
Sonderforschungsbereich/Transregio 15 � www.sfbtr15.de 

Universität Mannheim � Freie Universität Berlin � Humboldt-Universität zu Berlin � Ludwig-Maximilians-Universität München 

Rheinische Friedrich-Wilhelms-Universität Bonn � Zentrum für Europäische Wirtschaftsforschung Mannheim 
 

Speaker: Prof. Dr. Urs Schweizer. � Department of Economics � University of Bonn � D-53113 Bonn, 

Phone: +49(0228)739220 � Fax: +49(0228)739221 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Economics Department, University of Bergen, H. Foss gt 6, 5007 Bergen, 
 Norway; Email: sjur.flaam@econ.uib.no 

**Institute of Economic Theory I, Humboldt-University at Berlin, Spandauer Str. 1, 10178 Berlin, 
Germany; Email: wolfstetter@googlemail.com 

 

 

 

May 2010 

 

 

 

Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged. 

Discussion Paper No. 321 

On Liability Insurance for 
Automobiles 

 
Sjur Didrik Flåm* 
Elmar Wolfstetter** 

 



On Liability Insurance for Automobiles

Sjur Didrik Flåm

University of Bergen∗
Elmar G. Wolfstetter

Humboldt-University at Berlin†

May 11, 2010

Abstract. Car owners are liable for property damage inflicted on other
motorists. In most countries such liability must be insured by law. That law
may favor expensive or heavy vehicles, prone to suffer or inflict large losses.
This paper explores links between liability rules and vehicle choice. It presumes
cooperative insurance, but non-cooperative acquisition of vehicles. Thus, the
Nash equilibrium and its degree of efficiency depend on the liability regime.
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1. Introduction

As motivation for the present inquiry, recall the following somewhat stylized story:
Until unification of Germany, the East-German car pool comprised mostly inexpensive
species - such as the two-cylinder “Trabbi”. Soon thereafter, many a well-to-do
eastern citizen replaced his Trabbi with an expensive Mercedes Benz. As a result,
the risk exposure of Trabbi owners worsened, whence their insurance rates went up.
At that time, East-German owners of Mercedes Benz enjoyed low liability risk and
thereby favorable premiums. The implicit transfer from the first group to the second
contributed to the speedy change of the East-German car pool - and in part, to the
accelerated extinction of the infamous Trabbi.

Albeit rather unique, these events indicate some lack of efficiency in quite common
liability rules, a lack that calls for closer analysis and maybe legal reform. Three in-
terrelated issues occupy center stage in this regard. One, already mentioned, concerns
monetary transfers from good to bad risks - a fairly frequent problem of insurance.
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Norway; Email: sjur.flaam@econ.uib.no. Support from Finansmarkedsfondet and E.On Ruhrgas is
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On Liability Insurance for Automobiles 2

The second issue revolves around internalization of costs. Third, there is the question
whether established policies favor introduction of relatively expensive or heavy cars,
prone to suffer or inflict great damage.

Insurance is modelled here as a mutual company. Given the collection of cars, liability
risks are pooled so as to provide efficient and acceptable risk sharing. The availability
of such sharing, and its specific form, may, however, tilt the choice of automobile
toward species that cause large property losses.

To bring out that argument, the analysis below combines various concepts of game
theory. Risk sharing is a cooperative business, yielding a core solution that captures
all gains from exchange. In contrast, choice of car is non-cooperative - hence part of
Nash equilibrium in a large, anonymous game where every player behaves as though
he does not affect insurance premiums.

Thus aggregation operates twice, but at different levels: first, by the sharing of pooled
risks; second, by affecting vehicle choice via insurance premiums. Aggregation assures
existence of equilibrium at both levels. In fact, risk exchange between numerous
agents - each bringing a moderate-size, almost independent risk - easily generates
a price-supported core imputation. Further, since individual choice of vehicle has
negligible overall effects, a pure-strategy Nash equilibrium exists under fairly weak
assumptions. In short, solutions are available, but they might be unstable, inefficient,
or unfair.

To argue why, the paper is planned as follows. For motivation Section 2 depicts two
examples. Common to these are negative externalities caused by particular automo-
biles or drivers. Section 3 outlines a model in which vehicle acquisition depends on -
and affects - liabilities. Section 4 formalizes liabilities as random variables and casts
insurance as mutual. Thus policies and premiums become endogenous and built into
car owners’ objectives. Upon facing the pool of automobiles, each buyer chooses a
vehicle so as to maximize his reduced form of objective function. Section 5 considers
existence of pure Nash equilibrium. A few properties of such equilibrium are singled
out in Section 6, and Section 7 concludes.

2. Motivating Examples

We consider property damage caused by collisions between cars. The chances of such
accidents - and the attending losses - depend on numerous factors, including traffic
density and vehicle types. The following examples focus on liability and insurance,
but ignore personal injuries, supposing that each car perfectly protects its driver.1

1Some carmakers promise extra safety for drivers of their vehicles. It is hard, however, to protect
fully against material damages. In fact, there appears to be a tradeoff between the two sorts of
protection.
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Example 2.1 (One Mercedes Benz among Trabbis) Suppose there is one quite ex-
pensive vehicle, called Mercedes. Further suppose its driver is so marvelously skilled
as to never cause any accident. Chances are, however, that other motorists, all cir-
culating in utterly cheap cars, will collide with the one and only Mercedes. Even the
lightest of such collisions causes very expensive repairs on that vehicle. Clearly, if
standard liability is in vigor, the Mercedes owner needs no insurance coverage. Yet
he exposes other motorists to greater risk. If liability insurance is mandatory, and
standard policies are offered at reasonably fair premiums, the owner of the excep-
tional car gets a bargain. Since all others suffer, they might think tort and liability
law sorely in need of reform. Instead of standard liability they would prefer a pure
no fault regime, meaning one that merely covers damages on own car. ♦

Example 2.2 (One SUV among Trabbis) Now replace the Mercedes with a heavy,
quite solid car, called SUV. As before, all other vehicles are light and fragile. But
driving skills are reversed. That is, suppose no driver except the one who owns the
SUV can cause any accident. Whenever he collides, his vehicle suffers negligible dam-
age but totally scraps the countering car. Clearly, only the exceptional driver needs
liability insurance. All others would vote for a standard liability regime which covers
damages inflicted on the other car. Otherwise compulsory insurance might appear
unfair and inefficient. ♦

Thus, either liability regime, standard or no fault, produces undesirable incentives.
Common to these regimes is the negligence of vehicle brands and drivers’ behavior or
skills. In fact, after collision, liability issues mainly hinge upon damages and respon-
sibilities. Plainly, so narrow a perspective ex post induces distortions ex ante. While
a no fault regime favors cheap cars, the standard regime offers advantages for heavy
lorries and SUVs. To mitigate such lack of efficiency and fairness it appears prudent
to condition liability on vehicle and driver type. A setting for doing so is spelled out
in Section 4. But first comes the main structure of our approach.

3. Structure of the Model

This section outlines the model, deferring details on liabilities to the subsequent sec-
tion. There are two stages, recursively connected and brought together in Section 5.
At the second stage, after cars have been chosen, liabilities are shared and insured.
At the first stage, while anticipating insurance premiums, each agent chooses a car.
We begin with the second stage.

Insurance. Automobile owners constitute a large ensemble A, comprising n mem-
bers, referred to as agents.2 For a start, suppose everybody has already chosen his
car. Agent a ∈ A thereafter faces liability La and gets expected utility Eua(−Xa) by

2If a household owns several autos, they could be assigned to different members.
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retaining risk Xa and pays premium ρ(La − Xa) for risk shed. Assume each utility
function ua(·) is concave, strictly increasing and, for now, state-independent.

Suppose agents measure utilities and liabilities in money, and regard either entity as
perfectly transferable. Accordingly, for the purpose of mutual risk-sharing, they

maximize
X

a

Eua(−Xa) subject to
X

a

Xa ≥
X

a

La,

and agree ex ante to evaluate state-contingent risk transfers by a shadow price density
P , associated to the above inequality. Thus, when ρ(La −Xa) = E [P · (La −Xa)] ,
agent a gets the net payoff

πa := sup
Xa

E [ua(−Xa)− P · (La −Xa)] . (1)

From Wilson (1968), the solution to this maximization problem has the following
properties:

Proposition 3.1 (On mutual risk-sharing)
• The sum

P
a πa of net payoffs (1) depends only on the aggregate liability L :=P

a La.
• Likewise, agent a gets a gross payoff

Πa := sup
Xa

E [ua(−Xa) + P ·Xa]

that depends only on the said aggregate L.
• Granted differentiability and interior solutions, Borch’s (1962) rule holds:

P = u0a(−Xa) for each a and optimal Xa.

• If agents have the same utility function, their gross payoffs Πa coincide, and the
net payoffs πa differ only in the gross premiums E [P · La].
• Moreover, in that case, everyone retains the same share Xa = L/n of the aggregate
liability. ¤

Acquisition of car. Stepping back to the first stage, suppose agent a contem-
plates to buy a vehicle from a finite list V of different brands. Most likely, his choice
v ∈ V directly affects his utility function, as indicated by expressly writing uav in lieu
of ua. Thus, with reference to (1), agent a should

maximize πav := sup
Xa

E [uav(−Xa)− P · (La −Xa)] over V. (2)

Our main interest is to establish existence of an equilibrium vehicle profile and explore
some of its properties. To address these issues we must spell out how agents interact.
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Doing so amounts to close and complete the model by describing how liabilities depend
on underlying data and the profile of automobile acquisitions.

Agents differ in type t ∈ T and ownership of vehicle v ∈ V, the set T being fixed
and finite. Any type-vehicle combination c = (t, v) ∈ T×V= : C is referred to as a
characteristic. By slight abuse of notation, we write a ∈ c to indicate that agent a is
of type ta, and owns a vehicle va for which c = (ta, va). In principle, each characteristic
c = (t, v) is possible and perfectly observable. Further, characteristics are presumed
so informative as to preclude concerns with adverse selection.

Let nc be the number of car owners with characteristic c ∈ C. These numbers define
a frequency distribution δ = (δc) := (nc/n) across C. In turn δ - alongside the
liability regime - defines P , La and how these variables are distributed. The links are
explained in the subsequent section.

For now, it suffices to stress that individual objectives, defined in (2), depend on the
distribution δ. Accordingly, let πav(δ) denote the expected net payoff - or indirect
expected utility - that accrues to automobile owner a, upon choosing vehicle v, when
faced with distribution δ.

A pure strategy, vehicle profile a ∈ A 7→ va ∈ V, denoted (va), is declared a Nash
equilibrium iff it generates a distribution δ across C such that

πava(δ) ≥ πav(δ) for all a ∈ A and v ∈ V. (3)

The crucial assumption behind this definition is that no single driver affects the
distribution δ - or at least, each behaves as though he does not. Justification for
assuming so derives from the size of the car pool; drivers are in millions and of diverse
types, each type comprising thousands.3 In short: the game is large; every player
is anonymous and negligible; and interaction is perceived merely via aggregates; see
Schmeidler (1973).

Clearly, ownership of a single car precludes randomized use of several such objects.
Our interest is therefore with the existence and properties of pure equilibria. To
address these issues we must formalize liabilities next - and thereafter spell out how
insurance affects individual payoffs πav(δ).

4. Liability and Insurance

This section deals with drivers’ behavior, liability, insurance, and indirect utility - in
that order. The aim is to outline how the function πav(δ) in (3) could derive from
underlying, more primitive data.

3Clearly, if all drivers of some type opt to change vehicle, the distribution is affected. But
strategic coordination of such sort is neither plausible nor part of the setting.
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Behavior. Independent of each other, each automobile owner a ∈ c equally ran-
domizes his driving behavior b across a fixed, finite set B. Whenever he is party to
a collision, suppose b is identifiable ex post. Such identification is likely to influence
the apportioning of fault and liability. And clearly, after-collision reconstruction of
behavioral modes helps mitigating moral hazards.

Liability. We consider automobile crashes that cause property damages. The basic
event is a collision between two cars from a closed pool. So, implicitly we deal with
a time span during which exactly one collision occurs.

There is a finite list D of possible damages, all measured in money and non-negative.4

Loss of life or limb is regarded as a separate insurance problem and hence not dealt
with. Alternatively, for the sake of a simpler argument, one may suppose that each
automobile offers perfect protection against personal injuries.

After any collision, by assumption, there is no doubt as to the agents involved, their
behaviors, characteristics, and damages.5 Correspondingly, whatever be the appor-
tioning of fault or liability, we assume that transaction costs be negligible. Put
differently: by assumption, there are no litigation costs, and no return to effort, skill,
or time in filing a lawsuit.6

Formally, to realize - or simulate - a collision amounts to random draw of an outcome

ω = (a, b, c, d; a0, b0, c0, d0)

from the finite sample set Ω := (A × B× C×D)2. This particular draw, referred
to as state ω ∈ Ω, means that agents a, a0 - with respective behaviors b, b0 and char-
acteristics c, c0 - have collided and thereby inflicted damages d, d0 on their vehicles.
Mentioning agent a first indicates that he caused the accident - maybe at fault, but
not intentionally.

One should think of state ω as the result of a hypothetical experiment - or simula-
tion - that proceeds in four steps: First, given the distribution δ, orderly select two
categories c, c0 ∈ C by their relative frequency and propensity to collide. Second,
randomize behavioral choices to find b, b0 ∈ B. Third, choose conditional damages d,
d0 ∈ D. Fourth, pick a culprit a ∈ c in equiprobable manner and likewise a victim
a0 ∈ c0.

4There is no problem in letting D be an interval. However, by requiring D to be finite we avoid
some purely technical issues concerning measurability and integrability.

5By hypothesis, the concerned parties do not exaggerate or underestimate various damages. In
particular, they agree on what harms are too ephemeral, speculative or remote to merit compensa-
tion.

6Under a pure no fault system the driver would be barred from ever suing another driver for
damages. That system expressly intends to reduce the legal and administrative fees associated with
insurance claims.
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Thus the state set Ω is endowed with an objective probability measure, defining an
expectation operator E.7 Note that accident risk is construed as endogenous and
almost idiosyncratic. Systematic or exogenous risks - caused by say, the weather -
are presumed unimportant or constant, hence ignored.

Let X := RΩ denote the linear space of contingent claims or liabilities. Any member
X ∈ X is a random variable ω 7→ X(ω). An automobile owner a ∈ c who collides
with a0 ∈ c0 faces state-dependent liability

La(ω) :=

⎧
⎨
⎩

I(b, c, d; b0, c0, d0) when ω = (a, b, c, d; a0, b0, c0, d0),
i(b, c, d; b0, c0, d0) when ω = (a0, b0, c0, d0; a, b, c, d),
0 otherwise.

(4)

Plainly, La belongs to X, and it depends on who caused the collision. But it does
not depend on the names a ∈ c, a0 ∈ c0 of the colliding parties; only their behaviors,
characteristics and damages come into consideration.8 In particular, as long as a ∈ c,
we may write Lc instead of La. Note that, unlike Shavell’s (1982) setting, care is
bilateral here, and both parties to a collision may suffer direct liabilities.

Part of the rationale for liability is to deter reckless or criminal behavior. When b or
b0 qualify as such, La typically contains an element of punishment. Liability may also
reflect on various psychological phenomena, be it diminished rationality, weakness of
will, or lack of attention.

In (4) the functions I, i : (B×C×D)2 → R prescribe the expenses of the injurer
and the injured respectively. Typically, the forms of these indemnity functions I(·)
and i(·) are influenced by liability law and insurance institutions. Together the two
functions characterize and define the regime at hand.

Example 4.1 (Standard versus a no fault regime) Consider two disparate liabil-
ity regimes that are widely used. In the first, the culprit is responsible for the entire
damage d+ d0:

La(ω) :=

½
d+ d0 if ω = (a, b, c, d; a0b0, c0, d0),
0 otherwise.

(standard)

The second regime holds each party responsible merely for the damage on the own
car:

L̂a(ω) :=

⎧
⎨
⎩

d if ω = (a, b, c, d; a0, b0, c0, d0),
d if ω = (a0, b0, c0, d0; a, b, c, d),
0 otherwise.

(no fault)

7Empirical estimates of that measure can be constructed from extensive data bases; see Chiappori
and Salanié (2000).

8Put differently: although the insurance policy is written for its particular holder, by assumption,
when executed, it only invokes general structure, observable characteristics, and non-disputable
contingencies.
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Since
P

a La =
P

a L̂a, we get
P

a πa =
P

a π̂a and P = P̂ . Suppose utilities indepen-
dent of state and vehicle - and identical so that ua = u. Then, agents opt to retain
the same risk Xa = L̄ :=

P
a La/n. The price density becomes P = u0(−L̄), giving

uniform gross payoffs

Πa = Π̂a = Eu(−L̄) +E
£
u0(−L̄) · L̄

¤
for each a.

However, the difference between net payoffs can become large. To see this, let A
comprise merely two agents: a, a0, owning vehicles v, v0, and suppose damages d, d0

are deterministic. Ex ante expectation is then taken over only three exclusive events,
namely: either one agent a or a0 causes an accident, presumed to happen with prob-
ability p > 0, or there is no mishap. Suppose d is significantly smaller than d0. Posit
d̄ = (d+ d0)/2 to get

πav − π̂av = E
h
P · (L̂a − La)

i
= 2pu0(−d̄)

£
da − d̄

¤
,

and quite similarly for the other agent a0. Hence πav < π̂av and πa0v0 > π̂a0v0. That
is, to no surprise, the owner of the more expensive car prefers the standard liability
regime over no fault.

As said, a problem with either regime is its negligence of car-driver characteristics.
A standard regime favors an expensive Mercedes Benz - and particularly so when its
driver is infallible. In contrast, no fault liability benefits the SUV - and especially so
when driven with little care. Either combination externalizes accident costs caused
by particular vehicles or drivers - and thus induces an undesirable profile of cars.

To indicate how one might mitigate these defects let v denote the value (or weight)
of the vehicle. Then, with a ∈ c = (t, v), a0 ∈ c0 = (t0, v0), a hybrid regime

L̃a(ω) :=

⎧
⎨
⎩

d+ v
v+v0

d0 if ω = (a, b, c, d; a0, b0, c0, d0),
v0

v+v0
d0 if ω = (a0, b0, c0, d0; a, b, c, d),

0 otherwise,

which covers portions of inflicted and suffered damages, appears better at internaliz-
ing some accident costs caused by expensive or heavy vehicles. ♦

Real regimes differ in strictness and negligence standards. On the one hand, strictness
is embodied in (4). On the other, (b, b0) presumably determines the parties’ degree of
negligence. As is fairly well known, strictness and standards, alongside insurance, af-
fect drivers’ behavior; see Cohen and Dehejia (2004). We do not consider the strength
or nature of such mechanisms.9 Our focus is rather on the link between liability rules
and choice of vehicle. That link passes via insurance.

9Conversely though, the model accounts for the fact that behavior affects the frequency and
severity of accidents.
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Liability insurance.10 There are, of course, several ways to organize provision
and purchase of coverage. We choose to model the arrangement as a mutual com-
pany. Operation of that company largely depends on the vehicle profile (va) in place.
Accordingly, for the remainder of this section fix (va) and thereby the distribution δ.

For sake of greater generality and realism let utility now depend on the state. So,
uav(ω, r) denotes the utility of agent a in state ω, when driving vehicle v and getting
revenue r added to his wealth.11 If agent a opts to retain Xa ∈ X of his liability risk,
he gets expected utility Euav(−Xa) := Euav(ω,−Xa(ω)) - the expectation being
taken with respect to ω.12

Since the vehicle choice of each agent is fixed in this section, we write only ua instead
of uava . Further, to simplify arguments, in the main, suppose that utility be transferable
- whence referred to as payoff. Accordingly, for any state ω ∈ Ω and coalition A ⊆ A
let

r ∈ R 7→ uA(ω, r) := sup

(
X

a∈A
ua(ω, ra) :

X

a∈A
ra ≤ r

)

denote the state-dependent, aggregate payoff function, often assigned to a fictitious
agent declared representative.13 Our chief interest is with the grand coalition A = A
and the corresponding function uA(ω, ·), evaluated at aggregate liability L(ω) :=P

a∈A La(ω).
14

Naturally, each ua(ω, ·) hence uA(ω, ·) is increasing, but neither need be differentiable.
To handle such objects, and to account for implicit constraints, if any, the following
generalized notion of differentiability comes expedient. Given a function f from a
vector space Y into R∪ {−∞}, a linear g : Y→ R is declared a supergradient of f at
y ∈ Y, written g ∈ ∂f(y), iff f(y) is finite and

f(·) ≤ f(y) + g(·− y).

10Liability - and associated insurance - often creates incentive problems and legal disputes. So, the
concept has a somewhat negative ring to it. Many difficultes stem from requiring mainly one party
to pay attention and take precautions; see papers by Cooter, Priest, Shapiro and Winter (1991).
Traffic accidents stand apart because care had better be bilateral.
11Agents need, however, not rank welfare according to final wealth. They might instead consider

appropriate reference levels and treat gains different from losses; see Safra and Segal (2008) or
references therein.
12As said, personal injuries are separate whence not considered. To ccount for them would require

inclusion of more states - and state-dependent utilities - that reflect on after-accident health, work
ability, or physical pain. Admittedly, the notion of pecuniary compensation for personal injuries is
rather problematic.
13For a nice presentation, see Magill and Quinzii (1996).
14Clearly, for this construction to make sense, liabilities must be perfectly divisible and - like

utilities - be transferable at no extra cost.
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In these terms, we call P ∈ X a shadow price density iff P (ω) ∈ ∂ruA(ω,−L(ω)) for
each ω ∈ Ω, where ∂r denotes the partial subdifferential. Note that when X = RΩ

has inner product hx, x̂i = E(x · x̂), it holds P ∈ ∂EuA(−L) = [∂ruA(ω,−L(ω))]ω∈Ω .
As already indicated in Example 4.1, a price density P structures risk-sharing. For
a more comprehensive and precise statement, let now LA :=

P
a∈A La denote the

aggregate liability for any coalition A ⊆ A.

Theorem 4.1 (On transferable utility, risk sharing, shadow price, and core solu-
tion, Evstigneev and Flåm (2001))
• Given a shadow price density P , the payoff profile a 7→ πa defined by (1) constitutes
a core allocation in the transferable-utility, cooperative game where coalition A ⊆ A
can secure itself expected payoff EuA(−LA).
• A shadow price density exists when uA(ω, ·) is globally concave, and finite-valued at
−L(ω) for each ω ∈ Ω. If moreover, uA(ω, ·) is differentiable at every −L(ω), then
the density is unique.
• For any shadow price density P, the allocation (Xa) of the aggregate liability L is
optimal iff Borch’s rule holds in the generalized, state-dependent form:

P (ω) ∈ ∂rua(ω,−Xa(ω)) for each a ∈ A and ω ∈ Ω.

• Conversely, if these inclusions hold, and
P

a∈AXa = L, then P is a shadow price
density.
• Any shadow price density P decentralizes the choice of retained liability across
agents and events:

Xa(ω) ∈ argmax
r∈R

{uava(ω,−r) + P (ω) · r} for each a ∈ A and ω ∈ Ω. ¤

Indirect utility, a chief object in our analysis, now emerges forthwith:

Corollary 4.1 (Indirect utility) The joint distribution of La and the shadow price
density P is determined by the underlying distribution δ. Thus, any agent a, upon
choosing vehicle v, foresees an indirect expected utility

πav(δ) := sup
Xa

E [uav(−Xa)− P · (La −Xa)] (5)

that depends only on δ. ¤

By hypothesis: each a ∈ A regards δ as unaffected by himself. The optimal choice
of Xa(ω) in (5) can be settled state by state. That is,

πav(δ) := E

∙
sup
r∈R

{uav(ω,−r) + P (ω) · r}

¸
−E [P · La] .
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The upshot is that core imputation (5) is the reduced payoff function in (3).15 Note
that insurance policies and premiums are endogenous. Also note that the contingent
price P (ω) depends on car-driver characteristics.

Onmarket-based insurance. It is appropriate to digress briefly and sketch another
construction of πav(·) - one that does not presume transferable utility. A retained
liability profile a ∈ A 7→ Xa ∈ X, together with a price density P ∈ X, constitutes a
competitive equilibrium iff

P
aXa = L, where Xa will

maxEuava(−Xa) subject to E [P ·Xa] ≥ E [P · La] . (6)

(6) models the insurance choice of agent a in a pure exchange economy where P (ω) is
the Arrow-Debreu price for a claim to one unit of account in state ω. For existence and
properties of such equilibrium see [1] and [8]. As above, to block arbitrage, pricing
E [P ·] must be linear on the space X of contingent claims. Clearly, the net insurance
premium E [P · (La −Xa)] paid ex ante depends on manifold features of the vehicle
and its driver. Everything else equal, the distribution of P is determined by δ. So,
competitive equilibrium again yields indirect expect payoff as in (5).

5. Equilibrium Choice of Car

The preceding sort of insurance is marked by anonymity. Likewise, the choice of car
defines a large game in which interaction works only via the distribution of choices.
This section considers existence of Nash equilibrium (3) in that game. We follow
Schmeidler (1973) and Rath (1992).16

Recall that any distribution δ := (δc) - alongside a liability regime - generates a profile
a 7→ La defined by (4). In turn, that profile gives rise to at least one shadow price
density P. Further, taking La and P as given, agent a chooses a vehicle

va ∈ argmax
v

πav(δ) = argmax
v∈V

½
sup
Xa∈X

E [uav(−Xa) + P · (Xa − La)]

¾
.

Finally, the resulting vehicle profile (va) defines a unique distribution δ across C. This
string of connections, just outlined, is summarized next:

distribution δ ; liability profile (La) ; price density P ;

a set of vehicle profiles (va) ; a set D(δ) of distributions.

δ is called an equilibrium distribution iff δ ∈ D(δ). Any such object belongs to the
standard simplex

∆(C) :=

(

δ ∈ RC+ :
X

c∈C
δc = 1

)

.

15This arrangement differs from the mutuals studied by Henriet and Rochet (1987) where fees are
flat and modified by lump sum transfers.
16For material on anonoymous games see Bergin (2005) and references therein.
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Note that D is a correspondence from ∆(C) into itself. For a precise definition of D,
denote by 1(c) the unit vector in RC that has 1 in component c, and zero elsewhere.
In these terms posit

D(δ) :=
1

n

X

a∈A
conv {1(ta, va) : va ∈ argmaxπav(δ)} . (7)

Here n := #A is the number of agents; ta is the type of agent a; and conv denotes
the operation of taking convex hull. That operation allows and reflects randomized
choice of vehicle.

Theorem 5.1 (Existence of equilibrium) Suppose each mapping δ 7→ πav(δ) is con-
tinuous. Then a Nash equilibrium exists in pure strategies if argmaxv πav(δ) always
is single-valued.

Proof. The correspondence δ ; D(δ), as defined here above, has closed graph
and convex, non-empty values. Hence it admits a fixed point alias an equilibrium
distribution δ ∈ D(δ). Since va := argmaxv πav(δ) is always a singleton, we get a
pure Nash equilibrium, and δ = D(δ) =

P
a∈A 1(ta, va)/n. ¤

It suits the generality of argument, and the size of the player population, to ac-
commodate infinite agent sets. Moreover, in doing so, we shall dispense with the
assumption that vehicle choice be unique.

Regard A now as a measure space, endowed with sigma-algebra A and probability
measure da. By a vehicle profile is meant a mapping a ∈ A 7→ va ∈ V such that
a 7→ 1(ta, va) is measurable. It follows forthwith from Schmeidler [21]:

Theorem 5.2 (More on existence of equilibrium) Suppose each mapping δ 7→ πav(δ)
is continuous. Now let (A, A, da) be a non-atomic probability space. Assume

{a ∈ A : ta = t} ∈ A, and {a ∈ A : πav(δ) > πav0(δ)} ∈ A

when t ∈ T, v, v0 ∈ V, and δ ∈ ∆(C). Posit

D(δ) :=

Z

A

{1(ta, va) : va ∈ argmaxπav(δ)} da.

Then a Nash equilibrium exists in pure strategies. ¤

On drivers’ behavior. For simplicity, we assumed that a driver’s behavior is de-
termined by his characteristics. Hence it has not been viewed as a decision variable.
It is conceivable though, that his utility depends directly on own behavior. If so,
behavioral choice becomes part of his strategy. This feature complicates matters.
Nonetheless, it could be incorporated rather easily along the following lines.
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Suppose all agents a ∈ c have the same utility function ubc, depending on own behavior
b and characteristic c. Suppose agents with characteristic c randomize their behavior
independently but identically, each using the same behavioral mix

β ∈ ∆(B) :=
(

β ∈ RB+ :
X

b∈B
βb = 1

)

.

Then, for any agent a ∈ c = (t, v), replace (5) by

πav(δ) := max
β
max
Xa

E [ubc(−Xa)− P · (La −Xa)] . (8)

Since La = Lc for all a ∈ c, it follows that the optimal Xa = Xc. That is, those with
equal characteristics retain equal risk and pay the same premium. Using (8) instead
of the objective in (2), and

D(δ) :=
1

n

X

c∈C

X

a∈c
conv {1(ta, va) : va ∈ argmaxπav(δ)}

instead of (7), the fixed point argument in Theorem 5.1 still holds verbatim.

6. Some Properties of Equilibrium

Singled out in this section are some straightforward features of risk sharing and
acquisition of automobiles.

First, since the game is large, and risks are almost independent, one may, to good
approximation, regard aggregate liability as fairly constant. Then, in extremis, car
owners can fully protect themselves:17

Proposition 6.1 (No aggregate liability risk) Suppose aggregate liability L is con-
stant. Also suppose agents have strictly concave, state-independent utility functions.
Then, no agent carries any risk. That is, the optimal allocation (Xa) of retained lia-
bility risk makes each Xa constant. Moreover, the price density ω 7→ P (ω) is constant
as well. These assertions hold even if utilities are not transferable.

Proof. By assumption there exists welfare weights λa > 0 such that the equilib-
rium allocation of liability risk will

maximize
X

a∈A
λaEuava(−Xa) subject to

X

a∈A
Xa ≥ L.

Clearly, since L is constant, for any feasible allocation (Xa) the corresponding mean-
value profile (EXa) remains feasible. Moreover, by risk aversion, uava(−EXa) ≥
17This result goes back to Malinvaud (1972-3). For an extension see Cass et al. (1996).
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Euava(−Xa). In fact, if some Xa is non-degenerate, that last inequality is strict. The
constancy of P follows from Borch’s rule. ¤

Proposition 6.2 (No aggregate risk makes a driver care for his expected liabil-
ity) Let aggregate liability L be constant. Suppose the utility of agent a is not directly
affected by his vehicle choice. Then he prefers the regime that yields smallest expected
liability ELa.

Proof. Since the aggregate loss is constant, so is P as well. Upon comparing one
liability instance La with another L̂a, agent a sees a difference

πav − π̂av = E
h
P · (L̂a − La)

i
= P ·

h
EL̂a −ELa

i
. ¤

Since insurance is purchased at anonymous prices, one naturally expects that equi-
librium treats equal agents equally:

Proposition 6.3 (Equal treatment) Suppose two agents a, a0 have identical utility
functions: uav(·) = ua0v(·) and are of the same type. Then, presuming they select the
same sort of vehicle, they carry the same liability: Xa = Xa0 and pay the same gross
premium: E [P · La] = E [P · La0 ] , hence πa = πa0 . ¤

The introduction alluded to dynamic aspects - and the instability of some situa-
tions. Invoking standard evolutionary arguments, we may state forthwith:

Proposition 6.4 (Vanishing inferior vehicles) Suppose all agents of type t have the
same utility function ut,v. Let δ(v |t) denote the frequency with which vehicle v is
chosen among agents of type t. Out of equilibrium, suppose the rate of change δ̇(v |t)
in that frequency satisfies

δ̇(v |t) = ft,v(δ, πt,v −
X

v0∈V
δ(v0 |t)πt,v0),

featuring continuous functions ft,v which satisfy
P

v ft,v ≡ 0, ft,v(δ, r) = 0 ⇔ r = 0,
and sign [ft,v(δ, r)] = sign [r] . Then, in equilibrium, expected payoff πt,v is constant
across vehicles v for which δ(v |t) > 0. In particular, if two categories c = (t, v),
c = (t, v0) give uc = uc0, but liabilities E [P · Lc] < E [P · Lc0 ] respectively, then c0 will
disappear from the pool. ¤

7. Concluding Remarks

Automobile use is a major source of negative externalities - hence heavily regulated
and taxed; see Parry et al.(2007). Plainly, putting another vehicle on the road in-
creases those externalities. Our concern has been with a less recognized spill-over.
It stems from replacing vehicles, already on the road, by others, more expensive



On Liability Insurance for Automobiles 15

to collide with. Such replacement heightens other motorists’ liability for property
damages.

Upon dealing with such damages, liability law aims at compensating victims, deter-
ring injurers, and setting standards of behavior. Legal practice has, however, not
fully accounted for externalities associated with vehicle choice. Economic theory, in
contrast, ceaselessly advocates that costs better be internalized, and it recommends
arrangements that facilitate voluntary exchange. Faithful to those maxims, econo-
mists would advice that liability rules and insurance policies should reflect the choice
of vehicles. Characteristics c = (t, v), more prone to inflict or suffer large damages,
should face less favorable liabilities, indemnities or premiums. Otherwise, the share
of vehicle brand v in the pool will be undesirably large.

In emphasizing this feature we have worked with reduced payoffs and ignored personal
injuries. Further, for simplicity, we assumed that, after a collision, there is perfect
information, complete solvency, and costless resolution of disputes.

Format (4) is general enough to account for manifold concerns. It can incorporate
deductibles and feature caps on punitive damages. Most important, it can reflect car-
driver characteristics. In designing a liability rule (4) it is prudent to pursue at least
two goals: compensation and deterrence - twin goals often in conflict. The regime
could and should, however, also incite drivers to choose vehicles so as to reduce the
frequency and severity of accidents. As customary, to that end it is expedient that
cost be internalized.
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