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Abstract 

This paper analyzes price competition in an infinitely repeated duopoly game. In each period, 

consumers remember the existence and location of their previous supplier. New information is 

gathered via search or word-of-mouth communication. Market outcomes are history-

dependent, and the Markov perfection refinement is used to narrow the set of equilibria. Firms 

are shown to use mixed pricing strategies in equilibrium. The resulting price dispersion 

generates non-trivial market share dynamics. The goal of the paper is to characterize these 

dynamics, and to reveal the driving forces behind them. 
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1. Introduction 

In markets to which consumers return repeatedly over time (“repeat purchasing”), information 

gathered in previous periods can affect consumers’ behavior also in future periods. E.g., a 

consumer may remember the existence or location of a supplier visited in the past, while an 

alternative supplier can be discovered via search, or by communicating with other consumers 

(“word-of-mouth communication”). Unless all consumers search, some may remain locked-in 

at their previous supplier.
1
 Hence, a firm with a larger customer base (with a high sales 

volume in the past) is in an advantageous position, as it can exercise monopoly power over 

those consumers in its customer base who do not discover an alternative supplier. 

This paper analyzes dynamic price competition in a homogeneous goods duopoly that 

matches this description. Each period, a generalized Bertrand game is played where demand 

depends not only on current prices but also on the previous market share of a firm. Hence, 

market outcomes are history-dependent. The difference to a static environment is, that firms 

have an incentive to invest in the size of their customer base, as it affects their future 

profitability.
2
 A typical feature of (static) search models with homogeneous goods is the non-

existence of pure strategy equilibria. Mixed pricing strategies, thus, lead to price dispersion.
3
 

The model introduced in this paper also has this property. However, in contrast to most of the 

existing models, the history-dependence of market outcomes creates inertia in the distribution 

of market shares. In conjunction with the endogenous
4
 price dispersion, this leads to rather 

non-trivial market share dynamics. The goal of this paper is to characterize these dynamics, 

and to reveal the driving forces behind them. 

The idea that mixed pricing strategies can generate market share dynamics is not new. Chen 

and Rosenthal (1996), e.g., introduce an infinitely repeated pricing game where a firm that 

currently offers the higher price loses market shares compared to the previous period, but its 

market share does not drop to zero (unless it was zero or just above zero before). However, 

these authors assume that a firm that looses (or gains) market shares always looses the same 

number of customers, irrespective of its previous market share. Hence, there is a uniform ‘step 

size’ in the market share space, an assumption that seems poorly justified.
5
 

                                                 
1
 An alternative explanation are switching costs. For an overview over this literature, see Klemperer (1995). 

2
 Authors from the search literature usually adopt a static modeling framework. See Janssen and Moraga-

Gonzalez (2004), and the references cited therein. Since consumers (by assumption) do not possess any prior 

information, authors often assume that consumers randomize over the first supplier they visit. Hence, they focus 

on ex-ante symmetric splits of a market, while the ex-post split is usually asymmetric. 
3
 The prevalence and persistence of price dispersion is demonstrated empirically by Lach (2002). 

4
 There are no external sources of uncertainty or noise in the model. 

5
 In his seminal paper, Selten (1965) introduced the concept of ‘demand inertia’, according to which a firm’s 

current demand depends on its current price and the average price of its competitors, as well as on its last-period 
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The present paper offers a microeconomic foundation for market share dynamics generated by 

mixed pricing equilibria. The details of the model are as follows. Each consumer either 

purchases zero or one unit of the homogeneous good in each period. A consumer who returns 

to the market to make a purchase, remembers the existence / the location of the previous 

supplier.
6
 Given this information, a current price quote can be obtained for free. An 

alternative supplier can be discovered via search or word-of-mouth communication. 

Consumers who discover both suppliers purchase from the one that currently offers the lower 

price. There are three types of consumers with different search costs. Consumers of the first 

type (the “searchers”) have zero search costs and can, thus, compare prices at no cost.
7
 

Consumers of the second type (“word-of-mouth consumers”) face high search costs, but can 

communicate with one other consumer for free.
8,9

 If the consumer visited the other supplier in 

the last period, the word-of-mouth consumer discovers this supplier.
10

 Otherwise, he/she 

remains locked-in at her previous supplier. Consumers of the third type (“ignorant type”) 

always remain locked-in at their previous supplier.
11

 

There are several aspects that affect the dynamics in this game. First of all, there are the 

properties that are inherent to the process of information transmission. E.g., if most consumers 

are of the ‘ignorant type’, a firm that chooses the lower price in the current period can only 

attract a small number of new customers. Hence, market share dynamics are characterized by 

a high degree of inertia. Conversely, if most consumers are searchers, the low-price firm 

serves almost the entire market, irrespective of the size of its customer base. Hence, market 

shares are volatile. If there is a high fraction of word-of-mouth consumers in the population, 

the ‘popularity weighting’ property becomes relevant. The volatility of market shares, then, 

strongly depends on the current market split. E.g., if a firm has a small customer base, it can 

                                                                                                                                                         
sales. However, the concept of demand inertia received little attention in the literature (in contrast to the concept 

of subgame perfection), which is presumably due to a lack of a convincing microeconomic foundation. 
6
 Consumers only remember the information about the supplier where they made their last purchase. 

7
 See also Stahl (1989). 

8
 Ellison and Fudenberg (1995) introduce a more general word-of-mouth process where agents can ask a sample 

of � other agents. However, the simpler process assumed here also captures the “popularity weighting property” 

that characterizes word-of-mouth communication. This means that a firm with a large customer base is in a 

favorable position, as information about its offer spreads rapidly among consumers. 
9
 Rob and Fishman (2005) study a market with continuous investments in quality, where word-of-mouth 

communication means that new consumers who enter the market meet with a certain probability old consumers 

and find out about the “tenure” of the firm that was patronized by the old consumer last period. The tenure is the 

number of periods since the firm last produced a low-quality product. However, the authors abstract from price 

competition, by assuming that each supplier has monopoly power over the consumers visiting it this period. 
10

 Searchers pass on information to word-of-mouth consumers only about their previous supplier. Results are 

qualitatively the same if they pass on information about both suppliers. Satterthwaite (1979) analyzes word-of-

mouth communication in a market for physicians, where consumers also pass on information they have only 

heard of from other consumers. 
11

 Other authors, e.g. Salop and Stiglitz (1977), Varian (1980), Janssen and Moraga-Gonzales (2004), also 

introduce consumers who learn only one supplier’s price, but assume that they choose this supplier randomly. 

See also Fishman and Rob (1995). 
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only attract a small number of new customers when it charges the lower price, because few 

consumers discover this firm via word-of-mouth. Hence, there is a high degree of inertia. 

However, when the market split is a more even one, many consumers discover both suppliers. 

Hence, market shares are volatile. 

The second aspect that affects the dynamics in this game is strategic interaction. E.g., a firm 

with a large customer base may have a higher incentive to exploit its customer base, rather 

than to compete fiercely for new customers. In contrast, a firm with a small customer base 

may be a more aggressive player. Hence, there is a tendency towards the center of the market 

share space, where market shares are (roughly) evenly distributed. However, firms also take 

into account how the current market outcome affects their future profitability. A firm may, 

thus, try to invest in a large customer base to become the “dominant player” in the market. 

Once a dominant position is reached (high market share), this firm may vigorously defend its 

position and, thus, play more aggressively than its smaller competitor. In this case, a tendency 

towards the extremes of the market share space emerges. 

In order to disentangle these different effects, the analysis of market share dynamics in this 

paper is divided into four subcases. In the simplest case (“deterministic benchmark”), firms 

alternate in gaining and loosing market shares. This yields a simple characterization of market 

share dynamics in the absence of strategic interaction, and reveals dynamic aspects that are 

“inherent” to the process of information transmission. Using a fixed point analysis, analytical 

results are derived to describe the patterns of market share evolution. In the second case 

(“stochastic benchmark”), it is assumed that each firm gains or looses market shares in each 

period with a fixed probability of 1/2. This yields a more realistic characterization of market 

share dynamics in the absence of strategic interaction, as it entails a randomization of prices 

(similarly as in a mixed strategy equilibrium). However, the dependency of current pricing 

strategies from past market shares is suppressed. As analytical results are difficult to obtain, 

results are obtained by simulation. The third case under consideration (“repeated static game”) 

considers the evolution of market shares under strategic interaction, when future profits are 

fully discounted. The incentives to invest in future market shares are, thus, “switched off”, 

which helps to isolate the effects stemming from current profit maximization. Finally, the full 

dynamic model is analyzed, when future profits are not fully discounted. Hence, the 

incentives to invest in future market shares affect the dynamics. 

The main results of the analysis are as follows. The fixed-point analysis of the “deterministic 

benchmark” case reveals that there are “attractors” in the market share space, to which market 

shares converge. The location of these attractors depends on the volatility of market shares, 
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and on the prevalence of word-of-mouth communication. Under the “stochastic benchmark”, 

market shares do not converge to the attractors, due to the stochastic nature of the process. 

However, they tend to be near the attractors with high probability. When most consumers rely 

on word-of-mouth, the attractors are located near the extremes of the market share space, and 

a firm that has reached a dominant market position can often maintain this position for many 

consecutive periods. When most consumers are of the ignorant type, the attractors are located 

near the center of the market share space. In this case, the market split tends to be an even one 

most of the time. The analysis of the “repeated static game” reveals that market shares tend to 

be closer to the center than in the stochastic benchmark, as a firm with a smaller customer 

base prices more aggressively and, thus, tends to gain market shares. When future profits are 

not fully discounted (“full dynamic game”), the incentives to invest in future market shares 

also affect the dynamics. As pointed out above, a firm with a dominant market position may 

now play more aggressively than its smaller competitor, in order to defend the dominant 

position. This effect turns out to be particularly pronounced when many consumers 

communicate via word-of-mouth. Situations where the dominant firm exploits its customer 

base by charging a high price, then, alternate with situations where it vigorously defends its 

market position and, thus, prices aggressively. Overall, market shares are more skewed when 

future profits are important. This result seems rather novel in the literature on dynamic price 

competition. 

In an extension, situations are considered where consumers do not return to the market in 

every period, but in regular intervals or with a certain frequency. This may e.g. reflect the 

degree of durability of the good sold in this market. When the frequency of repeat purchasing 

is low, there is more inertia in the market shares. This case is e.g. used to simulate entry 

dynamics into the market. It is shown that, in order to obtain a sizable market share, an entrant 

must undercut the incumbent’s price for an extended period of time. 

 

The remainder of this paper is organized as follows. In Section 2, the model is introduced, and 

equilibrium conditions are derived. Section 3 analyzes market share dynamics in the absence 

of strategic interaction. Section 4 characterizes the dynamics under strategic interaction. 

Section 5 extends the model to situations where consumers do not return to the market in each 

period. Section 6 concludes. 
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2. The model 

There are two firms ( {1, 2}i∈ ) in a market for a homogeneous good. Time is discrete, the 

horizon infinite, and firms simultaneously choose prices ,i tp  in every period t  ( 1,2,...t = ). 

Marginal costs are constant and normalized to zero. On the demand side, there is a continuum 

of consumers with measure 1. Each consumer purchases either zero or one unit in each period, 

and all consumers have the same reservation price, equal to 1. Prices above 1 (the monopoly 

price) can be eliminated from the strategy space without loss of generality. Hence, market 

demand in each period equals 1. By assumption, market shares in period t  depend on prices 

in period t , and on market shares in period 1t − . This “inertia” reflects problems of 

information acquisition. Let the size of firm 1’s customer base in period t , tn , be firm 1’s 

demand (and, thus, market share) in period 1t − : 1, 1t tn D −≡ . The size of firm 2’s customer 

base in period t  is 1 tn− . If consumers possess more information about a firm where they 

previously made a purchase, a firm with a large customer base is in a favorable position. 

Suppose, the market share of firm 1 (firm 2) increases from tn  to ( )th n  (from 1 tn−  to 

(1 )th n− ) if it currently charges the lower price in the market. If it charges the higher price, it 

drops to ( )tl n  (resp. (1 )tl n− ). If both firms charge identical prices, their market shares 

remain constant. Hence, firm 1’s demand in period t  equals (similarly for firm 2): 

 

1, 2,

1, 1, 2, 1, 2,

1, 2,

( )    if    

( , , )          if   

( )     if    

t t t

t t t t t t t

t t t

h n p p

D p p n n p p

l n p p

 <


= =
 >

 (1) 

By assumption, the function (.)h  is continuous, strictly increasing, and ( ) 1n h n< <  holds 

[0,1)n∀ ∈ . Hence, a firm that charges the lower price gains market shares, but it does not 

serve the entire market (unless its market share was equal to 1 in the previous period). The 

functions (.)h  and (.)l  must fulfill the following condition: 

 ( ) (1 ) 1t tl n h n+ − =   [0,1]tn∀ ∈  (2) 

This condition states that the aggregate demand equals 1 in each period, for any given market 

split (captured by the state variable tn ). Note, that for a given specification of (.)h  and (.)l , 

the history of market shares up to period t  is fully described by the initial size of firm 1’s 
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customer base in period 1 ( 1n ), and a binary sequence { }tS Iτ≡  ( 1, 2,..., tτ = ), with 1Iτ =  if 

1, 2,p pτ τ<  (firm 1 gains market shares in period τ ), and 0Iτ =  otherwise.
12

 

 

A specification of h(.) and l(.): 

The model and the solution procedure introduced in this Section are quite general and do not 

require a specification of the functions (.)h  and (.)l . However, in order to characterize 

market share dynamics (see Sections 3-5), a specification is needed. Let us, thus, introduce a 

specification. As outlined in the Introduction, suppose there are three consumer types. The 

“searchers” have zero search costs and can, thus, always compare prices. A “word-of-mouth 

consumer” can communicate with one other consumer for free, but faces high search costs. If 

the consumer he/she asks visited a different supplier in the previous period, this supplier is 

discovered. Otherwise, the word-of-mouth consumer remains locked-in at his/her own 

previous supplier. Consumers of the “ignorant type” are always locked-in at their previous 

supplier. Let λ  be the fraction of word-of-mouth consumers in the population, and ρ  be the 

fraction of ignorant types. The fraction of searchers is 1 λ ρ− − . By assumption, λ  and ρ  are 

independent of the history of the game. Hence, in the customer base of each firm, the same 

fraction of searchers and word-of-mouth consumers exists in each period. The ‘type’ of a 

consumer may, thus, be seen as a transient attribute, that is chosen from the same distribution 

again in each period.
13

 Under these assumptions, we obtain for the function (.)l : 

 2( )l n n nλ ρ= +  (3) 

The function (.)h , then, follows from (2): 2( ) 1 (1 ) (1 )h n n nλ ρ= − − − − . 

 

Profit maximization: 

Firm 1’s expected profit in the current period is 
2,1, 1, 1, 1, 1, 2,( , ) ( , , )

t

E

t t t t p t t t tn p p E D p p nπ  =   . Firm 

2’s profit is obtained by replacing n  by 1 n− , and exchanging the indices of the firms. Let δ  

be the discount factor for future profits. In period t , firm i  maximizes the present discounted 

value of future expected profits over an infinite horizon: 

 
,

, ,
{ }

( ) max ( | )
i t

t E

i t i i
p

t

V H p Hτ
τ τ τ

τ

δ π
∞

−

=

≡ ∑  (4) 

                                                 
12

 The event 
1, 2,

p pτ τ=  occurs with probability zero in equilibrium and can be neglected. See below. 
13

 An alternative interpretation is that each period, new consumers arrive who inherit information from their 

parents, but not their type. 
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, where tH  denotes the history up to period t . The history tH  contains all prices chosen up to 

period 1t − , as well as the initial state 1n .
14

 The expectation in (4) is over firm j ’s prices 

( j i≠ ). Note, that there is no external source of uncertainty in the model. In equilibrium, 

uncertainty arises only if firms use mixed pricing strategies. 

In general, firms can condition their choice in period t  on the entire history up to period t , 

tH . However, the set of equilibria in dynamic pricing games is potentially overwhelming. In 

order to narrow the set of equilibria, the Markov perfection equilibrium refinement is used. 

The payoff-relevant state variable in period t  is tn . Under Markov perfection, firms are 

restricted to condition their price only on the current state. 

The Bellman-equation for a firm with a customer base of size n  (firm 1) reads:  

 [ ]( ) max ( , ) ( ') | ,E

p
V n n p E V n n pπ δ = +   (5) 

, where n  and 'n  stand for tn  and 1tn + , respectively. By omitting the subscript for the identity 

of the firm, (5) contains the following symmetry assumption: a firm’s present value only 

depends on the size of its current customer base, n , and not on the identity of the firm. 

 

Proposition 1: If δ  is sufficiently small
15

, there is no Markov perfect equilibrium that 

comprises pure strategies for any [0,1]n∈ . Hence, firms use mixed pricing strategies. Both 

equilibrium price distribution functions ( , )F n p  and (1 , )F n p− 16
 have the same support (for 

any given n ), the convex set of prices p  from ( ) 1p n <  (lowest price with positive density) 

to 1. At most one firm attaches positive probability mass to any single price, and if so, the 

mass point is located at 1 (monopoly price).  (Proof: See the Appendix) 

 

Firm 1’s expected profit in the current period is given by: 

 ( )( )( , ) ( ) (1 , ) ( ) 1 (1 , )E n p p l n F n p h n F n pπ = − + − −  (6) 

                                                 
14

 The states in periods 2 through t , captured by the sequence 
t

S  that describes firm 1’s market share gains and 

losses, can be inferred from the sequence of prices and 
1

n . 
15

 δ  must be sufficiently small because an increase in the size of a firm’s customer base may lead to reduced 

profits in the future when the intensity of future price competition increases. Hence, the value function ( )V n is 

not generally monotone. If δ  is large, a firm may be reluctant to undercut the competitor’s price if this price can 

be predicted with certainty. However, the logic of the mixed pricing strategies is that, within the support of 

(.)F , a firm would always undercut the competitor’s price if it were known. 
16

 Let the distribution function be defined as: ( , ) Pr[ | ]F n p P p n≡ < . Under this convention, 1 ( ,1)F n−  is the 

probability mass at the monopoly price. 
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, where ( )l n  is firm 1’s demand if it chooses the higher price, and (1 , )F n p−  is the 

probability of this event. Firm 1’s expected value in the next period is: 

 [ ] ( ) ( ) ( )( ') | , ( ) (1 , ) ( ) 1 (1 , )E V n n p V l n F n p V h n F n p= − + − −  (7) 

, where ( )( )V l n  is the firm’s value after losing market shares. 

In a mixed strategy equilibrium, the maximum in (5) is attained over a range of prices, and the 

support of ( , )F n p  contains only prices within this set. For all prices p  outside the support of 

( , )F n p , it must hold that: [ ]( , ) ( ') | , ( )E n p E V n n p V nπ δ+ ≤ . Hence, there is no profitable 

deviation from the equilibrium randomization strategy ( , )F n p . 

Using (6) and (7) in (5), we obtain the following expression for the value function ( )V n : 

   ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) (1 , ) ( ) ( ) ( ) (1 , )V n ph n p h n l n F n p V h n V h n V l n F n pδ δ= − − − + − − −  (8) 

The max-operator has been omitted because, for prices within the support of (.)F , the right-

hand side must be independent of p . (8) can be solved for (1 , )F n p− . Replacing 1 n−  by n , 

we obtain for the distribution function ( , )F n p : 

 
( ) ( )

( ) ( ) ( )
(1 ) 1 (1 )

( , )  , [0,1]
(1 ) (1 ) (1 ) (1 )

V h n V n h n p
F n p n

V h n V l n h n l n p

δ
δ δ

− − − + −
= ∀ ∈

− − − + − − −
 (9) 

If (.)V  is known, (9) allows to compute the distribution function (.)F  for all n . 

 

Equilibrium conditions: 

In the following, equilibrium conditions are derived that allow to determine (.)V . By 

Proposition 1, it must hold [0,1]n∀ ∈  that: ( , ) (1 , ) 0F n p F n p= − = . Using (9), we, thus, 

obtain the first equilibrium condition: 

 ( ) ( ) ( ) ( )( ) 1 ( ) (1 ) (1 ) (1 ) ( )h n V n h n V h n h n V n h n V h nδ δ− − − = − − −  (10) 

The other conditions follow from the result that at most one of the firms chooses the 

monopoly price with positive probability (see Proposition 1). Hence, it must either hold that 

( ,1) 1F n ≤  and (1 ,1) 1F n− =  (“case a”), or that ( ,1) 1F n =  and (1 ,1) 1F n− <  (“case b”). 

Suppose, for a given value of the state n , case a is relevant.
17

 (1 ,1) 1F n− =  can, thus, be used 

to derive an equilibrium condition. Using (9), we obtain:  

 ( ) ( )( ) ( )V n V l n l nδ− =  (11) 

                                                 
17

 Until now, it is not clear under what conditions case a or case b is relevant. Intuitively, we would expect that 

case a is relevant (firm 1 chooses the monopoly price with positive probability) whenever firm 1’s customer base 

n  is greater than 1/2, because it may, then, have a lower incentive to compete for new customers, while firm 2 

may play more aggressively. This intuition is generally correct, but some complications can arise (see below). 
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If case b is relevant (given n ), use ( ,1) 1F n =  in (9) to obtain the following condition: 

 ( ) ( )1 (1 ) (1 )V n V l n l nδ− − − = −  (12) 

Together with an (until now) unknown rule that states whether case a or case b is relevant for 

every given state n , (10), (11), and (12) implicitly define the value function (.)V . Note, that 

this is a continuum of equations because these conditions must be fulfilled [0,1]n∀ ∈ . 

 

Solution procedures: 

There are (at least) two possible solution procedures. One is based on a discretization of the 

state space ( [0,1]n∈ ). Conditions (10) and (11), resp. (12), can, then, be solved analytically 

with the help of a computer. Note, that this is simply a system of linear equations. The only 

difficulty is that the rule that determines when case a and case b is relevant (that is, whether 

(11) or (12) must be used for a given n ) is not known. The most obvious guess is that case a 

is relevant if 1/ 2n ≥ , and case b otherwise. Using this guess, a candidate equilibrium can be 

computed. It must, then, be verified that (1 ,1) 1F n− <  holds for all [0,0.5)n∈ , and 

( ,1) 1F n ≤  for [0.5,1]n∈ . Otherwise, the decision rule must have been wrong, or no 

equilibrium exists for the given parameter values.
18

 

Another possibility is to iterate on the value function. While the first procedure yields an 

analytical solution to an approximated problem, the iteration yields an approximate solution to 

the original problem. This procedure has the advantage that a decision rule that states whether 

case a or case b is relevant for a given n , can be derived analytically. The iteration procedure 

is now described in more detail. Let Vɶ  be the iterated value function. Vɶ  is computed 

recursively. To start the iteration, simply set ( ) 0V n ≡ɶ  [0,1]n∀ ∈ . The equilibrium conditions 

(10), (11), and (12) yield (after rearranging): 
19

 

 ( ) ( ) ( )( ) ( )( )
1 ' (1 ) ' ( )

(1 )

h n
V n V n V h n V h n

h n
δ δ= − − − +

−
ɶ ɶ ɶ ɶ  (13) 

 ( ) ( )( ) ' ( )V n l n V l nδ= +ɶ ɶ  (14) 

 ( ) ( )1 (1 ) ' (1 )V n l n V l nδ− = − + −ɶ ɶ  (15) 

                                                 
18

 It turns out that, if δ  is sufficiently small, the above decision rule is always correct, and the solution 

procedure yields good results if the market share grid is sufficiently fine. Problems arise only if the parameters 

δ  and λ  are both fairly large. The difficulties are related to feedback effects stemming from the popularity 

weighting property of the word-of-mouth process. 
19

 Taking account of the iteration procedure, the value function of the current iteration, Vɶ , and the value 

function of the previous round, 'Vɶ , must be distinguished (they are identical when the iteration has converged).  
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(14) is valid if case a is relevant. If this holds for the given value of n , then it must also hold 

that ( ,1) 1F n ≤ . Using (13) and (14) in (9), this yields the following condition: 

 

( ) ( )( )
( ) ( ) ( )

(1 )
(1 ) ( ) ' ( ) ' ( )

( )
1

' (1 ) ' (1 ) (1 ) (1 )

h n
h n l n V l n V h n

h n

V h n V l n h n l n

δ δ

δ δ

−
− − + −

≤
− − − + − − −

ɶ ɶ

ɶ ɶ
 (16) 

If (16) is fulfilled, case a is relevant, if it is violated, case b is relevant. Using the definition: 

 ( ) ( )( )( ) (1 ) ( ) ' ( ) ' ( )n h n l n V l n V h nβ δ δ≡ − + −ɶ ɶ  (17) 

, (16) can be written more conveniently as follows:  

 ( ) (1 )n nβ β≥ −  (18) 

(18) holds with equality for 1/ 2n = . Therefore, at this point, there is always a (potential) 

switch from case a to case b (or vice versa). For all values of n  that fulfill (18), the iteration 

formula (14) can be used in the current iteration round. For all other values of n , case b is 

relevant. Plugging the expression for ( )1V n−ɶ  in (15) into (13), we obtain the following 

iteration formula for case b (using (17)): 

 ( ) ( )(1 )
' ( )

(1 )

n
V n V h n

h n

β
δ

−
= +

−
ɶ ɶ  (19) 

Combining (14), (18), and (19), we obtain the following iteration formula for all values of n : 

 

( )

( )

( ) ' ( )            if  ( ) (1 )

( ) (1 )
' ( )    if  ( ) (1 )

(1 )

l n V l n n n

V n n
V h n n n

h n

δ β β

β
δ β β

 + ≥ −


=  −
+ < − −

ɶ

ɶ

ɶ
 (20) 

Using (20), the iteration procedure is easy to implement on a computer. For small values of 

δ , it converges quickly. If λ  and δ  are both fairly large, the iteration process often takes 

many rounds to converge or fails to converge. As a general rule, the iteration process 

converges whenever (18) is fulfilled with equality only at 1/ 2n =  (and no other value of n ) 

after several iteration rounds, which corresponds to the postulated simple decision rule 

mentioned above. The iteration process, and the procedure with the discretized state space, 

then, yield identical results up to some numerical imprecision. Apparently, the lack of a 

solution (if it occurs) is related to highly irregular patterns in the shape of the invariant 

distributions (see Section 4). It turns out, that a small change in the initial state 1n  may, then, 

affect the probability distribution of the firms’ market shares over many future periods and 



 12 

can, thus, lead to a substantial change in a firm’s value. Hence, the value function may not be 

continuous. In such situations, the dynamic program may not have a solution.
20

  

 

3. Market share dynamics in the absence of strategic interaction 

Before analyzing market share dynamics generated under strategic interaction, it is useful to 

analyze the dynamics “inherent” to the process of information transmission (introduced in 

Section 2) in a non-strategic environment. Section 3.1 analyzes the “deterministic 

benchmark”, where firms simply alternate in gaining and losing market shares. It is shown 

that there are “attractors” in the market share space, to which the market shares converge. 

Section 3.2 considers the “stochastic benchmark”, where in each period, each firm gains or 

looses market shares with an equal probability. This is more similar to the mixed-pricing 

equilibria under strategic interaction, but the history-dependence of current pricing strategies 

is “switched off”. Due to the stochastic environment, market shares do not converge to the 

attractors, but they tend to be close to them with high probability. 

 

3.1 Deterministic benchmark 

Consider the evolution of firm 1’s market share under the “alternating sequence” 

(0,1,0,1,...)altS ≡ : in all even- (odd-) numbered periods, firm 1 gains (loses) market shares.
 21

 

 

Definition: fixn  is a fix point in the market share space if it fulfills: ( )( )fix fixn h l n= . 

 

Hence, if firm 1’s market share is initially fixn , and the firm first loses and then gains market 

shares, it reaches its original market share fixn  again. The fix point is, thus, reached in all 

even-numbered periods under the alternating sequence altS .
22

 To simplify the exposition, it is 

useful to define: ( )( ) ( )g n h l n≡ . Under the alternating process, the sequence of firm 1’s 

market shares in even-numbered periods is, thus, given by the following law of motion: 

2( )t tn g n −= , and any fix point must fulfill: ( )fix fixn g n= . 

 

Lemma 1: If fixn  is a fix point, then (1 )fixh n−  is also a fix point (“corresponding fix point”). 

 

                                                 
20

 The observation that, for some parameter values, a small change in the starting value 
1

n  can lead to a 

markedly different evolution of market shares over many periods is reminiscent of chaotic behavior. 
21

 Remember, that firm 2’s market share in period t  is simply 1
t

n− . 

22
 In all odd-numbered periods, the market share ( )

fix
l n  is attained. 
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Proof: (1 )fixh n−  is a fix point if ( )( )(1 ) ( (1 )) (1 )fix fix fixh n g h n h l h n− = − = −  holds. By strict 

monotonicity of (.)h , this is equivalent to: ( )1 (1 )fix fixn l h n− = − . Using (2), this can be 

written as: ( )( ) ( )fix fix fixn h l n g n= = , which is true since fixn  is a fix point. □ 

 

Definition: fixn  is degenerate if the corresponding fix point (1 )fixh n−  is identical to fixn . 

 

To find out whether a fix point 1/ 2fixn >  is “degenerate”, simply compute ( )fixl n . If this is 

below 1/2, then the fix point is degenerate, which means that firm 1’s market shares under 

altS  alternate symmetrically around 1/2. If ( ) 1/ 2fixl n > , then fixn  is non-degenerate, and (by 

symmetry) there exists a corresponding fix point in the lower half of the market share space, 

located at (1 )fixh n− . Given an arbitrary starting point, a sequence of market shares can either 

converge to a fix point, or diverge away from it. 

 

Definition: fixn  is an attractor (stable fix point) if there is a neighborhood 

{ }( ) [0,1] :  fix fixU n n n nε ε≡ ∈ − <  with 0ε > , such that every sequence of firm 1’s market 

shares that starts from some 1n  within ( )fixU nε , converges to fixn  under (0,1,0,1,...)altS = . 

 

Lemma 2: 
fixn  is an attractor if ( ) / 1fixn n

dg n dn
=

< .
23

 

 

For the process of information transmission introduced in Section 2, we obtain the following 

solutions to the condition ( )n g n= , for the interval [0.5,1]n∈  (using (3)): 
24

 

 ( )* 2(1 ) 4 1 / 2n ρ λ ρ λ≡ + + − −  ,  ( )** 2(1 ) 4(1 ) 1 / 2n ρ λ ρ λ≡ + − − + −  (21) 

*n  is a degenerate fix point, and **n  a non-degenerate one. Hence, another fix point is located 

at *** **(1 ) 0.5n h n≡ − < . This is illustrated in Figure 1 (for 0.7λ =  and 0.2ρ = ):  

 

 

 

 

 

 

                                                 
23

 This is a standard result for dynamic systems. A formal proof is, thus, omitted. 
24

 There is another solution that is located outside the interval [0,1]. 
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Figure 1:  Fix points in the market share space; 0.7λ = , 0.2ρ =  

0 0 . 2 0 . 4 0 . 6 0 . 8 1
n

 
In the following, two special cases are analyzed: 1. 0ρ =  (there are no consumers of the 

ignorant type), and  2. 0λ =  (there are no word-of-mouth consumers).
25

 

 

Special case: 0ρ =  

Using 0ρ = , we obtain: ( )2
2( ) 1 1g n nλ λ= − − . The expressions for *n  and **n  in (21) 

simplify to: ( )* 4 1 1 / 2n λ λ≡ + −  and ( )** 4 3 1 / 2n λ λ≡ − + . Figure 2 shows *n  and **n . 

 

Figure 2:  Fix points *n  and **n  as a function of λ ; 0ρ =  (dashed: unstable fix point) 
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Figure 2 illustrates that **n  exists only for 3 / 4λ ≥ , while *n  exists for [0,1]λ∈ . 

 

Proposition 2: For 0ρ = , *n  is an attractor if 3/ 4λ < , and **n  is an attractor if 3/ 4λ > . 

 

Proof: By Lemma 1, stability requires that ( ) / 1fixn n
dg n dn

=
< . Using ( )2

2( ) 1 1g n nλ λ= − − , 

( )* 4 1 1 / 2n λ λ≡ + − , and ( )** 4 3 1 / 2n λ λ≡ − + , this yields 3/ 4λ <  (resp. 3/ 4λ > ).  □ 

 

Hence, for 3/ 4λ <  (and 0ρ = ), firm 1’s market share converges to *n  under altS  for any 

starting point 1n . For 3/ 4λ > , it converges to **n  if  *

1n n> , and to ***n  if *

1n n< . 

                                                 
25

 This distinction is made for tractability. 

*n  
**n  ***n  

*n  
**n  
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In the following, a simple measure of the volatility of market shares is introduced. Let k  be 

the minimum number of consecutive market share losses of firm 1, that (starting from 1 1n = ) 

are sufficient to yield a market share of 1/2 (and hence, destroy firm 1’s dominant position).
26

 

To compute k , apply 2( )l n nλ=  k  times to 1 1n =  to get: 2 1(1)
kkl λ −= . Equalize this to 1/2, 

and solve for k  to obtain: 

 
ln 2

ln 1 / ln 2
ln

k
λ

 = − 
 

 (22) 

Since k  is usually not an integer, the minimum number of consecutive market share losses 

until firm 1’s market share falls below 1/2, is given by the smallest integer greater than k . For 

example, for 0.91λ = , we have 3k ≅ . Hence, for all 0.91λ > , at least four consecutive 

market share losses are required to destroy firm 1’s dominant position in the market. 

 

Special case: 0λ =  

For 0λ = , we get: ( )( ) 1 1g n nρ ρ= − − . The expression for *n  in (21) simplifies to: 

* 1/(1 )n ρ= + . **n  does not exist for 0λ = . 

 

Proposition 3:  For 0λ = , *n  is always an attractor (for any 1ρ < ). 

 

Proof:  2( ) / 1dg n dn ρ= < .  □ 

 

For 0λ = , the minimum number of consecutive market share losses (starting from 1 1n = ), 

such that firm 1’s market share falls below 1/2, is given by the smallest integer greater than 

ln 2 / lnk ρ= − .
27

 For example, (0.79) 3k ≅ . Hence, if 0.79ρ > , at least four consecutive 

market share losses are required to destroy firm 1’s dominant position (starting from 1 1n = ). 

Note, that this does not imply that market shares will be near the extremes with a high 

probability under the stochastic benchmark, because for large values of ρ , the attractor *n  is 

close to 1/2. It only implies that, when a firm has a large (or a small) market share initially, a 

more even split of the market is reached only gradually. 

 

                                                 
26

 Under the stochastic benchmark, we will see that only if k  is large, and the information process favors 

skewed distributions of market shares (a stable fix point is located near 1n = ), then a firm with a dominant 

position is likely to maintain this position for many consecutive periods. If there is a stable fix point near 1n = , 

but k is small (this is the case when λ  and ρ  are both small), market shares tend to fluctuate between the 

extremes, and usually do not stay close to one extreme (n=0, n=1) for many consecutive periods. 
27

 To see this, apply ( )l n nρ=  k  times to 
1

1n =  to obtain: (1)
k k

l ρ= . Equalize this to 1/2 and solve for k . 
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3.2 Stochastic benchmark 

We are now equipped with some qualitative predictions about the market share dynamics in 

the absence of strategic interaction. E.g., when λ  and ρ  are both small, the attractor *n  is 

located close to 1, and the volatility of market shares is high ( k  is small). Hence, market 

shares tend to fluctuate between the extremes (between values close to 0n =  and close to 

1n = ), but usually do not stay close to one extreme for many consecutive periods. When 

0ρ =  and λ  is large (close to 1), the stable attractor **n  is located close to 1, and the 

volatility of market shares is low ( k  is high). Hence, the market split tends to be skewed most 

of the time, and once a firm reaches a dominant position in the market, it is likely to maintain 

this position for many consecutive periods. This is due to the popularity weighting property of 

word-of-mouth. If 0λ =  and ρ  is large, the attractor *n  is close to 1/2, and the volatility of 

market shares is low. Hence, the market split tends to be an even one most of the time. 

In the following, these predictions are confirmed by means of simulation. Analytical results 

are difficult to obtain even for the simple stochastic benchmark, because – as will become 

clear below – the invariant distributions of market shares are often highly irregular. 

Figure 3 shows a simulation of market shares under the stochastic benchmark, for 0.95λ =  

and 0ρ = , and a numerical approximation of the invariant distribution for these parameter 

values.
28

 Note, that the invariant distribution shows the probability of each possible state, but 

it does not reveal the patterns of transition between the states. 

 

Figure 3:  Simulated evolution (left) and invariant distribution (right) of market shares, 

stochastic benchmark; 0.95λ = , 0ρ =  
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Figure 3 confirms the prediction that, for large values of λ , the market split tends to be 

skewed most of the time, and once a firm reaches a dominant position in the market, it is 

likely to maintain this position for many consecutive periods. The invariant distribution 

                                                 
28

 The invariant distributions are also computed by simulation, but with a much higher number of periods 

(usually between 10
5
 and 10

6
). For the market share grid, a uniform step size of 0.01 was used. 
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shown in Figure 3 reveals a highly irregular shape. Market shares tend to be skewed with a 

high probability, but there are “hot spots” (peaks) to which market shares return more often 

than to other points located close to them. Furthermore, the location of these peaks is sensitive 

to the exact parameter values. A small change in λ  can lead to a different shape of the 

invariant distribution (not shown). This gives an idea why analytical results are virtually 

impossible to derive even for the (conceptually) simple stochastic benchmark. 

Figure 4 shows simulated market shares and the invariant distribution for 0λ =  and 0.95ρ = . 

 

Figure 4:  Simulated evolution and invariant distribution of market shares, stochastic 

benchmark; 0λ = , 0.95ρ =  
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Figure 4 confirms the prediction that for high values of ρ , the market split tends to be an 

even one most of the time. Note, that the invariant distribution now reveals a regular shape. 

However, this is not generally true for the case 0λ = . For smaller values of ρ , the invariant 

distribution becomes highly irregular again (not shown). The comparison of Figure 4 with 

Figure 3 illustrates, that the prevalence of word-of-mouth communication crucially affects the 

dynamics of market shares. 

An interesting special case is the one where exactly half of the consumers are of the ignorant 

type, and the other half are searchers ( 0λ = , 0.5ρ = ). This case is simulated in Figure 5. 

 

Figure 5:  Simulated evolution and invariant distribution of market shares, stochastic 

benchmark; 0λ = , 0.5ρ =  
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Figure 5 reveals that, for these particular parameter values, the invariant distribution is 

uniform.
29

 Hence, all market shares in the interval (0,1) occur with the same probability. Note, 

however, that when ρ  differs only marginally from 1/2, the shape of the invariant distribution 

becomes highly irregular again (not shown). 

The analysis in Section 3.1 focused on two special cases, namely the case where 0ρ = , and 

the one where 0λ = . Another interesting case to consider is a situation where most 

consumers either communicate via word-of-mouth, or are of the ignorant type. To simulate 

this case, a small but positive fraction of searchers must be maintained, for otherwise, the 

market share of a firm will at some point converge either to 0 or to 1. This is because, when 

there are no searchers, nobody finds out about a supplier with a market share of zero. Figure 6 

shows a simulation of market shares and the invariant distribution for 0.49λ ρ= = . 

 

Figure 6:  Simulated evolution and invariant distribution of market shares, stochastic 

benchmark; 0.49λ ρ= =  
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Figure 6 reveals that properties inherent to the word-of-mouth process (namely skewed 

market shares) “overlap” with properties that are typical for a situation with many ignorant 

consumers. Overall, market shares are not very volatile, and intervals where they are skewed 

alternate with (shorter) intervals where the market split is roughly an even one. 

 

4. Market share dynamics under strategic interaction 

Section 2 showed that firms use mixed pricing strategies in equilibrium. The resulting price 

dispersion generates market share dynamics. These dynamics are characterized in this 

Section. Two cases are analyzed separately: the “repeated static game” (Section 5.1), and the 

full dynamic game (Section 5.2). While in the latter, the incentives to invest in future market 

shares play an important role, they are excluded in the repeated static game. Market share 

                                                 
29

 The small “bumps” are due to the finite number of simulation rounds. 
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dynamics in the full dynamic game are compared to those under the repeated static game to 

reveal the impact of these incentives. The repeated static game is compared to the stochastic 

benchmark (Section 3.2) to reveal the impact of current profit maximization on the market 

share dynamics. Table 1 summarizes the four cases analyzed in this paper.  

 

Table 1: Four cases analyzed in this paper 

 case:      reveals: 

1. deterministic benchmark 
 

2. stochastic benchmark 

 
 

3. repeated static game 
 

4. full dynamic game 

- location of attractors in market share space 
 

- dynamic properties “inherent” to the process of 

information transmission 
 

- dynamics resulting from current profit maximization 
 

- incentives to invest in future market shares 

 

 

4.1 Repeated static game 

As in Section 3.2, the evolution of market shares is characterized by means of simulation.
30

 

Let us start with a situation where most consumers are searchers (λ  and ρ  close to 0). This 

case is interesting, as it is only a small step away from the standard Bertrand model with fully 

informed consumers (with trivial market share dynamics). Figure 7 shows a simulation of 

market shares and the invariant distribution for 0.1λ =  and 0ρ = . 

 

Figure 7:  Simulated evolution and invariant distribution of market shares, repeated static 

game ( 0δ = ); 0.1λ = , 0ρ =  
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Figure 7 illustrates that for λ  and ρ  near 0, market shares are very volatile and fluctuate 

between the extremes of the market share space. This behavior of market shares does not 

                                                 
30

 For the equilibrium pricing strategies in the repeated static game, a closed-form solution can be obtained. To 

this end, use 0δ =  in (9), (17), and (20) (not shown). 

0.2
0.4

0.6
0.8

1
n

2 4 6 8 10 12 14 16

density



 20 

seem to be a plausible prediction for most markets in the real world, where market shares 

generally appear to be less volatile. Hence, consumers are either less well-informed in the real 

world, or other mechanisms (e.g. product differentiation, superior production technologies, 

innovations...) create additional inertia in the market shares. The invariant distribution reveals 

that there are essentially four different splits of the market that occur with positive probability. 

One of these splits (consisting of two peaks) is located near 0.9n = . This split is reached if 

the size of firm 1’s customer base is initially close to 0, and firm 1 gains market shares in the 

current period. Another “hot spot” is located close to 1. This spot is reached if n  is initially 

around 0.9, and firm 1 once more gains market shares. The other two “hot spots” are located 

in the lower half of the market share space (their location follows from symmetry). 

These findings can be compared with the stochastic benchmark. It turns out that for λ  and ρ  

near zero, the dynamics in the stochastic benchmark are very similar to those under the 

repeated static game. This is related to the fact that in both cases, the probability of gaining or 

losing market shares is near 1/2, irrespective of the initial split of the market in period t  

(captured by the state tn ). However, in the repeated static game, the probability of 

maintaining a dominant market position for several consecutive periods is slightly lower, 

because a firm with a small customer base prices more aggressively than its competitor. 

Hence, this firm gains market shares with a probability (slightly) above 1/2. 

Figure 8 simulates a market where most consumers communicate via word-of-mouth.
 31

 

 

Figure 8:  Simulated evolution and invariant distribution of market shares, repeated static 

game; 0.95λ = , 0ρ =  
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The comparison of the dynamics in Figure 8 with those under the stochastic benchmark in 

Figure 3 (that were simulated for the same parameter values), illustrates that market shares in 

the repeated static game tend to be less skewed. Furthermore, a firm that has reached a 

dominant market position, is less likely to maintain this position for many consecutive periods 

                                                 
31

 Note, that the irregular shape of the invariant distribution in Figure 8 is not due to numerical imprecision.  
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than under the stochastic benchmark. The reason for this is, that a firm with a small customer 

base has a stronger incentive to undercut the competitor’s price in order to attract additional 

customers, while the other firm tends to exploit the locked-in consumers in its customer base. 

Hence, the firm with the smaller customer base tends to gain market shares, which yields a 

tendency towards the center of the market share space. This effect partly neutralizes the 

tendency inherent to the information process towards skewed market shares (due to the 

popularity weighting property of word-of-mouth), but does not entirely eliminate it. 

The dynamics of the repeated static game in situations where many consumers are of the 

ignorant type ( ρ  close to 1), are qualitatively similar to those under the stochastic benchmark 

(not shown). However, as in the case where λ  is large, there is a stronger tendency towards 

even splits of the market, as a firm with a small customer base prices more aggressively and 

is, thus, likely to gain market shares.  

The effect is more pronounced in a situation where most consumers either communicate via 

word-of-mouth, or are of the ignorant type. Figure 9 shows a simulation for 0.49λ ρ= = . 

 

Figure 9:  Simulated evolution and invariant distribution of market shares, repeated static 

game; 0.49λ ρ= =  
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The comparison of Figure 9 with Figure 6 (simulated for the same parameters) shows clearly 

the tendency towards more even splits of the market under the repeated static game than under 

the stochastic benchmark. 

 

4.2 Full dynamic game 

The evolution of market shares for 0δ >  is analyzed using simulations based on the 

approximated value function ( )V nɶ . The value function is approximated using the iteration 

procedure or the method of discretizing the state space (see Section 2).
32

 The first result is, 
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 The procedure with the discretized state space is computationally faster when the iteration takes many rounds 

to converge. Both methods yield (up to some numerical imprecision) identical results. Note, that market share 
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that for values of λ  and ρ  near zero, the dynamics for 0δ >  are very similar to those under 

the repeated static game (see Figure 7). This is because, when most consumers are fully 

informed, the firm that currently offers the lower price serves most of the market, irrespective 

of the size of its customer base. Hence, firms have little incentive to invest in market shares.  

Figure 10 simulates a market where most consumers communicate via word-of-mouth. 

 

Figure 10:  Simulated evolution and invariant distribution of market shares, full dynamic 

game; 0.95λ = , 0ρ = , 0.5δ =  
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The comparison of Figure 10 with Figure 8 (simulated for the same parameters except δ ) 

illustrates, that for larger values of the discount factor δ , market shares tend to be more 

skewed, and a firm that has obtained a dominant position is more likely to maintain this 

position for several consecutive periods. Hence, the evolution of market shares is qualitatively 

similar to the stochastic benchmark. This can be explained as follows. When future profits are 

important, a firm with a large customer base has an incentive to defend its dominant position 

in the market. This leads to more intense price competition near the extremes, which partly 

neutralizes the tendency towards more even market splits observed for 0δ = . This effect is 

particularly strong when market shares are not at the extremes, but relatively close to them 

(say, 0.2n ≅  or 0.8), as can be confirmed by analyzing the location of the price distribution 

functions. For 1n = , firm 1’s distribution function f.o.s. dominates firm 2’s, so firm 1 is likely 

to lose market shares, as it prefers to exploit the locked-in consumers in its customer base. 

However, for slightly lower values of n , the situation is reversed. Firm 1 is now likely to gain 

market shares again, as it starts to vigorously defend its dominant market position. Therefore, 

market shares tend to fluctuate near the extremes (compare Figure 10 also with Figure 3).  

                                                                                                                                                         
dynamics are closely linked to the shape of the value function, and can not be understood in isolation. The link is 

as follows. The value function implies the location of the distribution functions (via (9)) for every possible state 

n . The distribution functions generate the process of market share evolution. The value function itself, however, 

depends on the stochastic properties of this process. 
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Similar results are obtained for other parameter values. E.g., when many consumers are of the 

ignorant type and future profits are fully discounted, the market split tends to be an even one 

most of the time when. When δ  increases, market shares tend to be more skewed. However, 

the effect is less pronounced than in a situation with many word-of-mouth consumers.  

Figure 11 shows a simulation for a situation where most consumers either communicate via 

word-of-mouth, or are of the ignorant type ( 0.49λ ρ= = ). 

 

Figure 11:  Simulated evolution and invariant distribution of market shares, full dynamic 

game; 0.49λ ρ= = , 0.75δ =  
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The comparison of Figure 11 with Figure 9 (same parameters except δ ) clearly shows the 

tendency towards skewed market splits when future profits are not fully discounted (the 

dynamics are similar to those under the stochastic benchmark, Figure 6). 

The main result of this Section, namely that more skewed market splits emerge when future 

profits are important, is surprising. Intuitively, one may expect that a firm with a small 

customer base prices aggressively to gain new customers. Hence, there would be a tendency 

towards even splits of a market (as shown in Section 4.1 for the repeated static game). 

However, in a fully dynamic environment where future profits are important, an even split of 

the market may no longer be the most “natural” outcome. There can be extended periods of 

time where a firm dominates the market, as it vigorously defends its dominant position 

whenever it is threatened. The smaller competitor can “steel” the dominant position by pricing 

aggressively for many periods, but this may be too costly. Hence, asymmetric splits of a 

market can persist for extended periods of time, even when firms are initially identical. 

 

5. Extension: Consumers do not make a purchase in each period 

In this Section, it is analyzed how a reduction in the frequency of purchases affects the 

evolution of market shares. The idea that not every consumer makes a new purchase in each 

period adds an important aspect of real-world markets to the model. 
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Let α  be the (average) frequency of purchases of a consumer in this market. E.g., 1/ 2α =  

means that consumers (on average) return to the market every second period. The parameter 

α  can also be interpreted as a measure for the degree of durability of the good sold in this 

market. As in Section 2, let us assume that the mass of consumers who return to the market in 

each period is normalized to 1.
33

 Let tΩ  be the mass of consumers who purchased firm 1’s 

product when they made their last purchase in this market (evaluated at the beginning of 

period t ). Among these consumers, let tn  be the mass of those consumers who return to the 

market in period t : t tn α= ⋅Ω . Note, that tn  differs from firm 1’s market share in period 1t −  

( 1, 1tD − ) when 1α < . Under the above assumptions, we obtain the following law of motion: 

1 1, 1(1 )t t tDα − −Ω = − Ω + . Using t tn α= ⋅Ω , this can be written as: 

 1 1, 1(1 )t t tn n Dα α− −= − +  (23) 

(23) replaces the simple relation 1, 1t tn D −=  assumed in Section 2. Otherwise, the model and 

the solution procedure remain unchanged. Note, however, that for 1α < , the market shares 

are (by (23)) more volatile than the state variable tn  (a reduction in the frequency of repeat 

purchasing α  adds inertia to the state variable).   

Figure 12 shows a simulation and the invariant distribution of market shares under the 

stochastic benchmark, for 0.95λ = , 0ρ = , and 0.2α = .
34

 

 

Figure 12:  Simulated evolution and invariant distribution of market shares, stochastic 

benchmark; 0.95λ = , 0ρ = , 0.2α =  (thick curve: state tn , thin: 1,tD ) 
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The thin curve in Figure 12 shows firm 1’s realized market shares. It fluctuates around the 

thicker curve that shows the evolution of the state variable tn . The comparison of Figure 12 

                                                 
33

 Hence, when 1α < , the total mass of consumers (including those who do not make a purchase in the current 

period) is greater than 1. 
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 Note, that the invariant distribution of the state variable has a different shape (not shown).  
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and Figure 3 (same parameters except α ) shows that market shares are (on average) less 

skewed for 0.2α =  than for 1α = . Overall, there is more inertia for lower values of α .
35

 

Figure 13 shows a simulation of the full dynamic game for the same parameters and 0.7δ = . 

 

Figure 13:  Simulated evolution and invariant distribution of market shares, full dynamic 

game; 0.95λ = , 0ρ = , 0.2α = , 0.7δ =  
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The evolution of market shares in Figure 13 is qualitatively similar to the one under the 

stochastic benchmark (Figure 12). The invariant distribution reveals an interesting result: 

market shares near the extremes and even splits of the market occur more frequently than 

market shares near 0.8 (or 0.2). This is related to the fact that the invariant distribution of the 

state has two peaks located near 0.2 and 0.8 (not shown). Since firm 1’s realized market 

shares fluctuate around the state, we observe two areas with low probabilities around 0.2 and 

0.8 in Figure 13. Intuitively, when firm 1’s customer base size tn  is large, it prefers to exploit 

the locked-in consumers by charging a high price. Hence, it tends to lose market shares. 

However, when n  becomes “too small” (say, below 0.8), firm 1 starts to defend its dominant 

position in the market. As a result, the state often remains near 0.8 (or 0.2) for many 

consecutive periods. 

In a final excursion, let us briefly discuss a situation where a firm tries to enter a market 

characterized by a high degree of inertia. Figure 14 simulates entry dynamics for a market 

where most consumers either communicate via word-of-mouth, or are of the ignorant type. 
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 The comparison of the invariant distributions in Figures 3 and 12 shows that they can become more regular 

shaped when α  is reduced (this holds for large values of λ ). As a result, the iteration converges also for larger 

values of δ  when α  is sufficiently small. However, when λ  is small, the situation is reversed. While for 

1α = , the iteration, then, converges for all values of δ , for 1α < , the invariant distribution becomes irregular, 

and the iteration does not converge if δ  is too large. 

0.2
0.4

0.6
0.8

1
n

0.5 1

1.5 2

2.5

density



 26 

Figure 14:  Simulated evolution of market shares, full dynamic game; 0.49λ ρ= = , 0.1α = , 

0.5δ =  
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Figure 14 nicely illustrates that entry into a market with poorly informed consumers and a low 

frequency of purchases can be rather time consuming. The entrant only gradually captures a 

greater share of the market by continuously undercutting the incumbent’s price. The state 

gradually approaches values near 1/2, where most of its probability mass is located for the 

given parameter values (not shown). Market shares, then, start to fluctuate around the state. 

 

6. Conclusion 

Authors of search models often restrict their attention to situations where consumers do not 

return to the market, and knowledge from previous consumption experiences does not exist. 

Hence, they use a static modeling framework, which is appropriate in the absence of an 

intertemporal link in demand. However, there is empirical evidence that market splits (even or 

skewed) can have a high persistence over time.
36

 This paper introduced an intertemporal link 

in demand, by assuming that consumers are repeat purchasers who possess information about 

the supplier that they visited in the previous period. Combined with the price dispersion 

generated by the firms’ use of mixed pricing strategies, this leads to rather non-trivial market 

share dynamics. The paper showed that when many consumers search actively, market shares 

are volatile, and firms have little incentive to invest in a customer base. Market shares, then, 

fluctuate between the extremes of the market share space. When many consumers are of the 

‘ignorant type’ and remain locked-in at their previous supplier, market shares are sticky and 

tend to be evenly distributed most of the time. However, as the valuation of future profits 

increases, a larger customer base becomes valuable. Hence, a firm with a dominant position in 

the market may become a more aggressive player who vigorously defends its position. In this 

case, a tendency towards more skewed market splits emerges. This effect is especially 

pronounced when many consumers communicate via word-of-mouth. In this case, the 
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 See, e.g., Pakes (1987). 
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‘popularity weighting property’ of word-of-mouth communication plays an important role. 

When future profits are not fully discounted, a skewed split of the market can, thus, be the 

“natural” outcome even though firms are initially identical. In contrast, when firms maximize 

only current profits, a firm with a smaller customer base is generally the more aggressive 

player. This yields a tendency towards more even splits of the market.  

In an extension of the model, it was shown that, if consumers do not return to the market in 

each period, there is more inertia in the market shares. This case was used to simulate entry 

dynamics. The dynamics illustrated that entry into a market with poorly informed consumers 

can be a rather time consuming process. An entrant must undercut the incumbent’s price for 

many consecutive periods in order to obtain a sizable share of the market. 

 

Appendix 

Proof of Proposition 1:  

Proof of the first claim (“there is no Markov perfect equilibrium that comprises pure strategies 

for any [0,1]n∈ ”) by contradiction. Suppose there is an equilibrium that assigns pure 

strategies 1p  and 2p  to a state [0,1]n∈ . It must be shown that, for any 1p  and 2p , at least 

one firm has an incentive to deviate. If 1 2p p p= ≡  and 0p > , either firm would benefit from 

marginally undercutting the common price p . This leads to a discontinuous rise in demand 

that, for sufficiently low δ , more than compensates for (potential) future losses resulting 

from the increase in the size of the firm’s customer base.
37

 The case 1 2p p p= ≡  and 0p ≤  

can not be an equilibrium because, if it were an equilibrium, the state n  would remain 

constant, so firms choose 1 2p p p= ≡  in all periods and total discounted profits are non-

positive (note: a deviation e.g. to the monopoly price 1 yields a positive profit to a firm with a 

positive customer base size, and there is at least one such firm). If 1 2p p≠  and 1 2, 1p p < , the 

high-priced firm would benefit from deviating to the monopoly price because current demand 

and, thus, the state next period are not affected. There can be no pure strategy equilibrium 

where 1ip =  and 1j ip ≠ < , as the low-priced firm would benefit from deviating to a higher 

price, or the high-priced firm from marginally undercutting the lower price (or both). 

Proof of the second claim (“both equilibrium price distribution functions ( , )F n p  and 

(1 , )F n p−  have the same support (for any given n ), the convex set of prices p  from 
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 Note: an increase in the size of a firm’s customer base can lead to a reduction in profit, unless the value 

function is monotonically increasing, but this can not be imposed here. 
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( ) 1p n <  to 1”): Let 1S  and 2S  be the supports of, respectively, ( , )F n p  and (1 , )F n p− . 

Suppose, 1 2S S≠  for a given value of n . Therefore, there is a price 1p <ɶ , with ip S∈ɶ  but 

jp S∉ɶ  ( , {1, 2}i j∈ , j i≠ ). This can not be an equilibrium because, since jS  is open, there 

exists a price p p> ɶ  with jp S∉  that yields the same expected demand to firm i  in the 

current period as pɶ , but a higher profit if δ  is sufficiently small. This holds if p  is above the 

maximum of jS  (if the maximum is below 1), below the minimum of jS , or within some 

intermediate range that is not part of jS  when jS  is not convex. Therefore, 1 2S S S= ≡ . The 

maximum of S  must be the monopoly price, because otherwise, each firm would benefit from 

deviating to the monopoly price. This yields the same demand as the maximum of S  but a 

higher profit. The minimum of the support, p , is smaller than 1 since there is no pure strategy 

equilibrium. Furthermore, S  is convex. Suppose to the contrary that there is an intermediate 

range that is not part of S . Firm i ’s expected demand would be constant over this range, but 

expected profit would be increasing. Therefore, expected profit would be higher in the upper 

interval of S . This can not be an equilibrium. 

Proof of the third claim (“at most one firm attaches positive probability mass to any single 

price, and if so, the mass point is located at the monopoly price”): Suppose both firms attach 

positive probability mass to some identical price level p  in [ ,1]S p=  when the current state 

is n . Each firm would, then, benefit from shifting its mass point to a price level marginally 

below p  because this leads to a discontinuous rise in current expected demand, which always 

benefits the firm if δ  is sufficiently small. Strategies containing a single mass point at some 

price p  in the interval ( ,1)p  can not be an equilibrium either since the competitor’s expected 

demand would fall discontinuously at p . There can be no equilibrium where the distribution 

function of one firm contains a mass point at 0p p= >  as the competitor’s current expected 

profit would be larger at prices marginally below p  than at prices above p . This can not be 

an equilibrium since prices below p  are not part of the support. There can be no equilibrium 

where the distribution function of one firm contains a mass point at 0p p= ≤  as the firm 

would benefit from shifting the mass point to some higher price level.        Q.E.D. 
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