
Sonderforschungsbereich/Transregio 15 � www.sfbtr15.de 

Universität Mannheim � Freie Universität Berlin � Humboldt-Universität zu Berlin � Ludwig-Maximilians-Universität München 

Rheinische Friedrich-Wilhelms-Universität Bonn � Zentrum für Europäische Wirtschaftsforschung Mannheim 
 

Speaker: Prof. Dr. Urs Schweizer. � Department of Economics � University of Bonn � D-53113 Bonn, 

Phone: +49(0228)739220 � Fax: +49(0228)739221 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

* Humboldt University of Berlin 
 

 
 

 

 

March 2010 

 

 

 

 

 

Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged. 

Discussion Paper No. 311 

   
Rent-seeking Contests under 
Symmetric and Asymmetric 

Information 
 

*Cédric Wasser 
 
 



Rent-seeking Contests under Symmetric and

Asymmetric Information

Cédric Wasser∗

March 16, 2010

Abstract

We consider a variant of the Tullock rent-seeking contest. Under symmetric

information we determine equilibrium strategies and prove their uniqueness.

Then, we assume contestants to be privately informed about their costs of ef-

fort. We prove existence of a pure-strategy equilibrium and provide a sufficient

condition for uniqueness. Comparing different informational settings we find

that if players are uncertain about the costs of all players, aggregate effort is

lower than under both private and complete information. Yet, under additional

assumptions, rent dissipation is still smaller in the latter settings. Numerical ex-

amples illustrate that there is no general ranking between private and complete

information. The results depend on the distribution costs are drawn from and

on the exact specification of the contest success function.

JEL classification: D72, D74, D82, C72

Keywords: Rent-seeking, Contest, Asymmetric Information, Private values

∗Humboldt University of Berlin, Institut für Wirtschaftstheorie I, Spandauer Str. 1, D–10178 Berlin,
Germany; email: cedric.wasser@wiwi.hu-berlin.de. For valuable discussions and comments I
am grateful to Philipp Denter, Jörg Franke, Thomas Giebe, Ulrich Kamecke, Yvan Lengwiler, Johannes
Münster, Georg Nöldeke, Roland Strausz, Elmar Wolfstetter, as well as participants at the Young Re-
searchers Workshop on Contests and Tournaments in Magdeburg and the 4th End-Of-Year Confer-
ence of Swiss Economists Abroad in Basel. Financial support from the Deutsche Forschungsgemein-
schaft through SFB/TR 15 is gratefully acknowledged.

1



1 Introduction

Many economic situations can be described as contests among players who invest

costly effort to increase their probability of winning a prize. Examples are rent-

seeking, lobbying, R&D races, election or advertising campaigns, litigation, and, of

course, also military conflict as well as sports.1 In all these situations, contestants

might often be unsure about the abilities of their rivals for exerting effort or might

not know their rivals’ values for the prize. In addition, players might even be uncer-

tain about their own ability or value. In this paper, we study how uncertainty and

asymmetry of information affect the outcome of a contest compared to the complete

information case.

Contests have been modeled in a variety of ways. A distinction may be made be-

tween perfectly and imperfectly discriminating contests, depending on whether the

player who invested the highest effort wins with certainty or not. The (first-price)

all-pay auction is a prominent example of the former and has been thoroughly stud-

ied both with symmetrically and asymmetrically informed contestants.2 One of the

most popular imperfectly discriminating contests is the rent-seeking contest by Tul-

lock (1980). In the simplest version of that model, the winning probability of player

i amounts to x i

.∑
j

x j where x i denotes i ’s effort. This is also known as the lottery

contest.3 A vast literature has developed extending Tullock’s model in numerous di-

rections. Yet, in contrast to the all-pay auction, there are only very few studies that

depart from the basic assumption of players being all completely informed about ev-

ery aspect of the game. Clearly, the case of asymmetric information in rent-seeking

contests deserves greater attention.

Some progress has been made in the analysis of Tullock contests under asymmet-

ric information for the case where there are only two players who both privately know

their type (i.e., their valuation for the prize or their cost per unit of effort). Hurley and

Shogren (1998a) numerically study the equilibrium of the lottery contest assuming

types are drawn from two different discrete distributions. A more tractable distribu-

tional assumption allows Malueg and Yates (2004) to obtain a closed form solution

for equilibrium efforts in the Tullock contest when there are only two possible types

1See Konrad (2009) for a recent survey on contest theory and its application to those examples.
2See, e.g., Baye, Kovenock, and de Vries (1996) for the symmetric and Krishna and Morgan (1997)

for the asymmetric information case.
3The winning probability is equivalent to that in a lottery where each player i buys an amount x i

of lottery tickets and puts them into a box from which the winner is drawn.
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for both players. A closed form for a different binary distribution is found by Münster

(2009) who considers a repeated lottery contest. Without such rather specific distri-

butional assumptions, however, equilibrium strategies can typically not be expressed

in closed form. For a more general binary distribution, Katsenos (2009) explores a

lottery contest that is preceded by a signaling stage. In a first step towards less re-

strictive distributional assumptions, Fey (2008) proves the existence of a symmetric

pure-strategy equilibrium for a lottery contest with types drawn from a continuous

uniform distribution.4

In this paper, we analyze a contest among n ≥ 2 players where player i ’s win-

ning probability is given by the contest success function (x i +σ)
.�∑

j
x j +nσ

�
with

σ ≥ 0. This is a variant of the lottery contest that has been proposed by Amegashie

(2006). He argues that introducing the parameter σ allows for increasing the noise

in the contest success function in a tractable way. Alternatively, σ can be thought of

as a commonly known amount of effort that each player did already invest at an ear-

lier stage (e.g., in order to enter the contest). Myerson and Wärneryd (2006) suggest

a similar extension in order to remedy the problem of the Tullock contest success

function being not strictly a member of the class axiomatized by Skaperdas (1996).5

We introduce uncertainty by assuming each player’s constant marginal cost of ef-

fort to be drawn from a continuous probability distribution. Varying the amount of

information contestants have regarding cost realizations, we obtain three different

informational settings. On the one hand, we consider two flavors of symmetric in-

formation: either all players are completely informed about all marginal costs, or all

players are unaware of the realization of all marginal costs (including their own). On

the other hand, we focus on the case of asymmetric information where each player

privately knows his marginal cost.

4There is also a small literature on one-sided asymmetric information, including Hurley and
Shogren (1998b) who consider a lottery contest where one player’s valuation for the prize is com-
monly known whereas the other player’s is private information. In a similar setting, Denter and Sisak
(2009) explore the uninformed player’s incentives to acquire information. Assuming common values,
Wärneryd (2003) studies a more general version of the Tullock contest under one-sided asymmetric
information. This analysis is extended to multi-player contests in Wärneryd (2009).

5If σ = 0, winning probabilities are not defined if all players choose zero effort. It is usually as-
sumed that in this case all players are equally likely to win the contest. The contest success function
therefore exhibits a discontinuity: if no player invests any effort, player i can increase his probability
of winning from 1

n
to 1 by choosing an arbitrarily small but positive level of effort. An implication

of this feature is that under complete information there are always at least two players that choose a
strictly positive effort in equilibrium. Assuming σ > 0 removes the discontinuity and opens up the
possibility of equilibria where only one player is active or where all players choose zero effort.
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Analyzing the contest under symmetric information, we complement the discus-

sion in Amegashie (2006) by determining equilibrium strategies in the general case

and formally proving their uniqueness. For the uniqueness proof we adopt the ap-

proach of Cornes and Hartley (2005) and extend it to the case whereσ> 0. Moreover,

we find a way of formulating the equilibrium strategies that turns out to be very use-

ful for comparing different informational settings to each other. Under asymmetric

information we prove the existence of an equilibrium in monotone pure strategies,

provided that σ > 0. In addition, we present a sufficient condition for the equilib-

rium to be unique. In contrast to Fey (2008) who develops his own existence proof

for the uniform two-player case, we apply general results for Bayesian games derived

by Athey (2001) as well as Mason and Valentinyi (2007).

Combining the equilibrium strategies determined under symmetric information

with results characterizing equilibrium strategies under asymmetric information we

find the following. If players are uncertain about the costs of all players, i.e., if they

engage in a no information contest, ex ante expected aggregate effort is lower than

under both private and complete information. Yet, under additional assumptions,

rent dissipation is still smaller in the latter settings. In addition, our characteriza-

tion of the private information equilibrium allows for a generalization of some of the

numerical findings by Fey (2008) and Hurley and Shogren (1998a).

We complement the analytical results in this paper with additional insights ob-

tained from approximating equilibrium efforts under asymmetric information nu-

merically. A short discussion of the numerical methods we use can be found in Ap-

pendix B. In particular, our numerical examples illustrate the fact that there is no

general ranking between the private and complete information contest in terms of

expected efforts. The results depend on the distribution of costs, the number of play-

ers, and the parameter σ. In contrast, in the all-pay auction the two informational

settings can be ranked clearly: Morath and Münster (2008) show that expected efforts

are generally higher under private information than under complete information.

In the literature, in addition to differences in costs, also models where players dif-

fer with respect to their valuation for the prize are considered. In Section 6 we discuss

to what extent our results also hold in the case where valuations instead of costs are

randomly drawn. Whereas, using a simple transformation of variables, findings for a

given information structure readily extend, this is in general not true for comparative

results involving the no information contest.

Contrary to our results for the Tullock contest, for the all-pay auction with uncer-
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tain costs there is no general ranking in terms of expected efforts between no infor-

mation and the other two settings. However, for the two-player all-pay auction with

uncertainty regarding valuations Morath and Münster (2009) find expected efforts

to be higher under no information than under private information. Hence, in the

all-pay auction with value uncertainty a contest organizer who directly benefits from

players’ efforts would ex ante prefer no information over the other two informational

settings. In contrast, in the Tullock contest with cost uncertainty we analyze in this

paper the no information contest is the worst option for the contest organizer.

The paper is organized as follows. Section 2 describes the basic assumptions of

the model. In Section 3 we analyze the contest under symmetric information. Sec-

tion 4 is devoted to the asymmetric information case. In Section 5 we compare ex-

pected efforts and rent dissipation in the different informational settings. A variant

of the model where values rather than costs are randomly drawn is considered in Sec-

tion 6. Section 7 concludes. Some of the proofs are relegated to Appendix A, whereas

Appendix B contains notes on the numerical methods we apply.

2 The Model

There are n ≥ 2 risk neutral players who compete in a contest for a single prize of

value 1. Each player i invests a level of effort x i ≥ 0. Efforts are chosen simultane-

ously. Depending on the efforts of all players, the probability of player i winning the

prize is given by the contest success function

p i (x) :=





x i +σ∑n

j=1 x j +nσ
if
∑n

j=1 x j +nσ> 0,

1

n
otherwise

(1)

where x := (x1,x2, . . . ,xn ) andσ≥ 0. Providing effort is costly. There are no fixed costs

and each player i has constant marginal cost c i > 0. Player i ’s payoff from taking part

in the contest is therefore

u i (x, c i ) := p i (x)− c i x i .

Note that, instead of interpreting p i (x) as the probability of winning, we could also

think of it as the share of the prize player i obtains, assuming the prize is divisible.

Let us now introduce uncertainty into our model by assuming that, for each
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player i , the parameter c i is the realization of a random variable C i which is continu-

ously distributed according to Fi with density f i and support [c i , c i ]where 0< c i < c i .

This is commonly known to all players.

Consider the following timing. There is a point in time, T1, where each player

i privately learns the realization of his cost c i . At some later point in time, T2, all

players are informed about the realizations of all cost parameters c := (c1, c2, . . . , cn ).

The time after T2, between T1 and T2, and before T1 is usually referred to as ex post,

interim, and ex ante. Depending on the time at which we assume the contest to take

place, we have the following three different types of contests.

Suppose the contest takes place ex post. As all players are informed about c, we

have a game of complete information which we will refer to as the complete informa-

tion contest. Given c, a Nash equilibrium of this game specifies an equilibrium effort

level x ∗i (c) for each player i such that

x ∗
i
(c)∈ arg max

x i

u i (x i , x∗
−i
(c), c i ) ∀i , (2)

where x∗−i (c) :=
�

x ∗1(c), . . . ,x ∗i−1(c),x ∗i+1(c), . . . ,x ∗
n
(c)
�

.

If the contest takes place at the interim stage, each player is only informed about

his own costs. Let ξi (c i ) denote the level of effort that player i chooses if his privately

known cost parameter is c i . A pure-strategy Bayesian Nash equilibrium for this pri-

vate information contest specifies an equilibrium strategy ξi : [c i , c i ]→ R+ for each

player i such that

ξi (c i )∈ arg max
x i

E [u i (x i ,ξ
−i
(C−i ), c i )] ∀i , c i ∈ [c i , c i ], (3)

where ξ
−i
(c−i ) := (ξ1(c1), . . . ,ξi−1(c i−1),ξi+1(c i+1), . . .ξn (cn )).

Finally, suppose the contest takes place ex ante. In this case, players have no in-

formation concerning cost parameters c other than the distribution functions they

are drawn from. We will call this variant the no information contest. In a Nash equi-

librium each player i invests X i such that

X i ∈ arg max
x i

E [u i (x i , X−i ,C i )] ∀i ,

where X−i := (X1, . . . , X i−1, X i+1, . . . , Xn ).

Note that E [u i (x i , X−i ,C i )] = u i (x i , X−i , E [C i ]) which implies X i = x ∗i (E [C]). Thus,

the no information contest is equivalent to the complete information contest where
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each player i ’s costs are commonly known to amount to E [C i ].

In both the complete information contest and the no information contest all con-

testants hold exactly the same information, i.e., the contest takes place under sym-

metric information. By contrast, players in a private information contest all hold dif-

ferent information regarding cost parameters; they play a game under asymmetric

information. In the following, we will, in turn, take up the task of analyzing equilibria

first for the symmetric and then for the asymmetric information case.

3 Symmetric Information

Consider the complete information contest: all players know the realization of c at

the time of their effort decision. For the following it is useful to perform a change of

variables by setting yi := x i+σ for all i . Define Y :=
∑n

i=1 yi and Y−i := Y−yi . A contest

where player i chooses effort x i ∈ [0,∞) obtaining utility u i (x, c i ) is equivalent to a

contest where player i chooses yi ∈ [σ,∞) obtaining utility

vi (yi , Y−i , c i ) :=





yi

Y−i + yi

− c i

�
yi −σ

�
if Y−i + yi > 0,

1

n
− c i

�
yi −σ

�
otherwise.

Observe that if Y−i > 0, vi (yi , Y−i , c i ) is strictly concave in yi . Hence, the following first

order condition describes the global maximum of vi (yi , Y−i , c i )with respect to yi :

Y−i�
Y−i + yi

�2 − c i ≤ 0, with equality if yi >σ. (4)

Accordingly, player i ’s best response to Y−i > 0 is6

yi (Y−i ) :=max

(r
Y−i

c i

−Y−i ,σ

)
.

In a pure-strategy Nash equilibrium y ∗1 , . . . , y ∗
n

we must have y ∗i = yi (Y
∗
−i ) for all i .

6As yi ∈ [σ,∞) for all i , Y−i > 0 is always true if σ > 0. If σ = 0, the best response to Y−i = 0 does
not exist: for any ỹi > 0, player i can reduce his expenses and still win the contest with probability 1
by choosing a yi ∈

�
0, ỹi

�
instead. With σ = 0, there can therefore be no Nash equilibria where less

than two players choose strictly positive efforts. Consequently, there results no loss in generality from
assuming Y−i > 0 in the following.
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We will prove existence and uniqueness of a pure-strategy Nash equilibrium using

the share function approach proposed by Cornes and Hartley (2005). Also employing

the terminology of those authors, we define the replacement function ri (Y ) as being

contestant i ’s best response to Y−i = Y − ri (Y ). Making use of (4) we have

ri (Y ) =max
¦

Y − c i Y 2,σ
©

.

From this we obtain player i ’s share function s i (Y ) :=
ri (Y )

Y
as

s i (Y ) =max
�
αi (Y ),β (Y )

	

where

αi (Y ) := 1− c i Y and β (Y ) :=
σ

Y
.

Let Y ∗ denote a value of Y that corresponds to a pure-strategy Nash equilibrium.

Such an equilibrium requires that the sum of all share functions equals unity. Hence,

Y ∗ is defined as a solution to

S(Y ∗) :=
n∑

i=1

s i (Y
∗) = 1

where S(Y ) is referred to as the aggregate share function.

Proposition 1. The complete information contest has a unique Nash equilibrium in

pure strategies. Suppose c1 ≤ c2 ≤ · · · ≤ cn and define Y (0) := nσ as well as

Y (m ) :=
(m −1)+

p
(m −1)2+4 (n −m )σ

∑m

i=1 c i

2
∑m

i=1 c i

for m ∈ {1, 2, . . . , n} . (5)

Moreover, let

m ∗ := arg max
m∈{0,1,...,n}

Y (m ).

In the unique pure-strategy equilibrium, each player i chooses effort

x ∗
i
(c) =

(
Y (m ∗) (1− c i Y (m ∗))−σ for i ≤m ∗,

0 for i >m ∗.
(6)

Proof. First, suppose σ = 0. As Y → 0, s i (Y )→ 1 such that S(Y ) > 1 for sufficiently

small Y . For sufficiently large Y , we have S(Y ) = 0. Furthermore, S(Y ) is contin-
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uous for all Y > 0 and strictly decreasing if S(Y ) > 0. Hence, there is a unique

Y ∗ ∈ (0,∞) that solves S(Y ∗) = 1. Now, consider the case σ > 0. Since all individ-

ual yi are restricted to the interval [σ,∞), we have Y ∈ [nσ,∞). For all Y ∈ [nσ,∞),

s i (Y ) and therefore also S(Y ) are continuous and strictly decreasing. Moreover,

S(nσ) ≥ nβ (nσ) = 1 while S(Y ) = nβ (Y ) < 1 for sufficiently large values of Y . Con-

sequently, there exists a unique Y ∗ ∈ [nσ,∞) that satisfies S(Y ∗) = 1. This establishes

the first part of the proposition.

For each individual share function there is a Ŷi ∈ [nσ,∞) such that s i (Y ) = αi (Y )

for Y < Ŷi and s i (Y ) = β (Y ) for Y ≥ Ŷi . Recall that contestant i ’s effort is x i = s i (Y )Y −

σ. Accordingly, player i chooses a strictly positive effort if Y < Ŷi . In this case, we

refer to i as an active player. For Y ≥ Ŷi , player i chooses zero effort. Assuming

c1 ≤ c2 ≤ · · · ≤ cn implies Ŷ1 ≥ Ŷ2 ≥ · · · ≥ Ŷn . Hence, if Y ∈
�

Ŷm , Ŷm+1

�
for some m ∈

{1, 2, . . . , n −1}, then all i ≤m are active while all i >m choose zero effort. Similarly,

if Y < Ŷn , all players are active, and if Y ≥ Ŷ1, all players choose zero effort.

Suppose the unique Nash equilibrium of the game is such that exactly m ∗ players

are active with m ∗ ∈ {0, 1, . . . , n}. The corresponding Y ∗ solves

S(Y ∗) =

m ∗∑

i=1

αi (Y
∗)+ (n −m ∗)β (Y ∗) = 1.

The solution to this equation is Y ∗ = Y (m ∗) where the function Y (·) is defined in (5).

Now, consider an m̃ 6=m ∗. Y (m̃ ) is the solution to

m̃∑

i=1

αi (Y (m̃ ))+ (n − m̃ )β (Y (m̃ )) = 1.

Because m̃ does not correspond to an equilibrium, we have either αi (Y (m̃ )) <

β (Y (m̃ )) for some i ≤ m̃ , or αi (Y (m̃ )) > β (Y (m̃ )) for some i > m̃ . This implies

S(Y (m̃ )) > 1 and, since S(Y ) is strictly decreasing, Y (m̃ ) < Y (m ∗). Consequently,

m ∗ = arg maxm Y (m ). Given m ∗, we obtain (6) from x ∗i (c) = s i (Y (m ∗))Y (m ∗)−σ.

Amegashie (2006) derives equilibrium efforts for the case where all players are

active, i.e., choose strictly positive efforts. In addition, he provides a condition un-

der which all players are inactive (exert zero effort) and mentions the possibility of

equilibria where only some of the players are active. The number of active players, of

course, depends on the realization of costs c. Proposition 1 shows that the number of

active players is uniquely determined as the number m that maximizes the function
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Y (m ). In equilibrium, the m ∗ players with the lowest costs are active, exerting efforts

according to (6).

In the standard lottery contest (where σ = 0), we have Y (0) = Y (1) = 0 whereas

Y (m )> 0 for m > 1, implying that there are always at least two players active in equi-

librium. In this case, the equilibrium described in Proposition 1 exactly corresponds

to the known equilibrium of the standard lottery contest with asymmetric contes-

tants.7

For the case that all contestants have the same marginal cost c , it can be shown

that Y (0) < (>)Y (n ) implies Y (m ) < (>)Y (n ) for all m < n . Hence, in a symmetric

contest either m ∗ = n or m ∗ = 0.

Corollary 1. Suppose c i = c for all i . Then, for each i , x ∗i (c) = x ∗(c )with

x ∗(c ) :=max

�
n −1

n 2c
−σ, 0

�
.

As we have noted before, the no information contest is equivalent to the com-

plete information contest where marginal costs of each player i amount to E [C i ].

Therefore, Proposition 1 applies to the no information contest as well.

Corollary 2. The no information contest has a unique Nash equilibrium in pure stra-

tegies. Suppose E [C1]≤ E [C2]≤ · · · ≤ E [Cn ]. Then, the equilibrium effort of player i is

X i = x ∗i (E [C])with x ∗i (.) satisfying (6).

Having derived the equilibrium for both the complete information contest as well

as the no information contest, let us now turn to the private information contest.

4 Asymmetric Information

Suppose contestants engage in the private information contest, simultaneously de-

ciding on their effort at the interim stage. If each player j 6= i employs a strategy

ξj (c j ), the expected payoff for player i who has privately known cost c i and exerts

effort x i is

E [u i (x i ,ξ
−i
(C−i ), c i )] = E [p i (x i ,ξ

−i
(C−i ))]− c i x i .

Note that E [u i (x i ,ξ
−i
(C−i ), c i )] ≤ 1− c i x i and that by choosing x i = 0 player i can

guarantee himself a nonnegative payoff. Therefore, effort levels x i >
1
c i

are clearly

7See, for example, Corchón (2007).
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dominated for type c i of player i . Accordingly, we can restrict each player i ’s effort

choice to the interval [0, 1
c i

]. In the following, we will apply general results from the

literature on Bayesian games to our contest in order to study existence and unique-

ness of a Bayesian Nash equilibrium.

Proposition 2. Suppose σ > 0. For the private information contest, there exists a

Bayesian Nash equilibrium in nonincreasing pure strategies. If σ > n−1
n 2 maxi ,c f i (c ),

the Bayesian Nash equilibrium of the private information contest is unique.

Proof. In order to apply results by Athey (2001) as well as Mason and Valentinyi (2007)

to the private information contest, it is useful to perform the change of variables

t i :=−c i . With that and assumingσ> 0, contestant i ’s payoff is equivalent to

w i (x, t i ) :=
x i +σ∑

j 6=i
x j +x i +nσ

+ t i x i

where x i ∈ [0, 1
c i

] and t i ∈ [−c i ,−c i ]. Each t i is drawn from the distribution F̃i (t i ) :=

1− Fi (−t i ). Given a strategy γj : [−c j ,−c j ]→ [0, 1
c j

] for each j 6= i , player i ’s interim

expected payoff amounts to

Wi (x i , t i ) :=

∫
. . .

∫

Ti

x i +σ∑
j 6=i
γj (t j )+x i +nσ

∏

j 6=i

d F̃j (t j )+ t i x i

where Ti := [−c 1,−c 1]× · · ·× [−c i−1,−c i−1]× [−c i+1,−c i+1]× · · ·× [−c n ,−c n ].

From ∂ 2Wi (x i ,t i )

∂ x i ∂ t i
= 1 for all i follows that the Single crossing condition for games of

incomplete information in Athey (2001) is satisfied. Note that our model is consis-

tent with Athey’s assumption A1. Moreover, each player i ’s actions are restricted to

the interval [0, 1
c i

] and w i (x, t i ) is continuous in x for all i as long as σ > 0. Hence,

existence of an equilibrium in nondecreasing strategies γi (t i ) follows from Corollary

2.1 in Athey (2001). Of course, this corresponds to nonincreasing strategies in the

original game where types are described by c i .

For the uniqueness result we apply findings by Mason and Valentinyi (2007). First,

we will show that their assumptions U1-U3 and D1-D2 hold in our model. For σ> 0

and x i ∈ [0, 1
c i

], w i (x, t i ) is differentiable everywhere. Therefore, we can check U1 and

U2 by looking at derivatives of w i (x, t i ) as follows.8 From ∂ 2w i (x,t i )

∂ x i ∂ t i
= 1 for all i follows

that U1 is satisfied with δ = 1. U2 asks for
��� ∂w i (x,t i )

∂ x i

��� to be bounded for all i . Note that

8This can be shown by appealing to the mean value theorem.
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the fraction on the RHS of

∂w i (x, t i )

∂ x i

=

∑
j 6=i

x j +(n −1)σ
�∑

j 6=i
x j +x i +nσ

�2 + t i

is clearly positive while it is maximized at x i = 0 and
∑

j 6=i
x j = 0. Hence,

t i <
∂w i (x, t i )

∂ x i

≤
n −1

n 2σ
+ t i (7)

such that U2 is satisfied withω=maxiωi whereωi :=max
¦

c i , n−1
n 2σ
− c i

©
. For U3 we

have to find a κ ∈ (0,∞) such that, for all x i ≥ x ′i , x−i , x′−i , t i , i ,

���
�

w i (x i , x−i , t i )−w i (x
′
i
, x−i , t i )

�
−
�

w i (x i ,x
′
−i

, t i )−w i (x
′
i
, x′
−i

, t i )
����≤ κ

�
x i −x ′

i

�
.

A sufficient condition for this is that

max
x

∂w i (x, t i )

∂ x i

−min
x

∂w i (x, t i )

∂ x i

≤ κ ∀i .

Using (7) we find that U3 holds with κ = n−1
n 2σ

. As we have assumed that types are in-

dependently distributed, D1 is satisfied with ι = 0 and D2 holds with ν =maxi ,c f i (c ).

Finally, Theorem 4 in Mason and Valentinyi (2007) states that if δ > ιω+ νκ, i.e.,

if 1 > n−1
n 2σ

maxi ,c f i (c ), there is a unique equilibrium which is in nondecreasing pure

strategies.

For proving the existence result in Proposition 2 we have applied Athey (2001).

Assuming each player’s action space to be finite, Athey shows, using a fixed point the-

orem, that a pure-strategy equilibrium exists if a specific single crossing condition is

satisfied. Moreover, under the condition that a player’s payoff is everywhere continu-

ous in the actions of all players, she proves that there is a sequence of such equilibria

for finite-action games that converges to an equilibrium for the game where players

choose from a continuum of actions. For the private information contest the single

crossing condition generally holds, whereas continuity of payoffs is ensured byσ> 0.

Mason and Valentinyi (2007) show that if the effect of a player’s own type on the

expected payoff difference between two of his actions dominates the effect of his

opponents’ actions, the best response correspondence is a contraction which implies

the existence of a unique equilibrium. In the private information contest, increasing

12



the noise in determining the winner reduces the effect of his opponents’ efforts on a

player’s payoff, leaving the effect of that player’s costs unchanged. Hence, a sufficient

condition for the equilibrium of the private information contest to be unique is that

σ is large enough.

According to Proposition 2, a pure-strategy Bayesian Nash equilibrium exists for

any σ > 0. Hence, the existence result also holds when, by choosing an arbitrarily

small value forσ, looking at a contest that is arbitrarily similar to the standard lottery

contest. Moreover, Fey (2008) proves the existence of such an equilibrium in a stan-

dard lottery contest between two players assuming costs are drawn from the same

uniform distribution. When we derive properties of equilibrium strategies below, we

will also include the caseσ= 0 in our discussion.

As we have stated before, in a pure-strategy Bayesian Nash equilibrium of the

private information contest withσ≥ 0, equilibrium strategies ξ1, . . . ,ξn solve

ξi (c i ) = arg max
x i≥0

E [p i (x i ,ξ
−i
(C−i ))]− c i x i ∀i and c i ∈ [c i , c i ]. (8)

Note that if σ = 0, we have a special case because of the discontinuity in p i (x). Yet

the following result will allow us to simplify the exposition. Assuming σ = 0, sup-

pose for every player i there is a proper interval Di ⊆ [c i , c i ] such that ξi (c i ) = 0 for

all c i ∈ Di . In this case, with some strictly positive probability, all of player i ’s com-

petitors choose zero effort. Player i could therefore deviate from the equilibrium and

increase, for this event, his contest success from p i =
1
n

to p i = 1 by choosing an ar-

bitrarily small but strictly positive effort for all c i ∈Di . In a pure-strategy equilibrium

for σ= 0 we must therefore have ξi (c i )> 0 for all c i ∈ [c i , c i ] for at least one player i .

Returning to the general case whereσ≥ 0, we can hence rewrite (8) as

ξi (c i ) = arg max
x i≥0

Ui (x i , c i ) ∀i and c i ∈ [c i , c i ]

where9

Ui (x i , c i ) := E


 x i +σ∑

j 6=i
ξj (C j )+x i +nσ


− c i x i .

9As we have shown, for σ= 0 there must be at least one player k that exerts strictly positive effort
for all types. Expected payoffs of all i 6= k are hence given by Ui (x i , c i ). In the case that with strictly
positive probability all i 6= k choose zero effort, using Uk (0, ck ) for player k ’s expected payoff when
choosing xk = 0 is not correct. Yet, as we have argued above, k would not maximize his expected
payoff by choosing xk = 0.

13



Since Ui (x i , c i ) is strictly concave in x i , the first order condition ∂Ui (x i ,c i )

∂ x i
≤ 0, with

equality if x i > 0, defines the best response x i for type c i of player i . As in equilibrium

player i chooses x i = ξi (c i ), we obtain, for each i , the equilibrium condition

E




∑
j 6=i
ξj (C j )+ (n −1)σ

�∑
j 6=i
ξj (C j )+ξi (c i )+nσ

�2


≤ c i , with equality for c i where ξi (c i )> 0. (9)

In general, there is no closed form solution to this system of equations. We can, how-

ever, still infer some properties of equilibrium efforts from condition (9), as we will

do in the following lemma.

Lemma 1. In the private information contest, player i ’s equilibrium strategy ξi (c ) has

the following properties. There exists a c̃ i ∈ [c i , c i ] such that ξi (c ) = 0 for c > c̃ i while

ξi (c ) is positive and strictly decreasing for c < c̃ i . If σ> 0, c̃ i ≤max
¦

n−1
n 2σ

, c i

©
. If σ= 0,

c̃ i = c i for at least one i ∈ {1, 2, . . .n}. Moreover,

ξi (c )≤
1

4c
−σ for c < c̃ i .

The sum of ex ante expected equilibrium efforts satisfies

n∑

i=1

E [ξi (C i )]≥
n −1∑n

i=1 E [C i ]
−nσ.

Proof. See Appendix A.1.

One way to simplify the model is to assume that all costs are drawn from the same

distribution, i.e., Fi = F for all i . We exclusively focus in this case on a symmetric

equilibrium where all players choose their effort according to the same equilibrium

strategy ξ(c ).10 For such a symmetric equilibrium condition (9) simplifies to a single

10In Appendix B of Kadan (2002) a variant of Theorem 1 by Athey (2001) is proved, stating that
if types are all drawn from the same distribution, a symmetric pure-strategy equilibrium exists for
finite-action games. As Theorem 2 by Athey (2001) continues to hold, the existence of a symmetric
equilibrium for games with a continuum of actions follows. In turn, our Proposition 2 could be mod-
ified so as to yield existence of a symmetric equilibrium. Moreover, note that if the equilibrium is
unique, it has to be symmetric. Fey (2008) proves the existence of a symmetric equilibrium for the
standard two-player lottery contest where costs are drawn from the same uniform distribution.
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equation:

E




∑n−1
i=1 ξ(C i )+ (n −1)σ

�∑n−1
i=1 ξ(C i )+ξ(c )+nσ

�2


≤ c , with equality for c where ξ(c )> 0.11 (10)

Note that if σ = 0, ξ(c ) > 0 for all c . This follows from the same argument we used

above to show that ξi (c i )> 0 for all c i for at least one i .

Studying a numerical approximation to the symmetric equilibrium strategy ξ(c )

for the case where n = 2, σ = 0, and costs are drawn from the uniform distribution

on [0.01, 1.01], Fey (2008) finds that, for each c , ξ(c ) is smaller than the equilibrium

effort in the complete information contest where both players are commonly known

to have cost c . From Lemma 1 with n = 2, ξ(c ) ≤ max
¦

1
4c
−σ, 0

©
where, according

to Corollary 1, the RHS is exactly the equilibrium effort of the symmetric complete

information contest. Hence, we have shown that Fey’s finding generally holds for

any distribution F and also extends to contests withσ> 0.12

Although the equilibrium condition is simplified when assuming Fi = F for all i

and focusing on a symmetric equilibrium, there is in general no closed form solution

forξ(c ). Given a specific assumption concerning F , however, numerical methods can

be applied to (10) so as to compute an approximation to the symmetric equilibrium

strategy ξ(c ). Appendix B contains some notes on the methods we employed to find

the numerical results presented in this paper.

For the case where costs are uniformly distributed on [0.5, 1.5], numerical approx-

imations to the equilibrium strategy are shown in Figure 1. The solid line represents

ξ(c ) when n = 2 and σ= 0, the dotted and dashed lines display the effect of increas-

ing n and σ, respectively. Increasing the number of players in general reduces the

influence a single player’s effort has on winning probabilities, as for any symmetric

strategy the sum of efforts of player i ’s opponents increases. Yet the sum of oppo-

nents’ efforts is not simply scaled upwards, its distribution changes as well: as n in-

creases, the variance of average efforts decreases. When more players take part in

the contest, the symmetric equilibrium strategy generally requires players with high

costs to reduce their efforts. As n is increased from 2 to 3, players with very low costs

11
∑n−1

i=1 ξ(C i ) is chosen arbitrarily and could be replaced by any sum over n − 1 distinct i ∈

{1, 2, . . . , n}.
12However, as our own numerical results suggest, ξ(c ) does not have this property if n > 2.
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Figure 1: Symmetric equilibrium strategy ξ(c ) for uniformly distributed costs.

exert more effort. If n increases further, all types reduce their efforts, yet players with

low costs do so by less than players with high costs. A higher σ increases the noise

in determining the winner, making players’ efforts less effective in changing winning

probabilities. Consequently, equilibrium efforts for all types decrease in response to

an increase inσ.

5 Expected Efforts and Rent Dissipation

Having analyzed equilibrium efforts for all three contests, we are now ready to study

the impact of uncertainty and asymmetry of information on the behavior of contes-

tants. Comparing the ex ante expected sum of efforts in the complete information

contest to the sum of efforts in the no information contest we find that the former is

at least as high as the latter.
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Proposition 3. Under symmetric information, uncertainty concerning c reduces the

ex ante expected sum of efforts:

n∑

i=1

X i ≤

n∑

i=1

E [x ∗
i
(C)].

Proof. See Appendix A.2.

According to Proposition 3, if players are generally uncertain about the costs of

all players, they exert less effort than when all cost parameters are commonly known.

As we show below, under the assumption that expected costs are the same for all

contestants, effort under uncertainty regarding all costs is also lower than when each

player is privately informed about his own cost parameter.

Proposition 4. Suppose E [C1] = E [C2] = · · · = E [Cn ]. Then, the ex ante expected sum

of efforts is lower in the no information contest than in the private information contest,

i.e.,
n∑

i=1

X i ≤

n∑

i=1

E [ξi (C i )]. (11)

Proof. By Corollaries 1 and 2, if E [C1] = E [C2] = · · ·= E [Cn ], the sum of efforts in the

no information contest is

n∑

i=1

X i =max

¨
n −1∑n

i=1 E [C i ]
−nσ, 0

«
.

From Lemma 1 immediately follows (11).

If all Fi have the same mean, the no information contest yields the smallest sum

of efforts. An organizer of a contest who is interested in maximizing ex ante expected

efforts thus prefers to let the contest take place at the interim or ex post stage.

Comparing expected efforts in the complete information contest and the private

information contest to each other is more difficult. Malueg and Yates (2004) consider

the standard Tullock contest between two players. A player’s type is either high or low,

each with (unconditional) probability 1
2

. Malueg and Yates (2004) find a player’s in-

terim expected effort in the complete information contest to exactly match his effort

in the private information contest. However, this result is not robust. Analyzing a cor-

responding variant of our model where costs are independently drawn from {cL , cH}
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B

0.5 1 2 4 8

0.5 -0.88 0.90 1.51 0.97 0.36

1 -1.27 -0.61 0.27 0.58 0.36

A 2 -0.52 -0.54 -0.30 0.05 0.19 ×10−3

4 -0.12 -0.17 -0.18 -0.11 0.01

8 -0.02 -0.03 -0.05 -0.05 -0.03

Table 1: E [x ∗i (C)]−E [ξi (C i )] if n = 2,σ= 0, and F is the beta distribution on [0.5, 1.5]
with parameters A and B .

with cH > cL and q denoting the probability for cL , we find that interim expected ef-

forts are higher in the complete information contest than in the private information

contest if q ∈ ( 1
2

, 1)whereas the opposite is true if q ∈ (0, 1
2
).

In order to numerically study equilibrium efforts for continuous distributions of

types, we now introduce a specific distributional assumption. Let all costs be drawn

from the same (generalized) beta distribution on [0.5, 1.5] with parameters A, B > 0.

The corresponding probability density function amounts to

f (c ) =
(c −0.5)A−1

(1.5− c )B−1

∫ 1

0
z A−1 (1− z )B−1 d z

if c ∈ [0.5, 1.5]

and f (c ) = 0 otherwise. Changing the free parameters A, B of the beta distribution

allows for obtaining a variety of differently shaped densities. Assuming n = 2 and

σ= 0, Table 1 reports the difference between the ex ante expected effort in the com-

plete information contest and that in the private information contest for different

combinations of A and B . Note that A = B = 1 corresponds to the uniform distribu-

tion. Moving from the binary uniform distribution considered by Malueg and Yates

(2004) to a continuous uniform distribution, we hence observe that the complete

information contest leads to lower ex ante expected efforts than the private informa-

tion contest. In fact, according to Table 1 private information efforts are higher for

all parameter choices where A ≥ B . If B is sufficiently larger than A, however, com-

plete information efforts exceed private information efforts. For A = B the density f

is symmetric about the mean; if A > (<)B , f is negatively (positively) skewed. Hence,

our numerical results are well in accord with the intuition provided by the binary
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n = 2 n = 3 n = 5 n = 7 n = 10

complete info. 0.2616 0.2297 0.1706 0.1368 0.1068

σ= 0 private info. 0.2622 0.2383 0.1786 0.1419 0.1100

no info. 0.2500 0.2222 0.1600 0.1224 0.0900

complete info. 0.1616 0.1352 0.0876 0.0584 0.0311

σ= 0.1 private info. 0.1622 0.1383 0.0870 0.0565 0.0291

no info. 0.1500 0.1222 0.0600 0.0224 0

complete info. 0.0440 0.0373 0.0095 0 0

σ= 0.25 private info. 0.0440 0.0369 0.0092 0 0

no info. 0 0 0 0 0

Table 2: Ex ante expected effort by player i for uniform F .

case. If the distribution places more weight on high costs, the private information

contest yields higher expected efforts than the complete information contest.

Under the assumption that all costs are uniformly distributed on [0.5, 1.5], Table

2 presents a player’s ex ante expected effort in each type of contest for various com-

binations of n and σ. For σ = 0 expected effort generally is highest for the private

information contest whereas, as predicted by Propositions 3 and 4, expected effort

in the no information contest is lowest. Note that while a single player’s effort in all

three contests is decreasing in n , the sum of expected efforts is increasing. For σ> 0

we observe that the complete rather than the private information contest induces the

highest expected efforts if the number of players becomes sufficiently large.

A measure that is often studied in models of rent-seeking contests is the ratio

between total expenses and the value of the prize. This ratio determines to what

extent the rent the winner obtains is dissipated through contestants’ investment of

resources. In our model, players compete for a rent of value 1. Therefore, rent dissi-

pation is simply defined as R :=
∑n

i=1 c i x i . In the remainder of this section we try to

shed some light on how uncertainty and asymmetry of information affect rent dis-

sipation. For the case where all Fi have the same mean, σ is small enough, and all

types choose strictly positive effort in equilibrium, we find that when general uncer-

tainty prevails the prize is dissipated to a larger extent than when players are privately

informed.

19



Proposition 5. Suppose E [C1] = E [C2] = · · · = E [Cn ] <
n−1
n 2σ

and ξi (c i ) > 0∀i , c i ∈

[c i , c i ]. Then, ex ante expected rent dissipation is weakly larger in the no information

contest than in the private information contest.

Proof. See Appendix A.3.

In general, if we assume the costs of all players to be drawn from the same distri-

bution F , all players expect ex ante to win the prize of value 1 with the same proba-

bility, regardless of the type of contest they engage in. Consequently, they prefer the

contest with the lowest expected rent dissipation. Proposition 5 implies that in this

case, ifσ is small enough, from an ex ante perspective contestants prefer the private

information contest over the no information contest.

If all costs are drawn from the same distribution F , Corollaries 1 and 2 imply for

ex ante expected rent dissipation in the no information contest

E [R] =max

�
n −1

n
−σn E [C ], 0

�
.

If σ > 0, there is no dissipation at all when n →∞. Of course, the reason for this is

that for large n the additional noise in determining the winner is increased to such

an extent that the outcome is entirely independent of players’ efforts. In contrast, if

σ = 0, we obtain the classic result that the rent is fully dissipated when the number

of players is very large. For the standard lottery contest under complete information

Cornes and Hartley (2005) show that if m players are active in equilibrium, rent dis-

sipation is bounded above by m−1
m

which is strictly smaller than n−1
n

for all m < n .

Hence, ifσ= 0, ex ante expected rent dissipation is larger in the no information con-

test than in the complete information contest, implying contestants ex ante prefer

the latter.

Again assuming all costs to be uniformly distributed on [0.5, 1.5], Table 3 reports

ex ante expected rent dissipation in all three contests for different values for n and

σ. If σ = 0, the no information contest induces the largest dissipation, followed by

the private information contest and the complete information contest. For σ = 0.25

this ranking is reversed. In addition, rent dissipation is generally decreasing in n

whereas it is increasing for σ = 0. With σ = 0.1, rent dissipation is lowest in the

complete information contest and increasing in n if n ≤ 3 whereas it is lowest in the

no information contest and decreasing in n if the number of players is sufficiently
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n = 2 n = 3 n = 5 n = 7 n = 10

complete info. 0.4780 0.5919 0.6534 0.6833 0.7136

σ= 0 private info. 0.4787 0.6249 0.7206 0.7484 0.7752

no info. 0.5000 0.6667 0.8000 0.8571 0.9000

complete info. 0.2780 0.3148 0.2951 0.2545 0.1797

σ= 0.1 private info. 0.2787 0.3250 0.2944 0.2468 0.1679

no info. 0.3000 0.3667 0.3000 0.1571 0

complete info. 0.0571 0.0682 0.0259 0 0

σ= 0.25 private info. 0.0570 0.0673 0.0248 0 0

no info. 0 0 0 0 0

Table 3: Ex ante expected rent dissipation for uniform F .

large. As we observe for n = 5, it is also possible that rent dissipation is lowest in the

private information contest.

6 From Uncertain Costs to Uncertain Values

In the literature on contests among asymmetric players, those players are sometimes

assumed to differ in their valuation for the prize rather than in their abilities or costs.

Most importantly, in the related studies by Hurley and Shogren (1998a) as well as

Malueg and Yates (2004) contestants are privately informed about their values. In

the following, we examine to what extent the results obtained in preceding sections

carry over to models with uncertain values.

Suppose c i = 1 for all i , but each player i values the prize vi rather than 1. For each

i , valuation vi is a realization of the random variable Vi that is distributed according

to the continuous distribution function F̃i on [v i , v i ] with 0 < v i < v i . Accordingly,

player i ’s ex post payoff amounts to

ũ i (x, vi ) := p i (x)vi −x i .

Let x̃ ∗i (v), ξ̃i (vi ), and X̃ i denote player i ’s equilibrium strategies in the complete, pri-

vate, and no information contest for this modified setup. The equilibrium strategies
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have to satisfy

x̃ ∗
i
(v)∈ arg max

x i

ũ i (x i ,ex∗
−i
(v), vi ) ∀i , (12)

ξ̃i (vi )∈ arg max
x i

E [ũ i (x i ,eξ
−i
(V−i ), vi )] ∀i , vi ∈ [v i , v i ], (13)

X̃ i ∈ arg max
x i

E [ũ i (x i ,eX−i , Vi )] ∀i .

Let, for all i , Vi be a transformation of the random variable C i such that

Vi =
1

C i

and therefore F̃i (vi ) = 1− Fi (
1
vi
). (14)

With this transformation of variables the maximization problems in (12) and (13)

coincide with those in (2) and (3) for the original model.13 Consequently,

x̃ ∗
i
(v) = x ∗

i
( 1

v1
, . . . , 1

vn
) and ξ̃i (vi ) = ξi (

1
vi
).

All our results for the original model concerning the complete and private informa-

tion contest and their comparison to each other therefore directly extend to the case

with uncertain values.

Now consider the no information contest. Similar to the original model, we have

X̃ i = x̃ ∗i (E [V]). Hence, under transformation of variables (14), Jensen’s inequality im-

plies

X̃ i = x ∗
i
( 1

E [V1]
, . . . , 1

E [Vn ]
)≥ x ∗

i
(E [ 1

V1
], . . . , E [ 1

Vn
]) = X i .

If (14), efforts under cost uncertainty are smaller than when values are uncertain.14

As a result, Propositions 3 and 4 stating that expected efforts in the no information

contest is smaller than in the other two contests do not extend to the model with

uncertain valuations. Yet all the cases where we found rent dissipation to be largest

in the no information contest, Proposition 5 in particular, also apply to the modified

model.

13Note that, for each player i , ũ i (x i ,ex∗−i (v), vi ) = vi u i (x i ,ex∗−i (v),
1
vi
) and E [ũ i (x i ,eξ

−i (V−i ), vi )] =

vi E [u i (x i ,eξ
−i (V−i ),

1
vi
)]where vi is a positive constant.

14Suppose the prize is measured in dollars and effort in hours, such that c i =
1
vi

is the price of one
hour in dollars. As long as player i knows this price, his optimization problem is unchanged when
expressing payoffs in terms of hours rather than dollars. However, if the price c i is random, i ’s payoff
measured in dollars follows a different distribution than if measured in hours. That is why optimal
effort choice in the no information contest changes when moving from the original to the modified
setup.
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Studying a numerical example of the standard lottery contest where values for

two players are drawn from two different distributions with the same mean, Hurley

and Shogren (1998a) find that a player’s ex ante expected effort in the no information

contest exceeds that in the private information contest. This is exactly the opposite

of what Proposition 4 states. Making use of results derived in preceding sections, we

establish the following.

Proposition 6. Suppose n = 2, E [V1] = E [V2], and v i ≥ 4σ for i = 1, 2. Then, ex ante ex-

pected efforts in the no information contest are higher than in the private information

contest:

X̃ i ≥ E [ξ̃i (Vi )] for i = 1, 2.

Proof. Let µ̃ := E [V1] = E [V2]. From Lemma 1 follows, with v i ≥ 4σ,

ξ̃i (vi ) = ξi (
1
vi
)≤

1

4
vi −σ

implying

E [ξ̃i (Vi )]≤
1

4
µ̃−σ.

According to Corollaries 1 and 2,

X̃ i = x ∗
i
( 1

E [V1]
, 1

E [V2]
) =

1

4
µ̃−σ.

Proposition 6 generalizes the numerical result by Hurley and Shogren (1998a) to

any standard two-player lottery contest with values drawn from two distributions

with equal means. Moreover, provided that the additional noiseσ is not too large, the

result continues to hold for σ> 0. Interestingly, Morath and Münster (2009) find the

same ranking of expected efforts to generally hold for the two-player all-pay auction

with uncertain values.15

7 Conclusion

In order to study the impact of uncertainty and asymmetry of information on the

behavior in imperfectly discriminating contests, we compare three different infor-

mational settings to each other. The model we employ is the Tullock lottery contest,

15Note that, for the same reason as in the rent-seeking contest, their result does not extend to the
all-pay auction with uncertain costs of effort.

23



augmented by an additional noise parameterσ. By considering more than two play-

ers and types that are drawn from general continuous probability distributions, we

extend the analysis of rent-seeking contests under asymmetric information.

For both the no information and the complete information contest we determine

unique equilibrium strategies. For any σ > 0 we prove that the private informa-

tion contest has an equilibrium in monotone pure strategies. In addition, we find

the equilibrium to be unique if σ is big enough. Apart from analytically deriving

properties of the equilibrium strategies, we also identify numerical methods suitable

for computing approximations to those strategies. The simple application of Athey

(2001) we present for proving existence of a pure-strategy equilibrium in the private

information contest can readily be extended to a more general class of contest suc-

cess functions. Most importantly, this class includes the winning probabilities ax-

iomatized by Skaperdas (1996) that take the form g (x i )
.∑

j
g (x j ) where g (·) is an

increasing and strictly positive function. Analyzing the corresponding equilibrium

strategies is an interesting task for future research.

In general, ex ante expected aggregate effort is lowest in the no information con-

test. Yet at the same time we find that rent dissipation in the no information contest

is larger than in the other two contests if σ is small enough. In this case, if types

are all drawn from the same distribution, both contestants and a contest organizer

benefiting from players’ efforts would prefer the private and the complete informa-

tion contest over the no information contest. Hence, we would expect contestants

to try to gather information before competing. Moreover, the organizer would have

an incentive to encourage such behavior. Our analysis can therefore be seen as a

first step for future work on acquisition and provision of information in imperfectly

discriminating contests.

As our numerical examples illustrate, a general ranking of the complete and the

private information contest in terms of expected efforts is not possible. Which of

the two contests yields higher efforts depends on the distribution of types, the exact

specification of the contest success function, and the number of players. Numerical

results for σ > 0 and uniformly distributed costs suggest that if there are relatively

few players (andσ is not too big), the no information contest induces the largest rent

dissipation, followed by the private information contest and the complete informa-

tion contest. If the number of players is sufficiently large, however, the ranking is

reversed.

Our results concerning the equilibrium of the three types of contests also extend
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to an alternative formulation of the model where values rather than costs are ran-

domly drawn. Comparing the no information contest to the other two contests tends

to yield different conclusions, though. This is an issue that is not restricted to our

specific contest format. It should be kept in mind when comparing results in the

literature that involve no information contests.

Appendix A: Proofs

A.1 Proof of Lemma 1

Observe that the fraction on the LHS of (9) is strictly decreasing in ξi (c i ). Hence, if

ξi (ĉ ) > 0 for some ĉ , then ξi (c ) > ξi (ĉ ) for all c < ĉ . Consequently, there must be a

c̃ i ∈ [c i , c i ] such that ξi (c ) = 0 for c > c̃ i while ξi (c ) is positive and strictly decreasing

for c < c̃ i .

Suppose σ > 0 and c i < c̃ i . In this case (9) holds with equality. Note that the

fraction on the LHS of (9) is maximized if
∑n

j=1ξj (c j ) = 0, which implies c i ≤
n−1
n 2σ

.

Therefore, we must have c̃ i ≤
n−1
n 2σ

. Now, let σ = 0. As we have argued above, there

must be at least one player choosing strictly positive effort for all types, i.e., c̃ i = c i

for at least one player i .

Assume c i < c̃ i . Multiplying (9) on both sides with ξi (c i )+σ yields

E




�∑
j 6=i
ξj (C j )+ (n −1)σ

�
(ξi (c i )+σ)

�∑
j 6=i
ξj (C j )+ξi (c i )+nσ

�2


= c i (ξi (c i )+σ) .

Since

�∑
j 6=i
ξj (C j )+ (n −1)σ

�
(ξi (c i )+σ)

�∑
j 6=i
ξj (C j )+ξi (c i )+nσ

�2

=
ξi (c i )+σ∑

j 6=i
ξj (c j )+ξi (c i )+nσ

 
1−

ξi (c i )+σ∑
j 6=i
ξj (c j )+ξi (c i )+nσ

!
≤

1

4
,

we obtain
1

4
≥ c i (ξi (c i )+σ) or ξi (c i )≤

1

4c i

−σ.

Replacing c i by the random variable C i , taking expectation on both sides of (9),
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and summing over all i , we obtain

E



(n −1)

∑n

i=1ξi (C i )+n (n −1)σ
�∑n

i=1ξi (C i )+nσ
�2


≤

∑n

i=1 E [C i ].

This can be rearranged to yield

E

�
1∑n

i=1ξi (C i )+nσ

�
≤

1

n −1

∑n

i=1 E [C i ].

Applying Jensen’s inequality we find

1

E
�∑n

i=1ξi (C i )
�
+nσ

≤ E

�
1∑n

i=1ξi (C i )+nσ

�

and therefore
n∑

i=1

E [ξi (C i )]≥
n −1∑n

i=1 E [C i ]
−nσ.

A.2 Proof of Proposition 3

Let E [C1] ≤ E [C2] ≤ · · · ≤ E [Cn ] and suppose expected costs are such that in the no

information contest m ∗ > 0 players choose a strictly positive effort. According to

Corollary 2,

n∑

i=1

X i = Y (m ∗)−nσ

=
(m ∗−1)+

Æ
(m ∗−1)2+4 (n −m ∗)σ

∑m ∗

i=1 E [C i ]

2
∑m ∗

i=1 E [C i ]
−nσ.

Now, consider the complete information contest. From Proposition 1,

n∑

i=1

x ∗
i
(c) =max

m
Y (m )−nσ≥ Y (m ∗)−nσ

≥
(m ∗−1)+

Æ
(m ∗−1)2+4 (n −m ∗)σ

∑m ∗

i=1 z i

2
∑m ∗

i=1 z i

−nσ
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where z 1, z 2, . . . , z n is a reordering of c1, c2, . . . , cn such that z 1 ≤ z 2 ≤ · · · ≤ z n . Taking

expectations, we have

n∑

i=1

E [x ∗
i
(C)]≥ E



(m ∗−1)+

Æ
(m ∗−1)2+4 (n −m ∗)σ

∑m ∗

i=1 Zi

2
∑m ∗

i=1 Zi


−nσ.

Note that the term we take the expectation of on the RHS is decreasing and convex in∑m ∗

i=1 Zi . Jensen’s inequality thus implies

n∑

i=1

E [x ∗
i
(C)]≥

(m ∗−1)+
Æ
(m ∗−1)2+4 (n −m ∗)σ

∑m ∗

i=1 E [Zi ]

2
∑m ∗

i=1 E [Zi ]
−nσ.

Since the expected sum of the first m order statistics cannot be larger than the sum

of the m smallest means, i.e.,
∑m

i=1 E [Zi ]≤
∑m

i=1 E [C i ]we finally obtain

n∑

i=1

E [x ∗
i
(C)]≥

(m ∗−1)+
Æ
(m ∗−1)2+4 (n −m ∗)σ

∑m ∗

i=1 E [C i ]

2
∑m ∗

i=1 E [C i ]
−nσ

A.3 Proof of Proposition 5

Because ξi (c i )> 0, (9) holds with equality for all c i . Multiplying (9) on both sides with

ξi (c i )+σ yields

E




�∑
j 6=i
ξj (C j )+ (n −1)σ

�
(ξi (c i )+σ)

�∑
j 6=i
ξj (C j )+ξi (c i )+nσ

�2


= c i (ξi (c i )+σ) .

Replacing c i by the random variable C i , taking expectations on both sides, and sum-

ming over all i , we obtain

E




∑n

i=1

∑
j 6=i
(ξj (C j )+σ) (ξi (C i )+σ)

�∑n

i=1ξi (C i )+nσ
�2


=

∑n

i=1 E [C i (ξi (C i ))]+σ
∑n

i=1 E [C i ]. (15)
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The fraction on the LHS of (15) is bounded by n−1
n

. To see this, note that

(n −1)

 
n∑

i=1

ξi (C i )+nσ

!2

−n

n∑

i=1

∑

j 6=i

(ξj (C j )+σ) (ξi (C i )+σ)

= (n −1)




n∑

i=1

(ξi (C i )+σ)
2+

n∑

i=1

∑

j 6=i

(ξi (C i )+σ) (ξj (C j )+σ)




−n

n∑

i=1

∑

j 6=i

(ξj (C j )+σ) (ξi (C i )+σ)

= (n −1)
n∑

i=1

(ξi (C i )+σ)
2−

n∑

i=1

∑

j 6=i

(ξi (C i )+σ) (ξj (C j )+σ)

=
1

2

n∑

i=1

∑

j 6=i

¦
(ξi (C i )+σ)

2+(ξj (C j )+σ)
2−2 (ξi (C i )+σ) (ξj (C j )+σ)

©

=
1

2

n∑

i=1

∑

j 6=i

�
ξi (C i )−ξj (C j )

�2
≥ 0.

Hence, ∑n

i=1

∑
j 6=i
(ξj (C j )+σ) (ξi (C i )+σ)

�∑n

i=1ξi (C i )+nσ
�2 ≤

n −1

n

and therefore (15) implies for expected rent dissipation in the private information

contest ∑n

i=1 E [C i (ξi (C i ))]≤
n −1

n
−σ

∑n

i=1 E [C i ].

Due to Corollaries 1 and 2 combined with E [C1] = E [C2] = · · · = E [Cn ] <
n−1
n 2σ

,

expected rent dissipation in the no information contest amounts to

∑n

i=1 E [C i X i ] =
n −1

n
−σ

∑n

i=1 E [C i ].

Appendix B: Notes on Numerical Methods

For the private information contest, equilibrium strategies can in general not be ob-

tained in closed form. In such a case, progress in studying contestants’ behavior can

be made by approximating equilibrium strategies numerically. In this appendix we

provide a short discussion of the computational methods we applied to obtain the
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numerical results presented in Sections 4 and 5.

For all our numerical results we assume Fi = F for all i , i.e., all costs are drawn

from the same distribution. In this case, the symmetric equilibrium strategy ξ(c ) has

to fulfill condition (10) which can be restated as

H (ξ, c )

(
= 0 if ξ(c )> 0

≤ 0 if ξ(c ) = 0
(16)

where

H (ξ, c ) :=

∫ c

c

. . .

∫ c

c

∑n−1
j=1 ξ(k j )+ (n −1)σ

�∑n−1
j=1 ξ(k j )+ξ(c )+nσ

�2 f (k1)d k1 . . . f (kn−1)d kn−1− c .

We approximate ξ(c ) numerically by a discrete function on a grid of points in�
c , c
�

. Denoting the size of the grid by g , we consider the set of points

bc=
¦

c 1, c 2, . . . , c g
©

where c i =
2i −1

2g

�
c − c

�
+ c .

Our goal is now to find a set of function values bξ=
¦
ξ̂1, ξ̂2, . . . , ξ̂g

©
corresponding to

bc that represents a good approximation of the continuous function ξ(c ). With a dis-

crete version of H (ξ, c ), denoted by Ĥ (bξ, c i ), at hand, standard iterative algorithms

can be applied to compute a bξ that fulfills a discrete approximation to condition (16).

How to compute Ĥ (bξ, c i )? Note that H (ξ, c ) consists of an n − 1-dimensional in-

tegral. The simplest method for approximating this integral on bc, repeatedly sum-

ming the areas of rectangles, requires a number of function evaluations that grows

exponentially in n . For n > 3 and a reasonable grid size (e.g., g = 100), the compu-

tation of Ĥ (bξ, c i ) becomes so slow that finding a good approximation to ξ(c ) using

iterative algorithms is impossible (even in the simplest case where σ = 0). A more

efficient method to compute integrals in multiple dimensions is Monte Carlo inte-

gration. Applying this method, we evaluate the integrand at a uniformly distributed

sequence of pseudorandom points in bcn−1 and take the average. We can further im-

prove our results by choosing points from a low-discrepancy sequence, such as the

Sobol sequence, instead of pseudorandom points. This is sometimes called quasi-

Monte Carlo integration and yields, for the same number of function evaluations,
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more accurate results.16

As we have argued in Section 4, for σ = 0, ξ(c ) > 0 for all c . Accordingly, (16)

simplifies to H (ξ, c ) = 0 for all c . A numerical approximation to ξ(c ) is a bξ that solves

Ĥ (bξ, c i ) = 0 for all c i ∈ bc. We numerically solve this system of g equations with g

unknowns using the trust-region dogleg algorithm as implemented in the function

fsolve that is provided with the Matlab Optimization Toolbox.

The case where σ> 0 is computationally more expensive. To make it suitable for

the algorithm we apply, we restate the discrete version of condition (16) as

bξ= arg min
ξ

g∑

i=1

D(ξ,c i )2 s.t. ξ̂i ≥ 0 ∀i (17)

where

D(bξ,c i ) :=

(
0 if ξ̂i = 0 and Ĥ (bξ, c i )≤ 0,

Ĥ (bξ, c i ) otherwise.

The minimization problem with inequality constraints (17) can be solved numeri-

cally using the active-set algorithm that is implemented in the function fmincon of

the Matlab Optimization Toolbox.
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