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Abstract

We study optimal experimentation by a monopolistic platform in a two-sided market

framework. The platform provider faces uncertainty about the strength of the exter-

nality each side is exerting on the other. It maximizes the expected present value of its

pro�t stream in a continuous-time in�nite-horizon framework by setting participation

fees or quantities on both sides. We show that a price-setting platform provider sets a

fee lower than the myopically optimal level on at least one side of the market, and on

both sides if the two externalities are of approximately equal strength. If the externality

that one side exerts is su�ciently weaker than the externality it experiences, the opti-

mal fee on this side exceeds the myopically optimal level. We obtain analogous results

for expected prices when the platform provider chooses quantities. While the optimal

policy does not admit closed-form representations in general, we identify special cases

in which the undiscounted limit of the model can be solved in closed form.
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1 Introduction

In many real-world markets, transactions are intermediated through platforms. This paper
studies a monopolistic platform in a two-sided market framework. The platform provider is
uncertain about the size of the positive externality each side of the market is exerting on
the other and, therefore, may want to experiment in order to learn about the externality
parameters. Its aim is to maximize expected lifetime pro�t in a continuous-time in�nite-
horizon setting.

In every instant of time, the platform provider's actions determine its current pro�t as
well as the amount of information received. Thus, there is a trade-o� between maximizing
current pro�t and extracting information that will increase future pro�ts. The higher the
rate at which future pro�ts are discounted, the more important current pro�t becomes, up to
the extreme of myopic behavior which completely ignores information acquisition. Reversely,
the bene�t of information increases if the discount rate decreases, up to the opposite extreme
of no discounting when maximal weight is put on learning.

We consider two variants of the model, one in which the platform provider sets prices and
learns from quantities, and one in which the platform provider selects quantities and learns
from prices.1 Prices take the form of membership or subscription fees. In both versions, we
�rst compute the myopic benchmark, then investigate the optimal experimentation policy
of a forward-looking platform provider, and �nally consider the undiscounted limit in which
experimentation is maximal. Our investigation of the optimal experimentation policy relies
on an analysis of the �rst-order conditions associated with the platform provider's Bellman
equation; we show that the second-order conditions for a maximum are always satis�ed.
In general, there are no closed-form solutions for the platform provider's value function and
optimal policy. Turning to the undiscounted limit, by contrast, we are able to identify special
cases of the model that yield a maximal experimentation policy in closed form.

In the price-setting version of the model, we �rst establish that the experimenting plat-
form provider will charge a fee lower than the myopic benchmark on at least one side of the
market. This immediately implies that if the two sides are approximately symmetric with
respect to the participants' intrinsic platform value, the strength of the externality and the
informativeness of observed quantities, the provider will charge fees lower than their myopi-
cally optimal counterparts on both sides of the market. In su�ciently asymmetric settings,
however, the platform provider may �nd it optimal to charge a fee higher than the myopic
benchmark on one side of the market. More precisely, we show that a price increase may
occur on a side that exerts a low externality on the other side, yet itself bene�ts from a strong
externality in the other direction. In such a situation, it is optimal to increase participation
on the side that exerts the strong externality by lowering the fee there and to extract part
of the additional surplus through a higher fee on the side that exerts the weak externality.

In the quantity-setting variant of the model, we obtain analogous results for expected
prices. While the platform provider increases the quantity on both sides of the market
relative to the myopic benchmark, this may entail an increase in the expected price on one
side if the externality that this side exerts is much weaker than the externality it experiences.

Pricing implications in two-sided markets have received a lot of attention in industrial

1The price-setting version of the model seems more widely applicable, but the quantity-setting version
turns out to be more tractable.
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economics recently. In general, a market is said to be two-sided whenever potential partici-
pants care about the number of counterparts on the other side of the market�i.e., when each
side exerts an externality on the other side, be it positive or negative. Potential interactions
take place on some platform or by means of some vehicle, allowing the provider of such a
platform or vehicle to charge participants for services and to manage usage on both sides.

Real world examples and applications of two-sided markets are manifold. Examples in-
clude payment systems (where card holders will want to hold a card if many merchants
accept it, while merchants will be willing to accept cards that many customers hold), game
consoles (players, software developers), smart phones (users, application developers), night-
clubs and matching agencies (men, women), shopping malls, supermarkets, and department
stores (where consumers are interested in a large variety of products, and producers in a
large number of customers).

Seminal papers on two-sided markets are Rochet and Tirole (2003, 2006) and Armstrong
(2006). For a theoretical investigation of media platforms see, in particular, Anderson and
Coate (2005). A general model of monopoly platforms is analyzed by Nocke, Peitz, and
Stahl (2007). Empirical work includes Rysman (2004) and Kaiser and Wright (2006). For a
selective survey, see Rysman (2009). None of the existing literature treats two-sided markets
in a setting of uncertainty where it is unclear how strong the relevant externalities are,
and where the platform provider might bene�t from experimenting with prices or quantities
in order to learn about the true state of the world. Relative to the existing literature on
two-sided markets, our contribution is to introduce uncertainty and learning into the set-up
proposed by Armstrong (2006). This allows us to analyze how the optimal price structure
di�ers from the myopic benchmark and how it evolves over time. Our analysis suggests that
markets characterized by indirect network e�ects of uncertain size provide incentives for the
experimenting platform provider to initially lower at least one price. This provides a new
rationale for price discounts in dynamic two-sided markets.2

The economics literature on optimal experimentation by a single Bayesian decision maker
starts with the work of Prescott (1972) and Rothschild (1974); a brief overview of this
literature can be found in Keller and Rady (1999). Our contribution here is to extend the
analysis of optimal experimentation to two-sided markets and, building upon the in�nite-
horizon continuous-time model of Keller and Rady (1999), to provide a tractable framework
for it. To the best of our knowledge, ours is the �rst experimentation model in which the
decision maker has more than one instrument (i.e., two quantities or two prices) with which to
trade o� exploration versus exploitation. Because of this, even a platform provider primarily
concerned about information acquisition can still pursue the secondary goal of current pro�t
maximization: from all pairs of actions generating the same amount of information, the
optimal policy selects the pair with the highest current pro�t.

The remainder of the paper is structured as follows. Section 2 presents the model for the
price-setting platform provider and characterizes the evolution of beliefs. Section 3 analyzes
the directions of optimal experimentation, while Section 4 elaborates on the maximal exper-
imentation policy. The optimal policy of a quantity-setting platform provider is analyzed in
Section 5. Section 6 concludes. Technical proofs are relegated to the appendix.

2An alternative explanation could be dynamic consumer behavior which might make a platform provider
strive to build up a critical mass. We exclude this channel by assuming that participants can revise their
participation decision in each period at no cost.
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2 The Model

We propose a two-sided market model following Armstrong (2006) to focus on participation
decisions. For tractability reasons, we analyze a setting with linear demand functions on both
sides of the market. We refer to the two sides as A and B. Depending on the application,
these may be buyers and sellers, advertisers and readers, or men and women. The novelty
is to introduce uncertainty with respect to the size of the network e�ect. Arguably, such
uncertainty is an important feature of network industries: a platform provider typically
cannot perfectly foresee how strongly one side reacts to the number of users on the other
side and has to infer this from market outcomes which noisily reveal the true state of the
world.

2.1 The price-setting platform provider

In each period, there is a continuum of participants on both sides of the market. Invoking
a uniform distribution over the value of the outside option (on a support that is su�ciently
large such that aggregate demand is decreasing when positive) gives rise to linear demand
functions. The platform provider can set membership fees (MA,MB), but no usage fee.3

Suppose that the total mass of potential participants is such that demand ni on side i =
A,B satis�es dni/dMi = −1. The resulting masses of participants nA and nB are then
characterized by the system of linear equations

nA = u0 + ũnB −MA, (1)

nB = π0 + π̃nA −MB, (2)

where u0 and π0 are the intrinsic platform values, and ũ and π̃ are externality parameters.
For the sake of concreteness, we assume positive intrinsic values and positive externalities.
While the intrinsic values are common knowledge, the externality parameters are known
to market participants, but not to the platform provider.4 The provider only knows that
(ũ, π̃) ∈ {(u, π), (u, π)} with 0 < u < u < 1 and 0 < π < π < 1. We denote the probability
that the platform provider intially assigns to the realization (u, π) by p0 and assume that
this prior belief is non-degenerate, i.e., 0 < p0 < 1.5

As ũ π̃ 6= 1, the system (1)�(2) has a unique solution, given by

nA(MA,MB, ũ, π̃) =
u0 −MA + ũ(π0 −MB)

1− ũπ̃
,

nB(MA,MB, ũ, π̃) =
π0 −MB + π̃(u0 −MA)

1− ũπ̃
.

3Our notation closely follows Belle�amme and Peitz (2010).
4We impose this for the sake of tractability. If side A, say, does not know the strength of the externality

it exerts on the other side either, it has to form a belief about it. This, in turn, has to be taken into account
by the platform provider who then must form a belief about the true strength of the externalities as well as
about the belief of side A. We leave the analysis of such a model for future work. In the present set-up, only
the platform provider holds beliefs and learns.

5The assumption that the externality parameters are perfectly positively correlated is clearly restrictive.
Imperfect correlation leads to a much more complicated situation with two-dimensional beliefs. We will see
that our results for the quantity-setting scenario carry over to perfect negative correlation.
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This constitutes the unique Nash equilibrium of the anonymous game that potential partic-
ipants play for given membership fees.

In every period t ∈ [0,∞[ , the platform provider sets prices (M t
A,M

t
B) and then observes

noisy signals of the quantities nA(M
t
A,M

t
B, ũ, π̃) and nB(M

t
A,M

t
B, ũ, π̃). More precisely, the

provider observes the cumulative quantity processes N t
A and N t

B with increments given by

dN t
A = nA(M

t
A,M

t
B, ũ, π̃) dt+ σAdZ

t
A,

dN t
B = nB(M

t
A,M

t
B, ũ, π̃) dt+ σBdZ

t
B,

where Zt
B and Zt

A are independent standard Brownian motions and the constants σA and σB

are positive. Note that, using normally distributed shocks, we cannot restrict the observed
quantities dN t

A and dN t
B to be positive. We will, however, only allow the platform provider

to choose prices such that, in expectation, demand is non-negative. Later, when we use
quantities as choice variables, we can explicitly rule out negativity.

The platform provider's revenue increment is

dRt = M t
A dN t

A +M t
B dN t

B

= M t
A

[

nA(M
t
A,M

t
B, ũ, π̃) dt+ σAdZ

t
A

]

+M t
B

[

nB(M
t
A,M

t
B, ũ, π̃) dt+ σBdZ

t
B

]

.

We normalize costs to zero. Hence, the platform provider's total expected pro�ts (ex-
pressed in per-period terms) are

Ep0

[
∫

∞

0

re−rtdRt

]

,

where r > 0 is the discount rate. By the martingale property of the stochastic integral with
respect to Brownian motion, this expectation reduces to

Ep0

[
∫

∞

0

re−rt
{

M t
A nA(M

t
A,M

t
B, ũ, π̃) +M t

B nB(M
t
A,M

t
B, ũ, π̃)

}

dt

]

.

Let pt be the subjective probability at time t that the platform provider assigns to the
realization (u, π). Invoking the law of iterated expectations, we can rewrite total expected
pro�ts as

Ep0

[
∫

∞

0

re−rtR(M t
A,M

t
B, pt) dt

]

(3)

where

R(MA,MB, p) = MA Ep [nA(MA,MB, ũ, π̃)] +MB Ep [nB(MA,MB, ũ, π̃)] (4)

is the expected current revenue from charging the fees (MA,MB) given the posterior belief
p.
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2.2 The myopic benchmark

If the platform provider were myopic (corresponding to r = ∞), it would maximize expected
current revenue at each instant. Under our parameter restrictions, this revenue is strictly
concave in (MA,MB), so the myopically optimal fees,

(Mµ
A(p),M

µ
B(p)) = arg max

MA,MB

R(MA,MB, p),

are well-de�ned.
To compute these fees, we write the expected quantities appearing on the right-hand side

of (4) as

Ep [nA(MA,MB, ũ, π̃)] = ℓ0(p)[u0 −MA] + ℓA(p)[π0 −MB],

Ep [nB(MA,MB, ũ, π̃)] = ℓ0(p)[π0 −MB] + ℓB(p)[u0 −MA],

where

ℓ0(p) =
1− p

1− πu
+

p

1− πu

and

ℓA(p) =
(1− p)u

1− πu
+

p u

1− πu
,

ℓB(p) =
(1− p)π

1− πu
+

p π

1− πu

measure the expected direct and indirect e�ects, respectively, of lowering MA or MB.
With the dependence on the belief p suppressed, the right-hand side of (4) now becomes

[ℓ0u0 + ℓAπ0]MA + [ℓ0π0 + ℓBu0]MB − ℓ0M
2
A − [ℓA + ℓB]MAMB − ℓ0M

2
B.

As 0 < ℓi < ℓ0 for i = A,B and hence 0 < ℓA + ℓB < 2ℓ0, this quadratic function is indeed
strictly concave, and we obtain

Mµ
A = u0 −

[2ℓ20 − (ℓA + ℓB)ℓA] u0 − (ℓA − ℓB)ℓ0π0

4ℓ20 − (ℓA + ℓB)2
, (5)

Mµ
B = π0 −

[2ℓ20 − (ℓA + ℓB)ℓB] π0 − (ℓB − ℓA)ℓ0u0

4ℓ20 − (ℓA + ℓB)2
. (6)

As is well known from the literature on two-sided markets, the myopically optimal fee
on one side of the market depends on market characteristics on both sides. Independent of
the values of the externality parameters u, u, π, π, the fee on either side is always increasing
in the intrinsic platform value on that same side. Whether or not the fee on one side is
increasing in the intrinsic platform value on the other side depends on the relative strength
of the network e�ects on both sides. To be precise, the fee Mµ

A is increasing in π0 if and
only if ℓA − ℓB > 0. Broadly speaking, when the externality side A is experiencing is higher
than the one it is exerting, it bene�ts from the higher attractiveness of the platform for
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participants on side B as the intrinsic platform value π0 rises, and can thus be charged a
higher price; in this sense, side A �subsidizes� side B.

Further, Mµ
A can only exceed the intrinsic platform value u0 if ℓA exceeds ℓB by a su�cient

amount, and vice versa for Mµ
B and π0. Thus, at most one fee at a time can exceed the

intrinsic platform value and both fees will be lower than the respective intrinsic platform
values if the expected externalities are equal (ℓA = ℓB) or close together.

For future reference, we denote the myopically optimal revenue by

Rµ(p) = max
MA,MB

R(MA,MB, p) = R(Mµ
A(p),M

µ
B(p), p), (7)

and, suppressing the dependence on p and other variables, rewrite the expected current
revenue as

R = Rµ − ℓ0 [MA −Mµ
A]

2 − [ℓA + ℓB] [MA −Mµ
A] [MB −Mµ

B]− ℓ0 [MB −Mµ
B]

2 . (8)

2.3 The evolution of beliefs

The platform provider revises its beliefs over time. Writing nA(MA,MB) = nA(MA,MB, u, π)
and using analogous de�nitions for nA, nB and nB, we de�ne

S(MA,MB) =

[

nA(MA,MB)− nA(MA,MB)

σA

]2

+

[

nB(MA,MB)− nB(MA,MB)

σB

]2

.

Lemma 1 The beliefs of the price-setting platform provider evolve according to

dpt ∼ N
(

0, p2t (1− pt)
2S(M t

A,M
t
B) dt

)

. (9)

Proof: See the appendix. �

In the expression for the in�nitesimal variance of the change in beliefs, S(M t
A,M

t
B) mea-

sures the information content of the demand observations obtained after setting prices (it is
the sum of the squared signal-to-noise ratios of these observations). The more informative
the observations are, the more strongly the beliefs react to them.6

We can gain more precise insights into the structure of the function S by noting that

nA(MA,MB)− nA(MA,MB) = d0 [u0 −MA] + dA [π0 −MB],

nB(MA,MB)− nB(MA,MB) = d0 [π0 −MB] + dB [u0 −MA],

where di = ℓi(1)− ℓi(0) > 0 for i = 0, A,B, and computing

S(MA,MB) = sA [MA − u0]
2 + 2sAB [MA − u0] [MB − π0] + sB [MB − π0]

2

with the constants

sA =
d20
σ2
A

+
d2B
σ2
B

, sB =
d2A
σ2
A

+
d20
σ2
B

, sAB =
d0dA
σ2
A

+
d0dB
σ2
B

.

6If the platform provider were uncertain about the intrinsic platform values (u0, π0) instead of the exter-
nalities (u, π), the quantity of information would be independent of the fees charged. The platform provider
would then trivially always set the myopically optimal fees.
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Since sAsB − s2AB = σ−2
A σ−2

B (d20 − dAdB)
2 and, as a simple computation reveals, d20 < dAdB,

we see that S is a strictly convex function which assumes its global minimum of zero at
(MA,MB) = (u0, π0).

The beliefs p = 0 and p = 1 are absorbing�if the platform provider is subjectively sure
about the true state of the world, no further learning is possible. For a non-degenerate belief
p to be invariant under the optimal learning dynamics, two conditions are necessary: the
platform must charge the myopically optimal fees at this belief (since this belief will persist
forever), and the information content of the resulting demand observations must be zero (so
that this belief will indeed persist). Taken together, this requires S(Mµ

A(p),M
µ
B(p)) = 0 or,

equivalently, (Mµ
A(p),M

µ
B(p)) = (u0, π0) which is impossible since the latter fees generate an

expected current revenue of zero and marginally lowering one of the fees would improve upon
that. There are thus no potentially confounding actions in the sense of Easley and Kiefer
(1988). By well-known results, this implies

Lemma 2 Any optimal pricing policy induces complete learning in the long run: the plat-

form provider's posterior belief pt converges to the truth almost surely as t → ∞.

To determine how the information content of observed quantities changes with the fees
charged, we look at the partial derivatives of S with respect to MA and MB. Figure 1
visualizes this in (MA,MB)-space. We have ∂S

∂MA
= 0 along the line MB = π0−

sA
sAB

(MA−u0),

and ∂S
∂MB

= 0 along the line MB = π0 −
sAB

sB
(MA − u0); as sAsB − s2AB > 0, the former line

is steeper than the latter. For either line, the respective partial derivative is positive above
the line and negative below. Along the myopically optimal pricing policy, both nA −nA and
nB − nB can be shown to be positive, which directly implies that both partial derivatives of
S are negative. Thus, the myopically optimal fees lie below both lines in Figure 1.

In fact, this is true for all admissible price combinations.

Lemma 3 Over the admissible range of prices, a price decrease on either side of the market

increases the information content of observed quantities, whereas a price increase reduces it.

Proof: The proof consists in showing that above either line of vanishing marginal informa-
tion content in Figure 1, at least one of the implied expected quantities becomes negative.
See the appendix for details. �

3 The Optimal Pricing Strategy

We are now ready to characterize the pricing strategy. In view of the objective function (3)
and the law of motion (9), standard arguments yield the following Bellman equation for the
platform provider's value function, v:

v(p) = max
MA,MB

{

R(MA,MB, p) +
p2(1− p)2

2r
S(MA,MB) v

′′(p)

}

. (10)

Arguing as in Keller and Rady (1999), one shows that v is strictly convex, twice continuously
di�erentiable, and the unique solution to (10) subject to the condition that v(p) = Rµ(p) at
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0

MB

MA∂S
∂MA

= 0

∂S
∂MB

= 0
�

Uninformative

pair of prices

u0

π0

Negative

expected

quantities

?

�

Figure 1: The directions of increasing information in the price plane.

p = 0 and 1, where the myopically optimal expected current revenue Rµ(p) has been de�ned
in equation (7).

We can interpret the second term of the maximand in the Bellman equation as the value
of information, given by the product of the shadow price of information, p2(1− p)2v′′(p)/2r,
and the quantity of information, S(MA,MB). For p ∈ {0, 1}, the value of information is
zero, and the platform provider chooses the myopically optimal prices. For all other beliefs,
the platform provider experiments, i.e., deviates from the myopic strategy so as to increase
the information content of its demand observations.

The maximand in (10) is the sum of two quadratic functions, one of them strictly concave
(expected current revenue), the other strictly convex (value of information). As the value
function is bounded, so must be the maximum on the right-hand side of (10); and as ad-
missible fees are unbounded below, the shadow price of information must actually be small
enough for the combined quadratic function to be strictly concave (the precise argument is
in the appendix).

This ensures that optimal fees are fully characterized by the (linear) �rst-order conditions
for the maximization problem in (10). Using the representation of expected current revenues
in (8), writing

V (p) =
p2(1− p)2

2r
v′′(p)

for the shadow price of information, and suppressing the dependence on p, we compute the
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optimal pair of fees as

M∗

A = Mµ
A +

2V

h(V )

{

2(ℓ0 − sBV )Sµ
A − (ℓA + ℓB − 2sABV )Sµ

B

}

, (11)

M∗

B = Mµ
B +

2V

h(V )

{

2(ℓ0 − sAV )Sµ
B − (ℓA + ℓB − 2sABV )Sµ

A

}

, (12)

where
h(V ) = 4(ℓ0 − sAV )(ℓ0 − sBV )− (ℓA + ℓB − 2sABV )2

is the determinant of the Hessian matrix of the maximand in (10) and

Sµ
A =

∂S

∂MA

(Mµ
A,M

µ
B) = sA(M

µ
A − u0) + sAB(M

µ
B − π0) < 0,

Sµ
B =

∂S

∂MB

(Mµ
A,M

µ
B) = sAB(M

µ
A − u0) + sB(M

µ
B − π0) < 0

are the partial derivatives of the quantity of information S at the myopically optimal fees.7

Strict concavity of the maximand in (10) means ℓ0 − sAV > 0 and h(V ) > 0, which in turn
implies ℓ0 − sBV > 0.

Our �rst result on the platform provider's optimal pricing strategy is

Proposition 1 At any non-degenerate belief, the platform provider charges a fee lower than

the myopic benchmark on at least one side of the market.

Proof: Suppose that M∗

A ≥ Mµ
A. By (11), this implies ℓA + ℓB − 2sABV > 0 and

Sµ
B ≤

2(ℓ0 − sBV )

ℓA + ℓB − 2sABV
Sµ
A .

As a consequence,

2(ℓ0 − sAV )Sµ
B − (ℓA + ℓB − 2sABV )Sµ

A ≤
h(V )

ℓA + ℓB − 2sABV
Sµ
A < 0,

and so M∗

B < Mµ
B by (12). In exactly the same way, M∗

B ≥ Mµ
B implies M∗

A < Mµ
A. �

The intuition for this result is clear. The purpose of deviating from the myopic op-
timum is to increase the information content of observed demands. As higher fees mean
less information (see Lemma 3), at least one fee must be reduced relative to the myopic
benchmark.

This has an obvious consequence for approximately symmetric setups.

Proposition 2 For (u0, u, u, σA) su�ciently close to (π0, π, π, σB), the platform provider

always sets both fees below their myopically optimal levels.

7The argument why both of them are negative was given in Section 2.3.
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Proof: For (u0, u, u, σA) = (π0, π, π, σB), we have Mµ
A = Mµ

B by (5)�(6), and M∗

A −Mµ
A =

M∗

B −Mµ
B ≥ 0 by (11)�(12) and Proposition 1, with a strict inequality, and the expression

in curly brackets bounded away from 0, on the open unit interval. The result thus follows
by continuous dependence of the value function and its second derivative on (u0, u, u, σA).�

The analysis of asymmetric settings is more complicated. A lower fee on one side of
the market makes reducing the fee on the other side more attractive from an informational
perspective (the cross-partial derivative of the quantity of information with respect to prices,
sAB, is positive), but less attractive as far as expected current revenue is concerned (its cross-
partial derivative, −(ℓA + ℓB), is negative). The overall e�ect is ambiguous.

A di�erent way to see this is to think of the platform provider as following a two stage-
procedure. At the �rst stage, it determines the combination of fees that maximizes current
expected revenue subject to the constraint that a certain quantity of information be achieved.
This amounts to identifying points of tangency between iso-information and iso-revenue
curves in the (MA,MB)-plane. At the second stage, the provider then chooses the optimal
quantity of information. Depending on the geometry of the iso-information and iso-revenue
curves, this may lead it to charge a fee higher than in the myopic benchmark on one side of
the market, as we shall see below.

To identify the directions of optimal experimentation in some asymmetric settings, we
insert the expressions for Sµ

A and Sµ
B into (11)�(12) and collect the terms in Mµ

A − u0 and
Mµ

B − π0, respectively:

M∗

A = Mµ
A +

2V

h(V )

{

[

2ℓ0sA − (ℓA + ℓB)sAB − 2(sAsB − s2AB)V
]

(Mµ
A − u0)

+ [2ℓ0sAB − (ℓA + ℓB)sB] (M
µ
B − π0)

}

, (13)

M∗

B = Mµ
B +

2V

h(V )

{

[2ℓ0sAB − (ℓA + ℓB)sA] (M
µ
A − u0)

+
[

2ℓ0sB − (ℓA + ℓB)sAB − 2(sAsB − s2AB)V
]

(Mµ
B − π0)

}

. (14)

Proposition 3 Let sA < sAB < sB. Whenever both myopically optimal fees are lower than

the respective intrinsic values, the platform provider lowers the fee on side B relative to the

myopically optimal level.

Proof: It is enough to show that in equation (14), the coe�cients of Mµ
A−u0 and Mµ

B −π0

in the expression in curly brackets are positive. As sAB > sA and ℓA+ℓB < ℓ0, this is obvious
for the coe�cient of Mµ

A−u0. Regarding the coe�cient of Mµ
B−π0, we distinguish two cases.

If (ℓA+ ℓB)/(2sAB) < ℓ0/sB, the positivity of sAsB − s2AB and the fact that V < ℓ0/sB imply
that the coe�cient of Mµ

B − π0 exceeds 2ℓ0sB − (ℓA + ℓB)sAB − 2ℓ0(sAsB − s2AB)/sB, which
is positive. If (ℓA + ℓB)/(2sAB) ≥ ℓ0/sB, we have V < (ℓA + ℓB)/(2sAB) and the coe�cient
of Mµ

B − π0 is no smaller than 2ℓ0sB − (ℓA + ℓB)sAB − (ℓA + ℓB)(sAsB − s2AB)/sAB, which is
again positive. �

The situation assumed in this proposition is one where the marginal informational bene�t
of lowering the fee is so much larger on side B than on side A that the platform provider

11



will de�nitely lower the fee on side B. This situation arises naturally when the strength of
the externality that side A exerts on side B is relatively well known, i.e., when π and π are
relatively close to each other. More precisely, as π and π tend to a common value π, the
ratios dB/d0, d0/dA, sAB/sB and sA/sAB all converge to π, which implies sA < sAB < sB for
su�ciently small di�erences π − π.

The limiting case in which π = π = π lends itself to a simple graphical illustration that
will prove valuable when it comes to formulating a su�cient condition for the fee MA to rise
relative to the myopic benchmark. In fact, the identity sAB/sB = sA/sAB = π implies that
in the (MA,MB)-plane, the level curves of the function S are parallel straight lines with slope
−π. These iso-information lines and the myopically optimal pricing policy are illustrated in
Figure 2.

-

6MB

MA0 u0 u0 +
π0

π

π0

π0 + πu0

/ MB = π0 + π(u0 −MA)

(Quantity of information = 0)

Negative

expected

quantities

(Mµ
A,M

µ
B)

Figure 2: Iso-information lines and myopically optimal policy in the price plane when there
is uncertainty about the externality parameter ũ only (π = π = π).

The experimenting platform provider will deviate from the myopically optimal prices so
as to reach an iso-information line that is closer to the origin in Figure 2. On any iso-
information line, it will choose the fees that correspond to a point of tangency with an
iso-revenue curve. As Figure 3 illustrates, the slope of the locus of tangency points between
iso-information lines and iso-revenue curves (ellipses, to be precise) depends on parameters.
In the left panel, this locus slopes upward � the optimal trade-o� between information and
current revenue induces a decrease in both fees for increased information. However, if the
iso-information lines are rather �at (i.e., if π is small), it is optimal to decrease MB but
increase MA as indicated by the locus of optimal fees in the right panel.
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-

6MB

MA

-

6MB

MA

Figure 3: Two examples of iso-information lines (dotted) and iso-revenue curves (solid) for
π = π = π. The solid line in each case indicates the locus of optimal fees.

This suggests that for π di�erent from π but su�ciently small, we should also be able to
see an optimal fee M∗

A that exceeds Mµ
A. Our next result bears this out.

Proposition 4 For π su�ciently close to 0, the platform provider increases the fee on side

A relative to the myopically optimal level.

Proof: For π = π = 0, we have ℓ0 = 1 and ℓB = 0, implying d0 = dB = 0 and sA = sAB = 0.
By (6), moreover, Mµ

B − π0 is negative and bounded away from 0 on the unit interval. Now,
the expression in curly brackets in (13) reduces to −ℓAsB(M

µ
B − π0), which is positive and

again bounded away from 0. The result thus follows by continuous dependence of the value
function and its second derivative on (π, π). �

We can o�er the following intuition for this result. When the externality that side A
is exerting on side B is known to be very small, the platform provider learns most by
lowering the fee on side B. Side A then bene�ts from higher participation on side B. Since
participation on side A hardly a�ects participation on side B, the provider can safely extract
part of the additional surplus given to side A by charging this side a higher fee.

4 Maximal Experimentation

In the previous section, we were able to analyze the directions of optimal experimentation
without having to solve for the value function. To establish the precise extent of optimal
experimentation, one could plug the fees (11)-(12) into the maximand in (10) and numerically
solve the resulting second-order ordinary di�erential equation for the value function.

An alternative route to this di�erential equation is to write the Bellman equation in the

form 0 = maxMA,MB
{R− v + p2(1−p)2

2r
S v′′} and to observe that the maximum remains zero,

and the set of maximizers is unchanged, when we divide the maximand by the quantity of

13



information, S.8 Re-arranging then yields

p2(1− p)2

2r
v′′(p) = min

MA,MB

v(p)−R(MA,MB, p)

S(MA,MB)
.

This in turn permits an alternative characterization of the optimal combination of fees as a
function of the belief p and the associated value v(p):

(M∗

A(p),M
∗

B(p)) = arg min
MA,MB

v(p)−R(MA,MB, p)

S(MA,MB)
.

Arguing as in Keller and Rady (1999), one shows that the value v(p) is decreasing in r at
all p in the open unit interval, and that it converges to the ex ante full-information pay-o�

R(p) = pRµ(1) + (1− p)Rµ(0)

as r ↓ 0. This means that the optimal fees converge to

(MA(p),MB(p)) = arg min
MA,MB

R(p)−R(MA,MB, p)

S(MA,MB)
, (15)

which is the optimal policy of a platform provider maximizing its undiscounted transient
payo�, that is, total expected revenue net of the full-information payo� that it will obtain
in the long run; see Bolton and Harris (2000).

Intuitively speaking, the lower the platform provider's discount rate, the greater is its
incentive to learn, and the farther it might want to deviate from the myopic optimum.
Experimentation is maximal when r = 0. Once we know the optimal strategy of the in�nitely
patient provider, therefore, we have fully characterized the range of experimentation in which
an impatient provider will set his fees.

Studying the maximal experimentation strategy (MA,MB) has the further advantage
that it does not require computation of the value function for the maximization of transient
payo�s.9 While the system of �rst-order conditions for (15) in general does not permit
explicit solutions, it is considerably easier to solve numerically than the di�erential equation
for the value function under discounting. In the next subsection, we will take advantage of
this to illustrate the maximal experimentation policy and the associated learning dynamics
in a numerical example. Thereafter, we will brie�y return to the limiting case π = 0 which
does permit a closed-form solution.

4.1 An example

We assume the following parameters: u0 = 0.4, π0 = 0.1, u = 0.1, u = 0.9, π = 0.1, π = 0.2,
σA = σB = 1, p0 = 0.5, and the �true� values are (u, π). These parameters translate into
expected direct and indirect price e�ects of ℓ0(p0) = 1.11, ℓA(p0) = 0.60, and ℓB(p0) = 0.17,

8As the admissible pair of fees (u0, π0) is clearly suboptimal (yielding zero revenue and zero information),
the function S is indeed positive on the relevant domain.

9This is crucial for the characterization of Markov perfect equilibria in Bolton and Harris (2000), for
example.
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respectively. In particular, the externality that side B is expected to exert on side A, ℓA(p0),
is assumed more than three times as large as the expected opposite externality, ℓB(p0). Also
note that sA = 0.06, sAB = 0.24, and sB = 1.04, hence sA < sAB < sB.

The optimal fees set by a myopic and an in�nitely patient platform provider are depicted
in Figure 4. It is straightforward to check that both myopically optimal fees are lower
than the respective intrinsic values at all beliefs. In line with Proposition 3, the maximal
experimentation policy reduces the fee on side B relative to the myopic benchmark at any
non-degenerate belief.10 The fee set on side A under the maximal experimentation policy is
lower than the myopic benchmark at all beliefs below a threshold that approximately equals
0.275, and higher than the myopic benchmark at all beliefs above that threshold. Thus, in
accordance with Propositions 2 and 4, the fee on side A is reduced when the externalities
are of similar expected size (for beliefs close to 0, the large di�erence between u and π does
not matter much), but is increased when ℓA(p), the expected strength of the externality that
side A experiences, is su�ciently larger than ℓB(p), the expected strength of the externality
that side A exerts.

p

M
µ
A

MA

p

M
µ
B

MB

Figure 4: Optimal myopic fees (dashed line) and maximal experimentation fees (solid line)
on market side A (left) and B (right) as a function of the belief.

Figure 5 illustrates that the in�nitely patient provider learns faster � its beliefs converge
more quickly to the true state.11

Figure 6 shows a sample path for the optimal fee on side A. At any given belief, the
experimenting monopolist increases the fee relative to the myopic monopolist. In later
periods, the increase is reinforced by the better information driving the fee towards the
high optimum more rapidly. The evolution of optimal fees on side B is shown in Figure 7.
Maximal experimentation fees are consistently below their myopic counterparts.

10Note that for the given set of parameters, the optimal fee under full information on side B is actually
negative, i.e., participants on side B receive a payment from the platform provider. Monetary payments
to participants on one side may not always be feasible. However, as pointed out in the two-sided market
literature, in-kind payments can often substitute for monetary payments.

11Simulations were carried out using Wolfram Mathematica 8. Normal shocks were generated by random
draws from the normal distribution using the commands �RandomReal� and �NormalDistribution� with mean
equal to 0 and variances equalling σA and σB respectively.
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The expected per-period revenues depicted in Figure 8 show the advantages of each
policy. While the myopic policy creates higher revenues in the very early periods, revenues
in later periods are higher for the patient platform provider as its belief approaches the true
state of the world more rapidly.

Figure 5: Evolution of beliefs for the myopic policy (white squares) and the in�nitely patient
policy (black squares), and true state (thick line).

Figure 6: Evolution of fees on side A for the myopic policy (white squares) and the in�nitely
patient policy (black squares).
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Figure 7: Evolution of fees on side B for the myopic policy (white squares) and the in�nitely
patient policy (black squares).

Figure 8: Evolution of expected per-period revenues for the myopic policy (white squares)
and the in�nitely patient policy (black squares).
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4.2 A closed-form solution

We have seen in Proposition 4 above that, for vanishing externality parameter π, the platform
provider raises the fee on side A relative to the myopically optimal policy. The limiting case
π = 0 turns out to permit a closed-form solution for the maximal experimentation policy.12

The myopically optimal fees in this case are

Mµ
A(p) =

2u0 + u(p)π0

4− u(p)2
,

Mµ
B(p) =

2π0 − u(p)[u0 + π0u(p)]

4− u(p)2
,

where u(p) = Ep [ũ] = pu+ (1− p)u. The myopic revenue is

Rµ(p) =
π2
0 + u2

0 + π0u0u(p)

4− u(p)2
.

The quantity of information simpli�es to S(MA,MB) = σ−2
A (u−u)2(π0−MB)

2, re�ecting
the fact that only the demand observed on side A is informative.

The minimum of [R(p)−R(MA,MB, p)]/(π0 −MB)
2 is attained at

MA(p) =
π0u0 + 2R(p)u(p)

2π0 + u0u(p)
,

MB(p) = π0 +
u2
0 − 4R(p)

2π0 + u0u(p)
.

Comparing these fees to the myopically optimal ones, we �rst see that

MB(p)−Mµ
B(p) =

4[Rµ(p)−R(p)]

2π0 + u0u(p)
.

As R(p) = pRµ(1) + (1− p)Rµ(0) and Rµ is strictly convex, the right-hand side is negative
for 0 < p < 1. Thus, in line with Proposition 3, the in�nitely patient platform provider will
indeed decrease the fee that generates information.

On the other side of the market, we �nd

MA(p)−Mµ
A(p) =

2u(p)[R(p)−R(p)]

2π0 + u0u(p)
= −

u(p)

2
[MB(p)−Mµ

B(p)],

so for non-degenerate beliefs, there is a price increase relative to the myopic benchmark, as
predicted by Proposition 4.

The expected quantity on side B clearly increases relative to the myopic optimum since
the fee MB goes down. Using the above expression for MA(p)−Mµ

A(p), one can additionally

establish that the expected quantity on side A changes by −u(p)
2
[MB(p)−Mµ

B(p)], which is
again positive for non-degenerate beliefs. Hence, the platform provider also expects activity
on this side to rise relative to the myopic optimum. Overall, therefore, optimal experimen-
tation leads to uniform increases in expected quantities while price adjustments on the two
sides go in opposite directions.

12As an example, consider readers whose utility of a magazine is independent of the amount of advertising.
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5 The Quantity-Setting Platform Provider

We now assume that the platform provider sets quantities. The quantity-setting assumption
seems appropriate in real-world markets where capacity constraints matter. For instance, a
shopping mall owner has to decide how much parking space and shop space to provide. If
prices are market-clearing, this choice of capacities corresponds to quantity setting.

In standard monopoly, it does not matter (under certainty) whether a price or a quantity
is chosen. In two-sided markets, setting quantities means that the platform directly controls
the size of the externality, whereas a price setter does so only indirectly. This explains why
the quantity-setting case is more tractable: there are no feedback e�ects to be taken into
account when the quantity is changed on one side of the market. As we shall see below, this
makes the information content of market observations additively separable across the two
sides and implies unambiguous directions of experimentation.

Let the platform provider choose quantities (nA, nB) ∈ R
2
+ and observe noisy signals of

the prices

MA(nA, nB, ũ) = u0 + ũnB − nA,

MB(nA, nB, π̃) = π0 + π̃nA − nB,

where ũ ∈ {u, u} and π̃ ∈ {π, π} with 0 < u < u, 0 < π < π and u + π < 2. As we permit
externality parameters exceeding 1, this is somewhat more general than what we assumed
in the price-setting case.

We impose the natural restriction that the platform provider can only decide to sell
non-negative quantities, while prices are not restricted. Negative prices are interpreted as
subsidies to one side or (temporarily) both sides of the market, as discussed earlier. Note
that the price on one side of the market does not depend on the externality parameter on
the other side. However, as we assume perfect positive correlation between ũ and π̃, any
information gained on one side of the market immediately translates into a similar piece of
information on the other side.13

As before, we write p for the subjective probability assigned to the realization (u, π). We
maintain the assumption that costs are zero.

5.1 Revenues and beliefs

In every period t ∈ [0,∞[ , the platform provider chooses quantities (nt
A, n

t
B) and then

observes the incrementsMA(n
t
A, n

t
B, ũ, π̃) dt+θAdW

t
A andMB(n

t
A, n

t
B, ũ, π̃) dt+θBdW

t
B of two

cumulative price processes where WA and WB are independent standard Brownian motions
and the constants θA and θB are positive. The resulting revenue increment at date t is

dRt = nt
A

[

MA(n
t
A, n

t
B, ũ) dt+ θAdW

t
A

]

+ nt
B

[

MB(n
t
A, n

t
B, π̃) dt+ θBdW

t
B

]

.

With the notation

u(p) = p u+ (1− p)u ,

π(p) = p π + (1− p)π

13Notably, all insights of this section carry over to the case of perfect negative correlation. Results only
depend on expected externalities, exchanging the roles of u and u is unproblematic, therefore. As to Propo-
sitions 6�7 below, it su�ces that signal-to-noise ratios coincide in absolute value.
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for the expected externalities, and

R(nA, nB, p) = nA [u0 + u(p)nB − nA] + nB [π0 + π(p)nA − nB]

for the expected per-period revenue, the platform provider's total expected payo� is

Ep0

[
∫

∞

0

re−rtR(nt
A, n

t
B, pt) dt

]

.

The expected revenue R depends on the expected externalities only through the term
[u(p) + π(p)]nAnB, so only the sum of the externalities matters here. As |u(p) + π(p)| < 2,
moreover, R is strictly concave in (nA, nB). The myopically optimal quantities are

nµ
A(p) =

2u0 + π0[u(p) + π(p)]

4− [u(p) + π(p)]2
,

nµ
B(p) =

2π0 + u0[u(p) + π(p)]

4− [u(p) + π(p)]2
.

They exhibit a symmetric structure with interchanged intrinsic platform values. If these
platform values coincide, myopically optimal quantities are the same on both sides.

The corresponding expected prices for each group, however, depend on the speci�c ex-
ternality the other group is exerting. They are given by

Mµ
A(p) =

π0[u(p)− π(p)] + u0(2− π(p)[u(p) + π(p)])

4− [u(p) + π(p)]2
,

Mµ
B(p) =

u0[π(p)− u(p)] + π0(2− u(p)[u(p) + π(p)])

4− [u(p) + π(p)]2
.

The expected current revenue from the myopically optimal quantities is

Rµ(p) = Mµ
A(p)n

µ
A(p) +Mµ

B(p)n
µ
B(p) =

u2
0 + π2

0 + u0π0[u(p) + π(p)]

4− [u(p) + π(p)]2
.

To describe the law of motions of beliefs, we de�ne the strictly convex function

Σ(nA, nB) = ρAn
2
A + ρBn

2
B,

where the constants

ρA =

(

u− u

θA

)2

, ρB =

(

π − π

θB

)2

are the squares of the marginal signal-to-noise ratios.

Lemma 4 The beliefs of the quantity-setting platform provider evolve according to

dpt ∼ N
(

0, p2t (1− pt)
2 Σ(nt

A, n
t
B) dt

)

Proof: The proof is similar to the price-setting case and therefore omitted. �
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Complete learning in the long-run follows from the same arguments as in the price-setting
scenario (see Lemma 2 above). As Σ is increasing in both nA and nB, moreover, we obviously
have

Lemma 5 For the quantity-setting platform provider, a quantity increase on either side of

the market increases the information content of observed prices, whereas a quantity decrease

reduces it.

Finally, we note that the marginal informational impact of adjusting the quantity on one
side of the market does not depend on the quantity set on the other.

5.2 Optimal quantities

Under discounting at rate r > 0, the Bellman equation is

v(p) = max
nA,nB

{

R(nA, nB, p) +
p2(1− p)2

2r
Σ(nA, nB) v

′′(p)

}

.

The maximand is again the sum of a strictly concave quadratic function and a strictly
convex one. A simpler version of the argument given in the price-setting case shows that the
shadow price of information, V (p) = p2(1 − p)2v′′(p)/2r, is again su�ciently small to make
the combined quadratic function strictly concave at all beliefs (we omit the details).

Solving the �rst-order conditions for optimal quantities and suppressing the dependence
on the belief p, we obtain

n∗

A = nµ
A +

2V

χ(V )

{

2(1− ρBV )ρAn
µ
A + 2(u+ π)ρBn

µ
B

}

,

n∗

B = nµ
B +

2V

χ(V )

{

2(1− ρAV )ρBn
µ
B + 2(u+ π)ρAn

µ
A

}

,

where
χ(V ) = 4(1− ρAV )(1− ρBV )− (u+ π)2

is the determinant of the Hessian matrix of R+V Σ. Strict concavity of this function means
1−ρAV > 0 and χ(V ) > 0, which in turn implies 1−ρBV > 0. As an immediate consequence,
we get

Proposition 5 At any non-degenerate belief, the quantity-setting platform provider chooses

quantities above the myopic benchmark on both sides of the market.

The intuition behind this result is simple. As the information content of observed prices
is increasing in quantities, the optimal deviation from the myopic benchmark must entail a
higher quantity on at least one side of the market. This raises the marginal revenue on the
other side of the market without a�ecting the marginal informational bene�t of adjusting
the quantity there. It is optimal, therefore, to set a quantity above the myopic level on that
side as well.

In the price-setting scenario, by contrast, lowering the fee on one side of the market has
an ambiguous e�ect on the incentives to lower the fee on the other side because the cross-
partial derivative of the quantity of information with respect to these fees is not zero and
has the opposite sign to the respective derivative of expected current revenue.
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5.3 Maximal experimentation

The maximal experimentation strategy is given by

(nA(p), nB(p)) = arg min
nA,nB

R(p)−R(nA, nB, p)

Σ(nA, nB)
.

where R(p) = pRµ(1) + (1 − p)Rµ(0) is once more the expected full-information payo�.
In general, the associated �rst-order conditions involve third-order polynomials in nA and
nB. Owing to the simpler structure of the quantity-setting scenario, however, it is easier
to obtain closed-form solutions than in the price-setting case, for example by assuming
symmetric signal-to-noise ratios.14

Proposition 6 Suppose that ρA = ρB and u0 6= π0. Then the quantities set by an in�nitely

patient platform provider are

nA(p) =
1

2(u2
0 − π2

0)[u(p) + π(p)]

{

π0(π
2
0 + u2

0) + 4R(p)u0[u(p) + π(p)]

− π0

√

(u2
0 − π2

0)
2 + (2u0π0 + 4R(p)[u(p) + π(p)])2

}

,

nB(p) =
1

2(u2
0 − π2

0)[u(p) + π(p)]

{

(−u0(π
2
0 + u2

0)− 4R(p)π0[u(p) + π(p)]

+ u0

√

(u2
0 − π2

0)
2 + (2u0π0 + 4R(p)[u(p) + π(p)])2

}

.

Proof: See the appendix. �

The reason why these quantities do not depend on the common marginal signal-to-noise
ratio is simple. For ρA = ρB = ρ, the information content of observed prices simpli�es
to Σ(nA, nB) = ρ [n2

A + n2
B], so the maximal experimentation strategy minimizes (R(p) −

R(p))/(n2
A + n2

B). Note that for π0 > u0, both numerator and denominator of nA(p) and
nB(p) are negative, so the quantities remain positive. The knife-edge case u0 = π0 will be
covered later.

The expected prices MA(p) and MB(p) given the quantities nA(p) and nB(p) are straight-
forward to calculate. Comparing them with the myopic optimum con�rms what we have
already seen in the price-setting model: even if the externality parameters u and π are both
smaller than 1, there are parameter constellations such that, on one side of the market, the
expected price for the patient platform provider is higher than the myopic benchmark, as
exemplarily shown for MA in Figure 9.

14With quantities as the choice variables, it is less interesting to consider the limiting case of no uncertainty
about the externality on one side of the market. If π = π, for instance, any deviation from the expected price
on side B must be attributed to noise and is, thus, uninformative. The platform can then only experiment
on side B, and only by adjusting the quantity nA. This situation is isomorphic to the one analyzed in Keller
and Rady (1999).
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p

MA −Mµ
A

Figure 9: Di�erence between the expected prices induced by a myopic and an in�nitely
patient platform provider as a function of beliefs for u0 = 0.1, π0 = 0.7, u = 0.8, u = 0.9,
π = 0.1, π = 0.2, θA = θB = 1.

The intuition behind this �nding is the one we already gave for Proposition 4 in the
price-setting case. If side A is expected to exert a relatively weak externality, i.e., if π(p)
is small relative to u(p), the platform provider optimally learns by strongly increasing the
number of participants on side B, and recoups part of the resulting surplus by inducing a
higher than myopically optimal price on side A.

Maintaining symmetric signal-to-noise ratios, we further assume now that the intrinsic
value of the platform is the same for all users, i.e., u0 = π0. This admittedly rather strong
assumption seems appropriate in a number of examples, such as night clubs and matching
agencies.15 It simpli�es the expressions for the optimal quantities considerably.

Proposition 7 Suppose that ρA = ρB and u0 = π0 = c0. Then the optimal policy of an

in�nitely patient quantity-setting platform provider is symmetric across market sides and

linear in the current belief:

nA(p) = nB(p) = n(p) =
R(p)

c0
= c0

[

p

2− (u+ π)
+

1− p

2− (u+ π)

]

.

Proof: See the appendix. �

The intuition for the symmetry of the optimal quantities is as follows. With identical
intrinsic platform values, the myopically optimal quantities are symmetric. With identical
signal-to-noise ratios, moreover, the incentive to deviate from the myopic optimum is the
same in both quantity dimensions.

15It is clearly less appropriate in other examples, such as merchants and customers in the credit card
market.
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The linearity of the maximal experimentation policy makes it easy to visualize the range
of quantity experimentation; see Figure 10. It is the area bounded below by the myopic
policy and above by the line joining the quantities that are optimal under full information.

-

6 6

0 1p

nµ(p)

n(p)

Figure 10: Range of quantity experimentation for symmetric signal-to-noise ratios and sym-
metric intrinsic values.

Expected prices need not be symmetric. They are

MA(p) = c0 + [u(p)− 1]n(p),

MB(p) = c0 + [π(p)− 1]n(p).

As u(p)+π(p) < 2, either both expected prices are lower than the intrinsic platform value, or
one is lower and the other one higher. The ordering of expected prices depends on the size of
the externalities and on the current belief, and may change with beliefs. Let u < π < π < u,
for example. For high values of p, then, u(p) will exceed π(p) and side A will have to pay a
higher price in expectation than side B, while for low values of p the reverse is true.

As to the comparison with the myopic benchmark, we have

Corollary 1 Under the assumptions of Proposition 7, the expected price induced by an in-

�nitely patient quantity-setting platform provider exceeds its myopically optimal counterpart

on a given side of the market if and only if the expected externality that this side experiences

is greater than 1.

Proof: See the appendix. �

The optimal and the myopic expected prices coincide at the beliefs 0 and 1 or if the
expected externality equals 1. As u(p) + π(p) < 2, this of course implies that at any time
at most one expected price can exceed the myopically optimal level. It also implies that for
the �standard� case of both externalities smaller than 1, both expected prices will decrease
relative to the myopic benchmark.
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6 Conclusion

We have studied optimal behavior of a monopolistic platform provider in a two-sided market
with uncertainty about the strength of interaction between the two sides. The platform
provider either chooses prices or quantities (i.e., participation levels). The demand external-
ities considered are linear on both sides. Fees are charged for participation in the market,
but not per transaction. In this respect, our setting follows the monopoly setting analyzed
in Armstrong (2006).

When the platform provider faces uncertainty about the size of the externality and wants
to maximize its expected lifetime pro�ts, it faces the basic trade-o� between the con�icting
aims of maximizing current payo� and maximizing the information content of the signals
it observes. We have characterized the optimal policies depending on how much weight
the platform provider assigns to future pro�t. If it does not put any weight on the future
(r = ∞), it chooses the myopically optimal actions given its current belief. As there is no
potentially confounding action, even the myopic platform provider continuously accumulates
information about the true state of the world and will, in the limit as time tends to in�nity,
almost surely learn the true state.

If the platform provider puts some weight on the future, it will deviate from the short-
sighted policy and invest in learning. The upper bound on such experimentation is given by
the optimal policy of an in�nitely patient platform provider (r = 0).

The e�ect of experimentation on (expected) prices is ambiguous. Depending on the
parameter constellation, either both prices will be lower than in the myopic benchmark or
one price will be above and one price below the myopically optimal prices. The price on
one side of the market will go up if the externality this side is exerting is weak while the
externality it is experiencing is strong. The higher price recoups part of the surplus created
by the higher participation on the other side of the market.

Our analysis concerns an unrestricted monopoly platform. Future work may want to look
at markets with multiple di�erentiated platforms. As a starting point, it would be interesting
to analyze duopoly experimentation in a two-sided market in which there is single-homing on
both sides and full observability of actions and outcomes. In such a duopoly, a participant
acquired by one platform provider is a participant lost for the competitor. Owing to indirect
network e�ects, this makes demand more sensitive to price changes than demand in the
monopoly setting with a �xed outside option that has been analyzed in this paper. Therefore,
one may conjecture that gaining information about the size of the network e�ect becomes
more important. As has been pointed out in the literature on duopoly experimentation (e.g.,
Mirman et al. 1994, Harrington 1995, Keller and Rady 2003), however, the public information
generated by market signals may have a negative value, in which case the duopolists have
an incentive to generate less information than in the myopic equilibrium.

Suppose, for instance, that market participation is perfectly price-inelastic, as is the
case in the Hotelling-type model introduced by Armstrong (2006). Then, learning does not
increase future equilibrium pro�ts in expectation because pro�ts are linear in beliefs. Since
deviations from the myopic best-response are costly, we conjecture that patient platform
operators do not behave di�erently from in�nitely impatient ones, and learn only passively.
The duopoly setting merits further, more general investigation, and it would be interesting
to understand the e�ect of the degree of di�erentiation on experimentation in a two-sided
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market.
Another interesting extension is to consider a market for two (or more) goods that are

complements. Speci�cally, suppose that demands are linked through positive network e�ects.
Here we have in mind a situation in which a monopolist sells a product (or technologically
related products) to two distinct and distinguishable consumer groups (i.e., the monopolist
can practice third-degree price discrimination). If consumers in each group care directly
or indirectly about the sum of the total number of buyers in both groups (e.g., because a
larger production volume increases average product quality through learning-by-doing), we
can rewrite this as a demand system with indirect network e�ects. Thus our analysis can
possibly be extended to capture experimentation in markets with complementary goods.

Appendix

Proof of Lemma 1

Given a pair of prices (MA,MB), the observed quantity increments are

(

dNA

dNB

)

=

(

ñA

ñB

)

dt+

(

σA 0
0 σB

)(

dZA

dZB

)

with ñA = nA(MA,MB, ũ, π̃) and ñB = nB(MA,MB, ũ, π̃).
Given the subjective probability p currently assigned to the state (u, π), the vector of expected

demands is
(

Ep [ñA]
Ep [ñA]

)

= p

(

nA

nB

)

+ (1− p)

(

nA

nB

)

with nA = nA(MA,MB, u, π) etc.
According to Liptser and Shiryayev (1977), the in�nitesimal change in beliefs is given by

dp = p

(

nA − Ep [ñA]
nB − Ep [ñB]

)(

σ−1
A 0

0 σ−1
B

)(

dZA

dZB

)

where
(

dZA

dZB

)

=

(

σ−1
A 0

0 σ−1
B

)(

dNA − Ep [ñA]
dNB − Ep [ñB]

)

is the increment of a standard two-dimensional Brownian motion relative to the platform provider's

information �ltration.

Simplifying the expression for dp, we obtain

dp = p(1− p)(nA − nA)σ
−1
A dZA + p(1− p)(nB − nB)σ

−1
B dZB.

As dZA and dZB are normally distributed with mean zero and variance dt, and the in�nitesimal

covariance < dZA, dZB > is zero, the change in beliefs dp is normally distributed with mean zero

and variance p2(1− p)2(nA − nA)
2σ−2

A dt+ p2(1− p)2(nB − nB)
2σ−2

B dt. �
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Proof of Lemma 3

We wish to show that in the region where the information content of quantities is increasing in a

fee, the expected quantity on at least one side of the market must be negative.

For a partial derivative of S to be positive, at least one of the di�erences nA − nA or nB − nB

has to be negative. This in turn is equivalent to at least one of the following inequalities holding:

MB > π0 +
d0
dA

(u0 −MA), (16)

MB > π0 +
dB
d0

(u0 −MA). (17)

For the two expected demands to be non-negative, it is necessary that both nA and nB be

non-negative. This requires the following inequalities to hold:

MB ≤ π0 +
1

u
(u0 −MA), (18)

MB ≤ π0 + π (u0 −MA). (19)

Comparing the coe�cients of u0 − MA on the right-hand sides of these four inequalities, we

see that for MA > u0, (18) contradicts both (16) and (17), while (19) does so for MA < u0. For

MA = u0 the contradiction is obvious. �

Strict concavity of the maximand in the Bellman equation

Fixing a belief p and a shadow price of information V = p2(1−p)2v′′(p)/2r, we write the maximand

in the Bellman equation (10) as R(MA,MB, p)+V S(MA,MB) and compute its Hessian, suppressing

the variable p from now on:

H(V ) =

(

−2ℓ0 −(ℓA + ℓB)
−(ℓA + ℓB) −2ℓ0

)

+ V

(

2sA 2sAB

2sAB 2sB

)

.

Its determinant is

h(V ) = 4(ℓ0 − sAV )(ℓ0 − sBV )− (ℓA + ℓB − 2sABV )2.

For global strict concavity of R+ V S, we wish to show that ℓ0 − sAV > 0 and h(V ) > 0.
Since the value function, and hence the maximum of R+V S, is bounded, the latter is bounded

from above along any ray {(MA,MB) : MA = u0 − x, MB = π0 − βx, x ≥ 0} with β ≥ 0 (note that
these fees are all admissible). As

R(u0 − x, π0 − βx) + V S(u0 − x, π0 − βx) =
{

u0 [ℓ0 + ℓAβ] + π0 [ℓ0β + ℓB]
}

x− q(β)x2

with the quadratic function

q(β) = ℓ0 − sAV + (ℓA + ℓB − 2sABV )β + (ℓ0 − sBV )β2,

this implies that q is positive on [0,∞[ . Setting β = 0 yields ℓ0 − sAV > 0.
Next, let V > (ℓA+ ℓB)/2sAB, so that q

′(0) < 0. As a consequence, ℓ0− sBV > 0 since q would
become negative at high β otherwise. Moreover, q assumes its minimum at

β∗ =
2sABV − ℓA − ℓB

2(ℓ0 − sBV )
> 0.
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This minimum equals

q(β∗) = ℓ0 − sAV −
(2sABV − ℓA − ℓB)

2

4(ℓ0 − sBV )
=

h(V )

4(ℓ0 − sBV )
,

implying h(V ) > 0 and concavity of R+ V S.
As V multiplies the strictly convex function S, concavity of R+V S now also follows for shadow

prices V ≤ (ℓA + ℓB)/2sAB. �

Proof of Propositions 6 and 7

For arbitrary ρA and ρB, the �rst-order conditions for the fees nA(p) and nB(p) can be written as

(u0 + [u(p) + π(p)]nB − 2nA)(ρAn
2
A + ρBn

2
B)

+ 2ρAnA

[

R(p)− (u0 + u(p)nB − nA)nA − (π0 + π(p)nA − nB)nB

]

= 0,

(π0 + [u(p) + π(p)]nA − 2nB)(ρAn
2
A + ρBn

2
B)

+ 2ρBnB

[

R(p)− (u0 + u(p)nB − nA)nA − (π0 + π(p)nA − nB)nB

]

= 0.

For ρA = ρB, this system simpli�es to

(u0 + [u(p) + π(p)]nB)(n
2
B − n2

A) + 2(R(p)− nBπ0)nA = 0

(π0 + [u(p) + π(p)]nA)(n
2
A − n2

B) + 2(R(p)− nAu0)nB = 0.

For u0 6= π0, the pair of quantities stated in Proposition 6 constitutes the unique solution to these

equations. For u0 = π0 = c0, setting both quantities equal to R(p)/c0 solves the system. �

Proof of Corollary 1

For u0 = π0 = c0, the myopically optimal expected price on side A simpli�es to

Mµ
A(p) =

c0[1− π(p)]

2− [u(p) + π(p)]
,

so the price di�erence MA(p)−Mµ
A(p) has the same sign as

1 + (u(p)− 1)

[

p

2− (u+ π)
+

1− p

2− (u+ π)

]

−
1− π(p)

2− [u(p) + π(p)]
.

Multiplying with 2− [u(p) + π(p)] and simplifying, we see that this in turn has the same sign as

(u(p)− 1)

{

(2− [u(p) + π(p)])

[

p

2− (u+ π)
+

1− p

2− (u+ π)

]

− 1

}

.

The expression in curly brackets is strictly concave in p; as it vanishes at p = 0 and p = 1, it is

positive for 0 < p < 1. The proof for side B is analogous. �
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