 4: To prove uniqueness, note that Lemma 1-4 do not

rely on any symmetry arguments and do still hold. Hence, the equation

ui(x) = F j(x) fixes the above construction uniquely given the right end-

point. The minmax property (constant sum game) implies that each player

must receive the same payoff in any equilibrium. Thus, the local martingale

condition uniquely determines x. By Lemma 1, only one agent might set a

mass point at 0. Feasibility implies that the agent with the lower starting

value sets the mass point at zero and uniquely determines the size of the

mass point.

Formula for the Expected Value in the n-Player Case:

Let Hyp denote the Gauss hypergeometric function.

E(x) =

∫ x

0

xf(x)dx = (xF (x)− 0F (0))−
∫ x

0

F (x)dx

= x−
∫ x

0

n−1

√
1

n

exp(−2µx)− 1

exp(−2µx)− 1
dx

= x+
n−1
√

1− exp(−2µx)

2µ
(n− 1)Hyp(

1

n− 1
,

1

n− 1
,
n− 2

n− 1
, exp(2µx)) .

Proof of Proposition 5. We apply the monotone transformation y = exp(2µx0
σ2 )

to E(Xτ ) to get

E(Xτ ) =
x0

log(y)
+ (1 +

y

2(1− y)
)(x0 −

x0 log(2− y)

log(y)
) ,

= x0

(
1

log(y)
+ (1 +

y

2(1− y)
)(1− log(2− y)

log(y)
)

)
.
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for y 6= 1. This expression is convex if and only if it is convex for x0 = 1.

Assumption 1 implies y ∈ (0, 2).

∂2E(Xτ )/x0

∂y2
=

4(−2 + y)(−1 + y)3 + 2(−1 + y)2 (2− 5y + 2y2) log(y)

2(−2 + y)(−1 + y)3y2 log(y)3

+
y2 (3− 4y + y2) log(y)2 − 2(−2 + y)y2 log(y)3

2(−2 + y)(−1 + y)3y2 log(y)3

− (−2 + y) log(2− y)(2(−2 + y)(−1 + y)2 − 2y2 log(y)2)

2(−2 + y)(−1 + y)3y2 log(y)3

− (−2 + y) log(2− y) log(y) (−2 + 7y − 6y2 + y3)

2(−2 + y)(−1 + y)3y2 log(y)3

with the continuous extension ∂2E(Xτ )/x0
∂y2

= 1
6

at y = 1. Simple algebra shows

that nominator and denominator are negative on y ∈ (0, 2), y 6= 1. Hence,

the function is convex on (0, 2). As y is monotone increasing in µ, E(X i
τ i)

is quasi-convex in µ. As y is also monotone increasing (decreasing) in σ for

µ < 0 (µ > 0), E(X i
τ i) is quasi-convex (quasi-concave) in σ if µ < 0 (µ > 0).

It remains to show that E(Xτ ) is first decreasing, then increasing. For

µ→ −∞ and µ→ 0, E(Xτ )→ x0. For any negative value of µ, the expected

value of the stopped processes is smaller than x0, because the process is a

supermartingale. Hence, by quasi-convexity, E(Xτ ) has to be first decreasing,

then increasing.
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