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Abstract

This paper revisits the standard analysis of licensing a cost reducing inno-

vation by an outside innovator to a Cournot oligopoly. We propose a new

mechanism that combines elements of a license auction with royalty licens-

ing by granting the losers of the auction the option to sign a royalty contract.

The optimal new mechanism eliminates the losses from exclusionary licens-

ing without reducing bidders’ surplus; therefore, it is more profitable than

both standard license auctions and pure royalty licensing. We also take into

account that the number of licenses must be an integer, which is typically

ignored in the literature.

JEL classifications: D21, D43, D44, D45.

Keywords: Patents, Licensing, Auctions, Royalty, Innovation, R&D, Mecha-
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1. introduction

This paper revisits the standard analysis of licensing an outside innovator’s

cost reducing innovation to a Cournot oligopoly. We propose a simple new

mechanism that combines elements of a fixed–fee license auction with roy-

alty licensing in a particular way. This new mechanism is more profitable

than the standard solutions evaluated in the literature such as fixed–fee

license auctions, fixed–fee licensing, royalty licensing, and fixed–fee com-

bined with royalty licensing (see Kamien and Tauman, 1984, 1986, Katz and

Shapiro, 1985, 1986).

The key feature of the proposed mechanism is that it grants the losers of the

license auction the option to sign a royalty contract. Like in the standard

auction, the innovator auctions a restricted number of fixed–fee licenses;

but, after the auction, he also grants the losers of the auction the right to

sign a royalty license contract.

In equilibrium, the innovator sets the royalty rate equal to the marginal cost

reduction induced by using the innovation. As a result, the royalty licensing

granted in the second stage, after the auction, has no effect on equilibrium

bids since losers of the auction have the same payoff functions as if no

royalty option had been granted. Furthermore, in equilibrium the number

of auctioned licenses is such that no loser is crowded out of the market.

Thus, royalty income is collected and superiority is achieved.

Our analysis also takes into account that the number of licenses must be

an integer. Recently, Sen (2005) showed that this integer constraint can

make royalty contracts superior to the standard license auction, contrary

to the ranking alleged in the literature. However, as we show, accounting

for that integer constraint does not affect the superiority of the proposed

new mechanism relative to both the standard license auction and royalty

licensing.

The literature on patent licensing in oligopoly has branched out in various

directions. Sen and Tauman (2005) combined a license auction with roy-

alty licensing in the form of two-part tariffs, under complete information.

Wang (1998) and Kamien and Tauman (2002) analyzed the licensing prob-

lem from the perspective of an innovator who is also an incumbent player in

the downstream product market. While an outside innovator is only inter-

ested in licensing income, an “inside” innovator must also take into account

how giving access to his innovation affects his downstream profit. Muto

(1993), Hernández-Murillo and Llobet (2006) dealt with other market orga-

nizations such as Bertrand competition with product differentiation in lieu

of the Cournot competition assumed here. And Beggs (1992), Gallini and

Wright (1990), Macho-Stadler and Pérez-Castrillo (1991) examined the bene-

fits of royalty licensing either as a screening device in the face of incomplete

information concerning the users’ willingness to pay for the innovation or

as a signaling device if the innovator has superior information concerning

the cost reductions induced by his innovation.
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The licensing policy proposed in the present paper is obviously discrimina-

tory because different buyers pay different prices for the use of the same

innovation. This raises the question: is that kind of discrimination employed

in industry and is it compatible with antitrust law? Unfortunately, the em-

pirical literature on licensing practices does not provide sufficient evidence

to fully address this issue. A widely cited study of 37 U.S. firms observes

that “A down payment with running royalties method was used 46% of the

time, while straight royalties and paid-up licenses accounted for 39% and

13%, respectively. Other forms of compensation such as periodic lump sum

payments, cross licensing, stock equities and royalty free licenses, although

mentioned, were used an insignificant portion of the time (2%)” (Rostoker,

1984, p.64). This finding is often interpreted as proving the predominance

of royalty licensing. However, that study also reports that the same inno-

vator often employs different licensing schemes, possibly for licensing the

same innovation to different customers.

Moreover, casual evidence suggests this kind of discrimination is widely

used in software licensing and in the sale of innovative products. A case

in point is the “Original Equipment Manufacturer (OEM) Licensing” where

PC manufacturers are sometimes given a choice between a “one-time paid-

up” license, which entitles the manufacturer to unlimited distribution of the

software within a specified time period, and a per copy royalty license.

Similarly, new products are often sold to some users for unrestricted use

while others are offered a leasing contract which is effectively a royalty li-

censing scheme. The only difference between these arrangements and the

one proposed here is that customers are typically given a free choice be-

tween these two arrangements, whereas the proposed policy assumes that

the innovator limits that choice by offering a restricted number of one-time

paid-up licenses.

The plan of the paper is as follows. In Section 2. we state the licensing prob-

lem as a sequential game and introduce basic assumptions. Section 3. sum-

marizes some general properties of the equilibrium, and Section 4. examines

the superiority of the proposed mechanism in a fairly general framework.

In Section 5. we specialize and consider the linear model that is assumed

in a large part of the literature. This allows us to give an explicit solution

of the optimal mechanism and to strengthen our results. Finally, Section 6.

outlines some directions for further research.

2. the model

There are n ≥ 2 firms with the linear cost function Ci(qi) := cqi, c > 0, and

the inverse demand function P(Q) with Q :=
∑n
i=1 qi. They play a Cournot

game.

An outside innovator owns a patented innovation that reduces the marginal

cost from c to c − ǫ with c > ǫ > 0. The innovator can permit the use of

that innovation by auctioning fixed–fee licenses or by offering royalty license

contracts.
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Throughout this text we employ the usual notion of a drastic vs. non–drastic

innovation. An innovation is drastic if its exclusive use by one firm propels

monopolization. Every innovation induces a natural oligopoly of a certain

size, denoted by K, in the sense that if K or more firms operate with the new

technology (at marginal cost c − ǫ), all firms with marginal cost c exit, i.e.

their equilibrium output is equal to zero. In this text we assume that the

innovation is non–drastic in the sense that K > 1.1

The following stage game is played: the innovator chooses a licensing mech-

anism; then firms play that mechanism as a noncooperative game; finally,

firms play a Cournot market game under complete information, after having

observed the outcome of the previous play, knowing who gained access to

the innovation and how.

We introduce the modified license auction G := (k, r), which is a general

class of mechanisms that includes both the fixed-fee license auction, GA,

and (linear) royalty licensing, GR, as special cases. In these mechanisms the

innovator sells k fixed-fee licenses in a first-price auction, possibly with a

minimum bid (which is needed if k = n) and gives those firms who do not

acquire a license the option to sign a linear royalty contract with the royalty

rate per output unit r > 0. The number of licenses k must be an integer

(which makes a difference but is typically ignored in the literature).

Evidently, if r > ǫ, no firm will exercise the royalty option. Therefore, if

r > ǫ, the mechanism G is equivalent to the standard license auction GA
analyzed by Kamien (1992) and others. And if k = 0 it is equivalent to the

standard royalty licensing GR.

Throughout our analysis, the inverse market demand function P satisfies

the following assumptions:2

Assumption 1 The market demand function Q(p) is strictly decreasing and

continuously differentiable for p > 0, and its price elasticity, η(p), is non-

decreasing in p. Moreover, P(Q)Q is strictly concave in Q and P(0) > c, and

P(Q) = 0 for all Q ≥ Q̄ > 0 (satiation point).

In the following we refer to a fixed–fee license as a “license” and to those

firms who obtain a license as “licensees”. Depending upon the context, a

non–licensee may either have a royalty contract or no access to the innova-

tion.

3. basic properties of the game

The equilibrium concept is that of a subgame perfect Nash equilibrium which

is found by backward induction.

1The notation is borrowed from Kamien (1992). The case of drastic innovation, K ≤ 1,

is trivial. There, the innovation induces a natural monopoly where issuing one fixed–fee

license is optimal.
2These assumptions are similar to those employed in Kamien, Oren, and Tauman (1992).
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Cournot subgames The Cournot subgame is played between licensees

(L) and non–licensees (N). All non–licensees have been offered a royalty

contract. We look at the particular subgames where all k fixed–fee licenses

have been bought and all n − k non–licensees have accepted the royalty

contract if r ≤ ǫ and no royalty contract has been signed if r > ǫ. Signing a

royalty contract changes a non–licensee’s unit cost from c to c − ǫ+ r .

Depending upon how many fixed–fee licenses have been sold, in equilibrium

either all non–licensees are crowded out or coexist and produce positive

outputs. The critical level of k above which all non–licensees are crowded

out depends upon their effective unit cost, c − ǫ+ r . We denote it by K(r),

and mention that for r = ǫ issuing K(ǫ) = K licenses establishes a natural

oligopoly of size K.

Using the measure K(r) it follows that all firms, licensees L and non–

licensees N alike, will coexist in the Cournot market for all k ∈ ILN whereas

only licensees play that game for all k ∈ IL, where

ILN := {k | 1 ≤ k ≤ n− 1 and k <K(r)} , (1)

IL := {k | k ≥K(r) or k = n} . (2)

We denote the equilibrium Cournot quantities and profits of licensees (L)

and non–licensees (N) by qL(k, r), qN(k, r),πL(k, r),πN(k, r). Note that for

r ≥ ǫ all non–licensees have an effective unit cost equal to c (since a contract

with r > ǫ is never accepted), as in the standard license auction game GA,

without royalty contract option, studied by Kamien (1992), Kamien, Oren,

and Tauman (1992) and others.

Licensing subgames Now consider the licensing subgames. The “value

of a license”, v(k, r), is the difference between the operating profits of a

licensee and a non–licensee. Thereby, one must distinguish between k < n

and k = n. If k < n a bidder cannot unilaterally influence how many firms

will be licensed; whereas if k = n, a firm can reduce the number of licenses

by not bidding. Therefore,

v(k, r) =







πL(k, r)−πN(k, r) if k ≤ n− 1

πL(n, r)−πN(n− 1, r ) if k = n.
(3)

Suppose k = n. If a bidder unilaterally abstains from bidding, he thus

reduces the number of licensees to n − 1. This either crowds him out

(πN(n − 1, r ) = 0), which occurs if n − 1 ≥ K(r), or allows him to earn

a positive profit as a royalty contractor (πN(n− 1, r ) > 0), if n− 1 <K(r).

Therefore, in the following we partition the set IL into

IL− :={k | (k ≤ n− 1, k ≥K(r)) or (k = n,n− 1 ≥ K(r))} (4)

IL+ :={k | k = n,n− 1 <K(r)} . (5)

Obviously, if k = n, the auction can only generate revenue if the innovator

has set an appropriate minimum bid, because otherwise firms can buy a
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license with a zero bid. Whereas, if k < n, a minimum bid serves no purpose.

Therefore, we assume that the innovator has set a minimum bid equal to

v(n, r) if k = n (as in Kamien (1992)).

We stress that in the modified license auction G the bid functions are the

same as in the standard license auctionGA if r ≥ ǫ. This follows immediately

from the fact that for r > ǫ the two mechanisms are equivalent, and for r = ǫ

the Cournot subgames are the same, because non–licensees’ effective unit

cost is equal to c in both environments, and therefore the value of a license

is the same in both G and GA.

We also mention that for the same number of licenses k and the royalty rate

r = ǫ the innovator earns the same fixed–fee license income in both G and

GA. However, the innovator may earn royalty income in G but not in GA.

Therefore, under these conditions G is Pareto superior to GA.

4. superiority of the modified license auction

The optimal modified license auction G∗ := (k∗, r∗) is defined as the maxi-

mizer of the innovator’s payoff

Π(k, r) := kv(k, r)+ (n− k)rqN(k, r), (6)

and G∗R , G∗A are similarly defined as maximizers subject to the constraint

k = 0, resp. r > ǫ.

Since the standard fixed–fee license auction and royalty licensing are special

cases of G = (k, r) one can immediately rank G relative to GA and GR, as

follows:

Proposition 1 The optimal modified license auction is weakly more prof-

itable than both optimal royalty licensing and the optimal license auction:3

Π
∗ ≥ max

{

Π
A∗ ,ΠR

∗
}

.

The remaining task is to examine whether the ranking of the innovator’s

profit can be strengthened especially if one accounts for the fact that the

number of licenses is an integer.

A key result of the literature is that for an outside innovator the optimal

license auction, G∗A, is more profitable than royalty licensing, GR. Recently,

Sen (2005) qualified this result by showing that GR can be more profitable

than G∗A if one takes into account that k is integer constrained. However, as

we now show:

Proposition 2 The optimal modified license auction is strictly more prof-

itable than optimal royalty licensing: Π∗ > ΠR
∗
.

3Note: Fixed-fee licensing is a special case of a license auction (obtained by setting

k = n). Therefore, the stated mechanisms also dominate fixed–fee licensing.
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Proof Consider royalty licensing at the rate r ∈ (0, ǫ] (royalty rates greater

than ǫ are never accepted). We prove the assertion by showing that the

particular modified license auction (1, r ) that issues one license and offers

the royalty rate r is more profitable for the innovator.

Denote firms’ equilibrium outputs under royalty licensing and the modified

license auction by qR resp. (qL, qN), the associated aggregate outputs by

QR := nqR, QM := qL + (n − 1)qN , and the equilibrium prices by pR, pM .

Then, the innovator’s profit is

Π(1, r ) =
(

pM − c + ǫ
)

qL −
(

pM − c + ǫ− r
)

qN + r(n− 1)qN

=
(

pM − c + ǫ− r
) (

qL − qN
)

+ rQM

>rQM > rQR = Π(0, r ).

The first inequality follows from three facts: 1) the innovation is non–drastic

and therefore the one licensee cannot crowd out other firms which assures

that the Cournot equilibrium price pM remains above the marginal cost c,

pM > c; hence, royalty income is generated; 2) ǫ ≥ r ; 3) qL > qN because the

licensee has lower marginal cost. To understand the second inequality, note

that both regimes induce an n-firms oligopoly, where one firm has lower

marginal cost in the modified license auction, which gives rise to a higher

aggregate output, as we show in detail in the Appendix. �

While the above result is unaffected by the integer constraint concerning k,

the latter may upset the strict superiority of G∗ relative to G∗A.

Proposition 3 The optimal modified license auction, G∗, is strictly more

profitable than G∗A := (k∗A, r
∗
A ), with r∗A > ǫ, if 1) k is not integer constrained

and if 2) k is integer constrained and k∗A < K.

Proof 1) Consider the mechanism (k∗A, ǫ) for which obviously Π(k∗A, ǫ) ≥

Π
A∗ , because switching from (k, r) with r > ǫ (which is the mechanism GA)

to (k, ǫ) does not affect the license income, k(πL−πN). We show that it can

be improved by reducing k below k∗A, so that Π∗ > ΠA
∗
.

Compute the left partial derivative of the innovator’s profit with respect to

k, evaluated at k = k∗A, and one finds for r = ǫ

∂Π

∂k

∣

∣

∣

∣

k=k∗A

=
∂

∂k
(k(πL −πN))

∣

∣

∣

∣

k=k∗A

+
∂

∂k

(

ǫ(n− k)qN
)

∣

∣

∣

∣

k=k∗A

=
∂ΠA

∂k

∣

∣

∣

∣

∣

k=k∗A

+
∂

∂k

(

ǫ(n− k)qN
)

∣

∣

∣

∣

k=k∗A

< 0.

By definition of k∗A, the first part of the RHS of the last equation is equal to

zero, and the second part is negative since (n−k)qN is obviously decreasing

in k. This proves the inequality, and it follows immediately that Π∗ > ΠA
∗
.

2) Now we assess what is changed due to the integer constraint. Note that

generically K is not an integer. Therefore, one has either k∗A < K or k∗A > K.
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If k∗A < K the mechanism (k∗A, ǫ) generates the same license income as G∗A
yet adds positive royalty income; therefore, Π∗ > ΠA

∗
.

If k∗A > K, the innovator’s profit can only be higher under G if k < k∗A,

because otherwise there is no royalty income. However, one cannot reduce

by less than 1 unit, which may be too much to be profitable. �

In the following we specialize and assume the linear model that is typically

employed in the license auction literature (see Kamien, 1992, Kamien and

Tauman, 1984, 1986). In that framework the optimal modified license auc-

tion can be solved explicitly, and Proposition 3 can be strengthened to the

strict superiority of G∗.

5. the modified license auction in the standard linear model

The literature on patent licensing typically assumes linear market demand

P(Q) := a−Q with a > c > 0 . We now solve G∗ for that linear model and

show that Proposition 3 can be strengthened.

Cournot subgame For r ≤ ǫ the equilibrium outputs, size of the natural

oligopoly K(r), and operating profits, πL, πN , are

qL(k, r) =







(K+1)ǫ+r(n−k)
n+1 if k ∈ ILN

(K+1)ǫ
k+1 if k ∈ IL

(7)

qN(k, r) =







(K+1)ǫ−r(k+1)
n+1 if k ∈ ILN or k = 0

0 if k ∈ IL
(8)

K(r) =
(K + 1)ǫ− r

r
, K :=

a− c

ǫ
=K(ǫ) (9)

πi(k, r) =qi(k, r)
2, i ∈ {L,N}. (10)

And for r > ǫ one has qi(k, r) = qi(k, ǫ), i ∈ {L,N}, K(r) = K. (Of course,

if k = 0, all firms are non–licensees.)

We do not explicitly solve the other subgames in which either not all licenses

were sold or some losers failed to sign a royalty contract. Evidently, being a

licensee is more profitable than being a non–licensee for all k. Similarly, non–

licensees are never worse–off if they sign the royalty contract. Therefore,

these subgames are not encountered by rational players.4

4The case r = ǫ is special. There, the licensing subgame has several equilibria, one where

all non–licensees sign the royalty contract and others were some do not sign. However,

only the equilibrium where all non–licensees sign are part of the overall equilibrium of the

game that includes the innovator’s choice of mechanism.
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Licensing subgame The unique equilibrium strategy is to bid the value of

a license: b(k, r) = v(k, r). If k < n, then πN(k, r) is equal to zero for k ≥

K(r) and positive for k <K(r). If k = n,πN(k−1, r ) is equal to zero forn−

1 ≥ K(r) and positive otherwise. Using these facts, one can easily compute

v(k, r) and hence the asserted equilibrium strategy, using the equilibrium

profits of the Cournot subgame (10) together with the value of the innovation

defined in (3). Therefore, for r ≤ ǫ one obtains the following equilibrium

bid function

b(k, r) =



















r2(n−2k−1)+2rǫ(K+1)
n+1 if k ∈ ILN

(

(K+1)ǫ
k+1

)2
if k ∈ IL−

nr(2ǫ(K+1)−nr)
(n+1)2

if k ∈ IL+ .

(11)

For r > ǫ one has b(k, r) = b(k, ǫ).

The optimal mechanism

Proposition 4 In the linear model G∗ = (k∗, r∗) is unique, at least one

and at most n− 1 firms are awarded a fixed–fee license, all others a royalty

contract, and no firm is crowded out. Specifically, r∗ = ǫ and

k∗ =







Round
(

K+1
2

)

1 < K < 2n− 3

n− 1 K > 2n− 3,
(12)

where “Round” means rounding to the nearest integer.

The proof is in the Appendix.

Since G∗ always generates positive royalty income (which is absent in G∗A),

G∗ is unique, and GA is a special case of G, we conclude immediately:

Corollary 1 In the linear model, the optimal modified license auction is

strictly more profitable than the optimal license auction, Π∗ > ΠA
∗
.

6. discussion

We close with a sketch of some interesting extensions for further research.

The purpose of these extensions is to assess whether the proposed mecha-

nism can be expected to perform well in a variety of circumstances.

The literature has suggested that the use of pure royalty licensing can be

justified by uncertainty concerning the success of the innovation. This is

due to the fact that royalty licensing entails a sharing of that risk between

innovator and licensees. In this regard, the proposed mechanism could per-

form even better than pure royalty licensing. If firms have different degrees

of risk aversion, the more risk averse firms would tend to lose the auction

and then exercise the royalty licensing option. And the less risk averse firms
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would tend to win one of the fixed–fee licenses in the auction. In this way,

the proposed mechanism would allow the innovator to gain from price dis-

crimination between firms with different degrees of risk aversion.

In a recent paper, Sen and Tauman (2005) combined a license auction with

royalty licensing by assuming that the innovator employs a two-part tariff,

under complete information. It seems that adding royalty licensing to the

losers of the auction is even better. This suggests that one should combine

the auctioning of a limited number of royalty licenses, with a given royalty

rate, with the pure royalty licensing option proposed in the present paper.

Aoki and Tauman (2001) have explored how spillovers affect the optimal

license auction. Spillovers reduce the royalty dividends collected by the

innovator, since part of the cost reduction due to the innovation is already

available without licensing. This suggests that spillovers make the option

to sign a royalty licensing contract less valuable. But it should not eliminate

that benefit altogether, unless the complete cost reduction spills over.

Finally, it should be interesting to evaluate our proposal in the context of

other market rules, such as under price competition in differentiated goods

markets.

7. appendix

7.1. Supplement to the Proof of Proposition 2

We compare royalty licensing with the royalty rate r with the particular modified

license auction (1, r ) and prove that QM > QR.

Under royalty licensing the aggregate equilibrium output QR solves the condition

pR
(

n− pR/ηR
)

= n(c − ǫ+ r). (13)

Similarly, under the modified license auction (1, r ), one has

pM
(

n− pM/ηM
)

= n(c − ǫ+ r)− r . (14)

By assumption, η is non-decreasing inp. Since the right-hand-side of (13) is greater

than that of (14) it follows that pR > pM and therefore QM > QR.

7.2. Proof of Proposition 4

Proof In the proof of Proposition 2 we have already shown that k∗ ≥ 1. There-

fore, in the following we ignore the case k = 0.

1) We show that r∗ = ǫ is optimal for each k. The choice of k is restricted to

integers. Consider k ∈ ILN. There, the innovator’s profit, ΠLN(k, r) := Π(k, r) for

k ∈ ILN, is equal to

ΠLN(k, r) =
rǫ(K + 1)(k+n)− r 2(k2 +n)

n+ 1
. (15)
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Using the fact that k <K(r), which is equivalent to ǫ(K + 1) > r(k+ 1), one has

∂

∂r
ΠLN(k, r) =

ǫ(K + 1)(k+n)− 2r(k2 +n)

n+ 1

>
r(n− k)(k− 1)

n+ 1
≥ 0.

(16)

Therefore, for k ∈ ILN it is optimal to set the highest possible royalty rate, r = ǫ.

If k ∈ IL− , one has qN(k, r) = 0. Therefore, the innovator’s profit is equal to

b(k, r)k, which in turn is independent of r (see (11)). Therefore, all royalty rates,

including r = ǫ, are equally profitable.

Similarly, for the parameter set IL+ , where qN(n, r) = 0, one obtains (using the

fact that n− 1 <K(r) is equivalent to (K + 1)ǫ−nr > 0)

∂

∂r
ΠL+(n, r) =

2n2((K + 1)ǫ−nr)

(n+ 1)2
> 0. (17)

This completes the proof that r = ǫ is optimal, regardless of k.

Since r∗ = ǫ, the equilibrium bid function simplifies to:

b(k) =



















(2(K−k)+n+1)ǫ2

n+1
if k ∈ ILN

(

(K+1)ǫ
k+1

)2
if k ∈ IL−

(2K+2−n)ǫ2n
(n+1)2

if k ∈ IL+

(18)

2) We now compute k∗, given that r∗ = ǫ. Note that K(ǫ) = K. We proceed

as follows: First, we compute the profit maximizing k that would be obtained if

k were restricted to the subsets ILN, IL− , and IL+ , respectively. These restricted

maximizers are denoted by k∗LN, k∗L− , k∗L+ . Then, we examine which of these is

the global maximizer, depending upon the parameter K, taking into account the

integer constraint concerning k. Thereby we use the fact that K is generically not

an integer.

2a) The innovator’s equilibrium profit over the subset ILN is

ΠLN(k, ǫ) =
(−k2 + k(K + 1)+Kn)ǫ2

n+ 1
. (19)

We compute the profit maximizing k over this subset ILN, at first ignoring the

integer constraint concerning k. Note that this profit function is quadratic in k

and strictly concave.

The maximizer is the interior solution kLN =
K+1

2
if
K+1

2
∈ ILN, i.e. if 1 ≤

K+1
2
≤ n−1

and
K+1

2 < K. Since K > 1 (by assumption) and since K is not an integer, these

conditions are equivalent to K < 2n − 3. In turn, if K > 2n − 3 one obtains the

corner solution kLN = n− 1. Therefore, ignoring the integer constraint one has

k∗LN =

{

K+1
2 if K < 2n− 3

n− 1 if K > 2n− 3.
(20)

Now we take into account that k must be an integer. If K > 2n − 3, one has

kLN = n − 1 which is an integer. Whereas if K < 2n − 3, kLN =
K+1

2 is never an

integer. Recall that the equilibrium profit is quadratic and therefore symmetric

around
K+1

2
. Therefore, the true maximizer is the nearest integer within ILN. We

now show that it can be found by simply rounding to the nearest integer since that

number is always in ILN.
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Since
K+1

2
∈ [1, n − 1], and 1 and n − 1 are integers, Round

(

K+1
2

)

∈ [1, n −

1]. Therefore, in order to show that Round
(

K+1
2

)

∈ ILN we only need to show

that Round
(

K+1
2

)

< K. Evidently, that condition is potentially violated only if

one rounds up. Assume the nearest integer is found by rounding up. Then,

Round
(

K+1
2

)

≤
K+1

2
+

1
2
=

K+2
2

. Since
K+2

2
< K holds if and only if K > 2 we

only need to worry about the case K < 2. However, if K < 2, one has
K+1

2 < 1.5,

and thus one does not round up.

We conclude that

k∗LN =







Round
(

K+1
2

)

if K < 2n− 3

n− 1 if K > 2n− 3.
(21)

2b) The innovator’s equilibrium profit over the subset IL− is

ΠL−(k, ǫ) =
(K + 1)2kǫ2

(k+ 1)2
. (22)

We assess the profit maximizing k over this subset IL− , denoted by k∗L− .

First, notice that this profit function is strict monotone decreasing in k for k ≥ 1.

Therefore, the maximizer is smallest integer in IL− . That set is empty iff K > n−1.

And if K < n − 1 the smallest integer in IL− is the smallest integer that satisfies

the condition k > K. Obviously, the maximum profit over IL− is smaller than the

profit obtained from inserting k = K into ΠL−(k, ǫ).

2c) Finally, notice that IL+ = ∅ iff K < n − 1. And if K > n − 1 one has IL+ = n;

therefore, in that case k∗L+ = n.

We summarize the results 2a)-2c) in the following Table:

1 < K < n− 1 n− 1 < K < 2n− 3 K > 2n− 3

k∗LN Round
(

K+1
2

)

Round
(

K+1
2

)

n− 1

k∗L− K − −

k∗L+ − n n

3) Finally, we find the global maximum for all values of K.

3a) If 1 < K < n− 1 one finds:

ΠLN(k
∗
LN, ǫ)−ΠL−(k

∗
L− , ǫ) >ΠLN(k, ǫ)−ΠL−(K, ǫ)

=
(−k2 + k(K + 1)+Kn)ǫ2

n+ 1
−
(K + 1)2Kǫ2

(K + 1)2

=
(K − k)(k− 1)ǫ2

n+ 1
≥ 0

Therefore, k∗ = k∗LN.

3b) If n− 1 < K < 2n− 3 one obtains (notice that k = n− 1 ∈ ILN in that case):

ΠLN(k
∗
LN, ǫ)−ΠL+(n, ǫ) ≥ΠLN(n− 1, ǫ)−ΠL+(n, ǫ)

=
((n− 1)(K + 1)+Kn− (n− 1)2)ǫ2

n+ 1
−
n2(2+ 2K −n)ǫ2

(n+ 1)2

=
(n− 2+K(n− 1))ǫ2

(n+ 1)2
> 0.
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Therefore, k∗ = k∗LN in that case.

3c) If K > 2n−3 one obtains k∗ = k∗LN from the fact thatΠLN(n−1, ǫ)−ΠL+(n, ǫ) >

0 which has already been established in 3b).

We conclude that for all parameters K one has k∗ = k∗LN. Therefore, by the defini-

tion ILN both licensees and non-licensees coexist and produce positive equilibrium

outputs, and hence royalty income is always generated. �
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