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LIKELIHOOD DECISION FUNCTIONS

By Marco E. G. V. Cattaneo

Department of Statistics, LMU Munich

In both classical and Bayesian approaches, statistical inference
is unified and generalized by the corresponding decision theory. This
is not the case for the likelihood approach to statistical inference,
in spite of the manifest success of the likelihood methods in statis-
tics. The goal of the present work is to fill this gap, by extending
the likelihood approach in order to cover decision making as well.
The resulting decision functions, called likelihood decision functions,
generalize the usual likelihood methods (such as ML estimators and
LR tests), in the sense that these methods appear as the likelihood
decision functions in particular decision problems. In general, the like-
lihood decision functions maintain some key properties of the usual
likelihood methods, such as equivariance and asymptotic optimality.
By unifying and generalizing the likelihood approach to statistical
inference, the present work offers a new perspective on statistical
methodology and on the connections among likelihood methods.

1. Introduction. Wald (1950) tried to unify statistics in his theory
of decision functions. However, many of the most appreciated statistical
methods do not fit well in this setting. In particular, the likelihood methods
(such as the maximum likelihood estimators and the likelihood ratio tests)
are usually suboptimal in corresponding (finite-sample) decision problems.
In fact, the post-data nature of likelihood methods is at variance with the
pre-data evaluation of decision functions.

Since statistical methods based on the likelihood function are extremely
successful as regards estimation and testing, it is natural to try extending
the likelihood approach to more general decision problems. The topic of the
present paper are criteria for basing decisions on the likelihood function
alone. The resulting optimal decisions generalize the usual likelihood meth-
ods, in the sense that these methods are optimal in corresponding (finite-
sample) decision problems. The approach of this paper offers a new perspec-
tive on statistical methodology and on the connections among likelihood
methods.

Surprisingly, only very few authors have studied extensions of the like-
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2 M. CATTANEO

lihood approach to cover decision making. Besides the author (Cattaneo,
2005, 2007), only Lehmann and Romano (2005, Section 1.7, substantially
unchanged since the first edition in 1959), Diehl and Sprott (1965), and
Giang and Shenoy (2005) seem to have worked in this direction. However,
the latter three approaches are not directly applicable to general statistical
decision problems in the sense of Wald (1950), and their properties have not
been investigated.

Many authors (such as Fisher, 1973; Barnard, 1967; Birnbaum, 1962;
Hacking, 1964; Kalbfleisch, 1985; Sprott, 2000; Edwards, 1992; Lindsey,
1996; Azzalini, 1996; Royall, 1997; Reid, 2000; Pawitan, 2001; Hills, 2005)
consider the likelihood function as a description of uncertain knowledge
about the parameters of the statistical model. More precisely, the likeli-
hood function describes the relative plausibility of the possible values of the
parameters in the light of the observed data. The uncertainty in this descrip-
tion is non-probabilistic, and therefore the likelihood approach to decision
making clearly differs from the Bayesian approach.

In particular, prior (uncertain) knowledge about the parameters is not
needed in the likelihood approach to decision making: this is a fundamental
advantage over the Bayesian approach. However, the fact that likelihood
functions induced by independent data are combined by (pointwise) mul-
tiplication suggests the possibility of describing prior uncertain knowledge
by a prior likelihood function (this idea is implicitly or explicitly consid-
ered for example by Barnard, 1949, 1972; Barnard, Jenkins and Winsten,
1962; Birnbaum, 1962; Edwards, 1969, 1970, 1992; Hudson, 1971; Leonard,
1978; Lindsey, 1996, 1999; Pawitan, 2001). In particular, complete ignorance
about the values of the parameters is described by a constant (prior) likeli-
hood function: the possibility of describing ignorance distinguish likelihood
functions from probability measures (as descriptions of uncertain knowledge)
and leads to the above fundamental advantage over the Bayesian approach.

Despite the different descriptions of uncertain knowledge about the pa-
rameters of the statistical model, the likelihood and Bayesian approaches to
decision making share a basic property: they both satisfy the (strong) like-
lihood principle (see for example Birnbaum, 1962; Basu, 1975; Joshi, 1983;
Berger and Wolpert, 1988; Evans, Fraser and Monette, 1986; Lindsey, 2005).
This principle gives theoretical reasons for the likelihood approach to deci-
sion making, in addition to the pragmatic reasons mentioned above (that is,
the successfulness of the likelihood methods). In particular, this approach
can be applied post-data, avoiding the severe difficulties of pre-data evalu-
ations (see for instance Kiefer, 1977; Robinson, 1979; Berger, 1985a; Goutis
and Casella, 1995), and drastically reducing the complexity of the decision
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problems. However, in the tradition of Wald (1950), the pre-data properties
of the resulting decision functions, called likelihood decision functions, will
be studied in the present paper.

The paper is organized as follows. In the next section, basic definitions and
notations are introduced. Section 3 presents criteria for basing decisions on
the likelihood function alone. Pre-data properties of the resulting likelihood
decision functions are the subject of Section 4 (the proofs of the theorems are
in the appendix). The final section is devoted to conclusions and directions
for further research.

2. Settings. Let (Ω,F) be a measurable space, and for each θ ∈ Θ, let
Pθ be a probability measure on (Ω,F). Random variables on Ω are denoted
by X or Xn (with n ∈ N), and their codomains by X and Xn, respectively
(it is assumed that all singleton subsets of X and Xn are measurable). The
only assumption about Θ is that it is not empty. In particular, the statis-
tical model {Pθ : θ ∈ Θ} can be parametric (in this case, θ describes the
parameters of the statistical model) or nonparametric (in this case, θ simply
indexes the probability measures).

2.1. Likelihood function. Let Λ be the set of all functions λ : Θ → [0, 1]
such that supθ∈Θ λ(θ) = 1. If the event A ∈ F satisfies Pθ(A) > 0 for some
θ ∈ Θ, then the (relative) likelihood function given A is the unique function
λ ∈ Λ such that λ(θ) ∝ Pθ(A). When there is a unique θ ∈ Θ such that
λ(θ) = 1, it is called maximum likelihood estimate of θ, and denoted by θ̂.
For each subset H of Θ, with a slight abuse of notation, λ(H) denotes the
likelihood ratio test statistic for the null hypothesis H0 : θ ∈ H against the
alternative H1 : θ ∈ Θ\H. That is, λ(H) = supθ∈H λ(θ), with the convention
that λ(∅) = 0.

If x ∈ X satisfies Pθ(X = x) > 0 for some θ ∈ Θ, then the likelihood
function given X = x is denoted by λx. This definition is not applicable
when the random variable X is continuous for all θ ∈ Θ. In fact, it can be
argued that the realization of a continuous random variable can never be
observed with infinite precision: it is only possible to observe X ∈ N for a
suitable neighborhood N of x. The likelihood function λN given X ∈ N is
then usually well-defined. If for each θ ∈ Θ the density fθ of X with respect
to a fixed σ-finite measure µ on X exists and satisfies supθ∈Θ fθ(x) ∈ R>0,
then λN is possibly well approximated by the unique function f ∈ Λ such
that f(θ) ∝ fθ(x).

The likelihood function givenX = x is often simply defined as the function
f , but the definition of likelihood in terms of probability (and the consequent
interpretation of f as a mere approximation of λN ) seems to be preferred by
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most authors who consider likelihood functions as descriptions of uncertain
knowledge (see for example Edwards, 1992; Kalbfleisch, 1985; Barnard and
Sprott, 1983; Lindsey, 1996, 1999; Sprott, 2000; Pawitan, 2001; Montoya,
Dı́az-Francés and Sprott, 2009). The reasons are that the post-data inter-
pretation of the function f can be problematic, since the densities fθ are not
unique (but only unique µ-a.e.), and that f is not well-defined when fθ(x) is
an unbounded function of θ. However, for the pre-data properties studied in
Section 4 the nonuniqueness of the densities is not a problem, and therefore,
in order to simplify the results, f will then be called the likelihood function
given X = x and denoted by λx (when it is well-defined).

If the random variablesX1, X2 are independent for all θ ∈ Θ, then the like-
lihood function given (X1, X2) = (x1, x2) satisfies λ(x1,x2)(θ) ∝ λx1(θ)λx2(θ)
(when these three functions are well-defined). As noted in Section 1, this
suggests the possibility of describing prior uncertain knowledge by a prior
likelihood function: when X2 = x2 is observed, the prior λx1 is updated to
the posterior λ(x1,x2). The prior likelihood function is simply interpreted as
the likelihood function given X1 = x1, regardless of whether the observa-
tion X1 = x1 is real or imagined. The choice of a prior likelihood function
seems better supported by intuition than the choice of a prior probability
measure: in particular, the likelihood function constant equal to 1 describes
the complete ignorance about the value of θ ∈ Θ (see also Cattaneo, 2007,
Subsection 3.1.2). The penalty term in penalized likelihood methods can
often be formally interpreted as a prior likelihood function (see for example
Leonard, 1978).

2.2. Decision problem. A statistical decision problem is described by a
loss (or weight) function W : Θ×D → R≥0, where D is the (nonempty) set
of all possible decisions, one or more of which must be chosen. For each pair
(θ, d) ∈ Θ × D, the value W (θ, d) represents the loss suffered by choosing
the decision d when Pθ is the correct probability measure. It is assumed that
the function W summarizes all important aspects of the decision problem.
In particular, if randomized decisions are allowed, then they should already
be contained in D, and the corresponding loss described by W .

Let W be the set of all functions w : Θ → R≥0. To each decision d ∈ D
can be associated the function wd ∈ W such that wd(θ) = W (θ, d) for all
θ ∈ Θ. The decision problem can be restated as the problem of choosing one
or more functions w from the subset {wd : d ∈ D} of W, where the loss (as a
function of θ) suffered by choosing w is represented by the function w itself.
To each function w can correspond more than one decision d ∈ D, but these
decisions are equivalent from the standpoint of the decision problem.
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When X = x is observed, the likelihood function λx describes the relative
plausibility of the possible values of θ, and can thus be useful for choosing a
decision d ∈ D. Possible criteria for this kind of post-data decision making
are the subject of Section 3. Some pre-data properties of these decision
criteria are then studied in Section 4. In order to do this, the chosen decision
must be considered as a function of the observed realization of X. Such a
function δ : X → D, describing a whole decision strategy, is called decision
function.

3. Likelihood decision criteria. Let λ ∈ Λ be the likelihood function
given the data (possibly including prior information), and let the loss func-
tion W on Θ×D describe a decision problem. The subject of this section are
criteria for choosing, on the basis of λ andW , one or more decisions d ∈ D, or
equivalently, on the basis of λ, one or more functions w ∈ {wd : d ∈ D}. For
instance, when the maximum likelihood estimate θ̂ is well-defined, a simple
criterion for choosing d consists in minimizing W (θ̂, d), or equivalently, for
choosing w, in minimizing w(θ̂). That is, the criterion consists in minimizing
the loss under the assumption that Pθ̂ is the correct probability measure.
This simple criterion is often used in practical applications: for example
when in the portfolio selection problem of Markowitz (1952) the parame-
ters of the model are estimated by maximum likelihood (see for instance
Levy and Sarnat, 1970; Board and Sutcliffe, 1994). The criterion was also
formally, though hesitantly, considered by Diehl and Sprott (1965). How-
ever, besides being perhaps too optimistic about the quality of maximum
likelihood estimates, this simple criterion is not always well-defined. Before
considering alternative criteria, in the next subsection a general definition
of likelihood decision criteria is introduced.

3.1. General definition. A likelihood decision criterion for choosing one
or more decisions d ∈ D consists in minimizing a certain evaluation V (wd, λ)
of the corresponding loss wd on the basis of the likelihood function λ, where
the functional V : W × Λ → R must satisfy the following three properties:

(P1) If the functions w,w′ ∈ W satisfy w(θ) ≤ w′(θ) for all θ ∈ Θ, then
V (w, λ) ≤ V (w′, λ) must hold for all functions λ ∈ Λ.

(P2) If the function b : Θ → Θ is bijective, then V (w ◦ b, λ ◦ b) = V (w, λ)
must hold for all pairs of functions (w, λ) ∈ W × Λ.

(P3) If the subset H of Θ and the sequence of functions λn ∈ Λ (with n ∈ N)
satisfy limn→∞ λn(Θ \ H) = 0, then limn→∞ V (c IH + c′ IΘ\H, λn) = c
must hold for all constants c, c′ ∈ R≥0.
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Before analyzing these properties, it is important to clarify what is meant
by minimization of V (wd, λ). If there is a decision d ∈ D such that V (wd, λ) =
infd′∈D V (wd′ , λ), then d is optimal according to the likelihood decision cri-
terion described by the functional V . When there is no optimal decision,
the criterion suggests the choice of a decision d ∈ D such that V (wd, λ) <
infd′∈D V (wd′ , λ) + ε, for a suitably small ε ∈ R>0.

(P1) can be interpreted as a property of monotonicity of the functional V ,
following directly from the assumption that the loss function W summarizes
all important aspects of the decision problem. In fact, if the decisions d, d′ ∈
D satisfy W (θ, d) ≤ W (θ, d′) for all θ ∈ Θ, then it is unreasonable to prefer
d′ to d.

(P2) can be interpreted as a property of parametrization invariance, typ-
ical of the likelihood methods. This invariance is a consequence of the idea
that everything important about θ is described by the loss function W and
the likelihood function λ. In particular, (P2) excludes the Bayesian crite-
ria when Θ is infinite. In fact, with some additional measurability restric-
tions, the Bayesian criterion with prior π is described by the functional
Vπ : (w, λ) 7→

∫
wλdπ. Hence, (P2) implies in particular the invariance

π ◦ b−1 = π for all measurable bijections b, since Vπ(IH, IΘ) = π(H) for
all measurable subsets H of Θ. This invariance can be satisfied only if Θ is
finite (when π is the uniform prior) or if the measurability conditions are
very restrictive.

(P3) can be interpreted as a minimal consistency property, implying that
some information provided by the likelihood function is actually used by the
likelihood decision criterion. In particular, it excludes the minimax criterion,
described by the functional (w, λ) 7→ supθ∈Θw(θ). Moreover, (P3) with H =
Θ implies the following calibration property: V (c IΘ, λ) = c for all constants
c ∈ R≥0 and all likelihood functions λ ∈ Λ. This property and (P1) imply
in particular that infθ∈Θw(θ) ≤ V (w, λ) ≤ supθ∈Θw(θ) holds for all pairs
of functions (w, λ) ∈ W × Λ.

A simple example of likelihood decision criterion can be obtained by
modifying the minimax criterion in order to satisfy (P3). It suffices to re-
duce Θ to the likelihood confidence region consisting of all θ whose likeli-
hood exceeds a certain threshold β ∈ ]0, 1[, before applying the minimax
criterion. The resulting likelihood decision criterion is called Likelihood-
based Region Minimax (LRM) criterion and is described by the functional
VLRM,β : (w, λ) 7→ supθ∈Θ :λ(θ)>β w(θ). It has been applied for example in
the problem of regression with imprecisely observed data (see for instance
Cattaneo and Wiencierz, 2012).
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If the maximum likelihood estimate θ̂ ∈ Θ is well-defined and there is a
topology on Θ such that w ∈ W is continuous at θ̂ and λ(Θ \ N ) < 1 holds
for all neighborhoods N of θ̂, then limβ↑1 VLRM,β(w, λ) = w(θ̂). Hence, the
likelihood decision criterion described by the (pointwise) limit of VLRM,β

when β tends to 1 is strictly related to the idea considered at the beginning
of the present section, but has the advantage of being always well-defined.
It is called Maximum Likelihood Decision (MLD) criterion and is described
by the functional VMLD : (w, λ) 7→ limβ↑1 supθ∈Θ :λ(θ)>β w(θ).

The MLD criterion clearly generalizes maximum likelihood estimation,
while the LRM criterion can be seen as a generalization of likelihood ratio
testing. In the next subsection, a likelihood decision criterion generalizing
both these very successful components of the likelihood approach to statistics
is considered in more detail.

3.2. MPL criterion. An alternative way of modifying the minimax cri-
terion in order to satisfy (P3) consists in applying it after having weighted
the loss associated to θ by means of the likelihood of θ (raised to a certain
power α ∈ R>0). The resulting likelihood decision criterion is called Min-
imax Plausibility-weighted Loss (MPL) criterion and is described by the
functional VMPL,α : (w, λ) 7→ supθ∈Θw(θ)λ(θ)α. It can be characterized
among the likelihood decision criteria by few basic decision-theoretic prop-
erties, but this goes beyond the scope of the present paper (see Cattaneo,
2007, Subsection 4.1.2). The exponent α ∈ R>0 plays a similar role for the
MPL criterion as the threshold β ∈ ]0, 1[ does for the LRM criterion. In
fact, limα↓0 VMPL,α(w, λ) = limβ↓0 VLRM,β(w, λ) holds for all pairs of func-
tions (w, λ) ∈ W × Λ, while limα↑∞ VMPL,α(w, λ) = limβ↑1 VLRM,β(w, λ) =
VMLD(w, λ) holds for all pairs of functions (w, λ) ∈ W × Λ such that
VMPL,α(w, λ) is finite for some α ∈ R>0.

The simple choice α = 1 for the exponent of the likelihood function is
supported by the analogy with the Bayesian criterion: the integral with re-
spect to π in the functional Vπ is replaced by the supremum with respect to
θ in the functional VMPL,1. The analogy of the Bayesian and MPL criteria
(with α = 1) emerges also when considering the likelihood ratio test statistic
λ(H) as a function of H ⊆ Θ. This set function is a completely maxitive
measure in the terminology of Shilkret (1971), who introduced also the cor-
responding theory of integration: the integral of w ∈ W with respect to the
completely maxitive measure λ is VMPL,1(w, λ). Hence, the MPL criterion
with α = 1 corresponds to minimizing the integral of the loss with respect
to the likelihood ratio test statistic, interpreted as a completely maxitive
measure describing the posterior information about θ.
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Example 3.1 (maximum likelihood estimation). The estimation of θ
can be described as a decision problem with D = Θ. When Θ is finite, it
makes sense to employ the simple loss function W such that wd = IΘ\{d}
for all d ∈ D. In this case, if the maximum likelihood estimate θ̂ is well-
defined, then it is the unique optimal decision according to the MLD and
MPL criteria (independently of the exponent α), while for the LRM criterion
this holds only if the threshold β is sufficiently large.

These results can be generalized to the case with infinite Θ, for example
when a metric on Θ is considered. For a suitably small ε ∈ R>0, it makes
then sense to employ the simple loss function W such that wd = IΘ\B(d,ε) for
all d ∈ D, where B(d, ε) denotes the closed ball with center d and radius ε.
It can be easily proved that in this case, if the maximum likelihood estimate
θ̂ is well-defined, B(θ̂, ε) is compact, and λ(Θ \B(θ̂, ε)) < 1, then for the
MLD and MPL criteria (independently of the exponent α) optimal decisions
exist and, even when they are not unique, they all lie in B(θ̂, ε), while for
the LRM criterion this holds only if the threshold β is sufficiently large.

Hence, the MPL and MLD criteria lead practically to maximum likelihood
estimates in this simple decision-theoretic description of estimation, and
therefore they can be interpreted as generalizations of maximum likelihood
estimation (while this is not true for the LRM criterion).

Example 3.2 (likelihood ratio testing). For each subset H of Θ, testing
for the null hypothesis H0 : θ ∈ H against the alternative H1 : θ ∈ Θ\H can
be described as a decision problem with D = {1, 0}, where 1 and 0 represent
the rejection and the acceptance (or non-rejection) of H0, respectively. When
constant losses c1, c2 ∈ R>0 (with c1 > c2) are assigned to errors of the first
and of the second kind, respectively, the resulting loss function W satisfies
w1 = c1 IH and w0 = c2 IΘ\H. In this case, according to the MPL crite-
rion with exponent α, rejection is the unique optimal decision if and only if
λ(H) < (c2/c1)

1/α, while acceptance is the unique optimal decision if and only
if λ(H) > (c2/c1)

1/α. Similarly, according to the LRM criterion with threshold
β, rejection is the unique optimal decision if and only if λ(H) ≤ β, while
acceptance is the unique optimal decision if and only if λ(H) > β. Finally,
according to the MLD criterion, rejection is the unique optimal decision if
and only if λ(H) < 1, while acceptance is the unique optimal decision if and
only if λ(H) = 1.

Hence, the MPL and LRM criteria lead practically to likelihood ratio
tests in this simple decision-theoretic description of hypothesis testing, and
therefore they can be interpreted as generalizations of likelihood ratio testing
(while this is not true for the MLD criterion).
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4. Properties. Likelihood decision criteria were introduced in Section 3
as criteria for post-data decision making. The subject of the present section
are pre-data properties of the resulting likelihood decision functions. Before
considering some asymptotic results, in the next subsection finite-sample
invariance properties are presented.

4.1. Invariances. Let X be a random variable such that the likelihood
function λx ∈ Λ is well-defined for all x ∈ X , and let the loss function
W on Θ × D describe a decision problem. A likelihood decision criterion
described by the functional V can be applied for each possible realization x
of X, by minimizing the evaluation V (wd, λx) over all decisions d ∈ D. In
this subsection, in order to simplify the results, it is assumed that for each
possible realization x of X there is a unique optimal decision δ(x) according
to the likelihood decision criterion. The resulting likelihood decision function
δ : X → D is then uniquely defined.

Some basic invariance properties follow directly from the fact that the
likelihood approach to decision making satisfies the likelihood principle. In
particular, if s(X) is a sufficient statistic for θ, then δ(x) = δ(x′) holds for all
x, x′ ∈ X such that s(x) = s(x′), since in this case λx = λx′ (see for instance
Schervish, 1995, Theorem 2.21 and Proposition 2.23). That is, the likelihood
decision function δ is completely described by a function δ′ : S → D such
that δ = δ′ ◦ s, where S is the codomain of s.

As noted in Subsection 3.1, a certain kind of parametrization invariance
is implied by (P2). In fact, a bijection b : Θ → Θ can be interpreted as the
description of a reparametrization of the statistical model, in which θ ∈ Θ is
replaced by ϑ ∈ Θ, with b(ϑ) = θ. For the reparametrized statistical model,
the likelihood function given X = x is λx ◦ b, and the decision problem is
described by the loss function (ϑ, d) 7→ W (b(ϑ), d). Hence, (P2) implies that
the likelihood decision function δ is left invariant by this reparametrization
of the statistical model.

Another direct consequence of (P2) is the following important invariance
property. Given three bijections g : X → X , b : Θ → Θ, and h : D → D, if for
each x ∈ X the likelihood function givenX = g(x) is λx◦b, and wh(d) = wd◦b
holds for all d ∈ D, then the likelihood decision function satisfies δ◦g = h◦δ.
That is, if the decision problem is invariant, then δ is equivariant (see for
example Berger, 1985b, Section 6.2; Schervish, 1995, Subsection 6.2.1). In
particular, it is not even necessary to identify the symmetries of the de-
cision problem: the likelihood decision functions are guaranteed to respect
them anyway. Among the invariance properties considered in the present
subsection, this is the only one that does not necessarily hold when a prior
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likelihood function is used. In fact, prior information can destroy the sym-
metries of the decision problem.

Example 4.1 (variance components). Let X1, . . . , Xm be independent
and n-variate normally distributed random variables (with n ≥ 2) such that
for all i ∈ {1, . . . ,m}, each component of Xi has expected value µ and vari-
ance τ2+σ2, and each pair of different components of Xi has covariance τ2,
where θ = (µ, τ, σ) and Θ = R×R>0×R>0. That is, each vector Xi represents
the n observations in one of the m groups of a balanced one-way random ef-
fect model under normality assumptions (see for example Searle, Casella and
McCulloch, 1992). In order to simplify the results, assume that the model
is conditioned on the (a.s.) event that for no vector Xi all components are
equal, and so X1 = · · · = Xm = Rn \ {(y1, . . . , yn) ∈ Rn : y1 = · · · = yn}.

The problem of estimating the variance component τ2 is particularly in-
teresting, because the analysis of variance estimate can be negative. For this
problem, Portnoy (1971) suggested the following location and scale invariant
version of the squared error loss function (with D = R):

W : ((µ, τ, σ), d) 7→ (τ2 − d)2

(σ2 + n τ2)2
.

For each i ∈ {1, . . . ,m}, let X̄i and Si be the mean and the sum of squared
deviations from the mean, respectively, for the components of Xi. Further-
more, let X̄ and S be the mean and the sum of squared deviations from
the mean, respectively, for the sample X̄1, . . . , X̄m. That is, X̄ is the grand
mean, while nS and

∑m
i=1 Si are the sum of squares due to differences be-

tween groups and within groups, respectively. Finally, define the ratio

R =
nS

nS +
∑m

i=1 Si
.

Since (X̄, n S,
∑m

i=1 Si) is a sufficient statistic for (µ, τ, σ), and the deci-
sion problem described by the loss function W is location and scale invariant,
when a likelihood decision function δ : X1×· · ·×Xm → R is uniquely defined,
it satisfies

δ(X1, . . . , Xm) = (nS +
∑m

i=1Si) δ
′(R)

for some function δ′ : [0, 1[→ R. This holds in particular for the likelihood
decision function resulting from the MPL criterion with exponent α = 1:
for each r ∈ [0, 1[, the value δ′(r) can be easily obtained numerically as the
unique d ∈ R minimizing

max
(τ,σ)∈R≥0×R>0

(τ2 − d)2

(σ2 + n τ2)
m
2
+2 σ(n−1)m

exp

(
− r

2 (σ2 + n τ2)
− 1− r

2σ2

)
.
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Fig 1. Functions δ′ and risk functions corresponding to the variance component estimators
considered in Example 4.1.

The resulting function δ′ in the case m = n = 3 is plotted in the left panel
of Figure 1, together with the functions δ′ corresponding to some other de-
cision criteria or estimation methods. The right panel of Figure 1 shows
the expected loss (that is, the risk) of these estimators as a function of
ρ = τ2/(τ2+σ2). Besides the MPL criterion, the methods considered are the
analysis of variance, maximum likelihood (corresponding to the MLD crite-
rion), restricted maximum likelihood (Thompson, 1962; the function δ′ is the
pointwise maximum of the ones corresponding to analysis of variance and
maximum likelihood), and the Bayesian criterion with the Jeffreys’ prior
proposed by Tiao and Tan (1965). The results are qualitatively similar for
other values of m and n.

Portnoy (1971) showed that the estimator resulting from the Bayesian
criterion with the Jeffreys’ prior proposed by Tiao and Tan (1965) is nearly
minimax (from the standpoint of risk). Therefore, the MPL criterion leads
to a nearly minimax estimator as well, and has the fundamental advantage
of avoiding the difficult choice of a prior probability measure.

4.2. Consistency. Let the loss function W on Θ×D describe a decision
problem, and consider a sequence of random variables Xn (with n ∈ N). A
sequence of decision functions δn : X1 × · · · × Xn → D (with n ∈ N) is said
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to be (strongly) consistent at θ0 ∈ Θ if

lim
n→∞

W (θ0, δn(X1, . . . , Xn)) = inf
d∈D

W (θ0, d)

holds Pθ0-a.s. That is, consistency at θ0 means that when Pθ0 is the correct
probability measure, the sequence of decisions δn(X1, . . . , Xn) tends to min-
imize the loss (almost surely). For example, if D = Θ, and W is a metric on
Θ, then the decision problem describes the estimation of θ, and the sequence
of estimators δn is (strongly) consistent in the usual sense if and only if it is
consistent in the above sense at each θ ∈ Θ.

A sequence of decision functions δn : X1 × · · · × Xn → D (with n ∈ N) is
said to be optimal according to the likelihood decision criterion described
by a functional V if

V (wδn(x1,...,xn), λ(x1,...,xn)) < inf
d∈D

V (wd, λ(x1,...,xn)) + 2−n

holds for all n ∈ N and all (x1, . . . , xn) ∈ X1 × · · · × Xn such that the
likelihood function λ(x1,...,xn) ∈ Λ is well-defined. Hence, for each likelihood
decision criterion an optimal sequence of decision functions δn always exists,
though in general it is not unique and no single decision δn(x1, . . . , xn) needs
to be optimal. However, this weak definition of optimality of a sequence of
decision functions is strong enough to warrant important asymptotic results.

In general, a sequence of decision functions that is optimal according
to a likelihood decision criterion can be consistent at θ0 ∈ Θ only if the
likelihood tends to concentrate on θ0, in the following sense. Given a topology
on Θ, the likelihood is said to tend to concentrate on θ0 if Pθ0-a.s. the
likelihood function λ(X1,...,Xn) ∈ Λ is well-defined for sufficiently large n,
and limn→∞ λ(X1,...,Xn)(Θ \H) = 0 holds Pθ0-a.s. for all neighborhoods H of
θ0. Sufficient conditions for the likelihood to tend to concentrate on θ0 are
well-known: see for example Wald (1949, Theorem 1), Kiefer and Wolfowitz
(1956, (2.12)), or Bahadur (1967, (xxvii)). The tendency of the likelihood
to concentrate on θ0 is not affected by the use of a prior likelihood function
bounded away from 0 in a neighborhood of θ0.

As noted in Subsection 3.1, some kind of minimal consistency is implied
by (P3). In fact, a simple consequence of (P3) and (P1) is that

lim
n→∞

V (w, λ(X1,...,Xn)) = w(θ0)

holds Pθ0-a.s. when the function w ∈ W is bounded and there is a topology
on Θ such that w is continuous at θ0 and the likelihood tends to concentrate
on θ0. This implies in particular the consistency at θ0 of all sequences of
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decision functions that are optimal according to some likelihood decision
criterion, when D is finite and for each d ∈ D the loss wd is bounded and
there is a topology on Θ such that wd is continuous at θ0 and the likelihood
tends to concentrate on θ0. The following theorem shows that in the case
of infinite D it suffices to replace the assumptions of continuity at θ0 of the
functions wd with the stronger assumption of their equicontinuity at θ0.

Theorem 4.1. If the loss wd is bounded for each decision d ∈ D, the
sequence of decision functions δn : X1 × · · · × Xn → D (with n ∈ N) is
optimal according to a likelihood decision criterion, and there are a θ0 ∈ Θ
and a topology on Θ such that the likelihood tends to concentrate on θ0 and
the set of functions {wd : d ∈ D} is equicontinuous at θ0, then the sequence
of decision functions δn is consistent at θ0.

Example 4.2 (hypothesis testing). In the decision problem of Exam-
ple 3.2, if there is a topology on Θ such that for each θ0 ∈ Θ the likelihood
tends to concentrate on θ0, then Theorem 4.1 implies the consistency at
each θ ∈ Θ \ ∂H (where ∂H denotes the boundary of H) of all sequences of
decision functions that are optimal according to some likelihood decision cri-
terion. That is, each likelihood decision criterion will Pθ-a.s. give the correct
test result for sufficiently large n, for all θ ∈ Θ \ ∂H.

In Theorem 4.1, it is assumed that the functions wd are bounded and
equicontinuous at θ0. As noted by Wald (1950, Subsection 3.1.2), such as-
sumptions are not seriously restrictive from a practical point of view. How-
ever, they are not satisfied in many standard formulations of statistical deci-
sion problems, such as for example the estimation of θ when Θ is a Euclidean
space and W represents squared error. In order to prove the consistency of
sequences of likelihood decision functions in such standard decision problems
as well, the assumptions of Theorem 4.1 can be replaced by the weaker, but
more complex ones of the following theorem.

Theorem 4.2. If the sequence of decision functions δn : X1×· · ·×Xn →
D (with n ∈ N) is optimal according to the likelihood decision criterion
described by a functional V , and there are a θ0 ∈ Θ, a topology on Θ, a
constant c ∈ R>0 with c > infd∈D W (θ0, d), and a neighborhood H of θ0 such
that the following three conditions are satisfied:

(i) the likelihood tends to concentrate on θ0,
(ii) the set of functions {wd : d ∈ D, infθ∈HW (θ, d) < c} is equicontinuous

at θ0,
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(iii) limm→∞ lim supn→∞
(
V (wd, λ(X1,...,Xn))− V (wd ∧m,λ(X1,...,Xn))

)
= 0

(where wd∧m denotes the pointwise minimum of wd and m ∈ N) holds
Pθ0-a.s. for all d ∈ D such that W (θ0, d) < c,

then the sequence of decision functions δn is consistent at θ0.

Example 4.3 (uniform distribution). Let the sequence of random vari-
ables Xn (with n ∈ N and Xn = R>0) be independent and uniformly dis-
tributed on the interval ]0, θ[, where Θ = R>0. Consider the problem of esti-
mating θ with the scale invariant version W : (θ, d) 7→ |θ−d|/θ of the absolute
error loss function, where D = R>0. For each n ∈ N, since the maximum
X(n) is a sufficient statistic of X1, . . . , Xn for θ, and the decision problem
is scale invariant, when a likelihood decision function δn : Rn

>0 → R>0 is
uniquely defined, it satisfies δn(X1, . . . , Xn) = κnX(n) for some constant
κn ∈ R>0. More generally, for each likelihood decision criterion an optimal
sequence of decision functions of the form δn(X1, . . . , Xn) = κnX(n) always
exists.

For each θ0 ∈ R>0, the likelihood tends to concentrate on θ0 with re-
spect to the Euclidean topology, since limn→∞X(n) = θ0 holds Pθ0-a.s., and
λ(X1,...,Xn) : θ 7→ (X(n)/θ)n I]X(n),∞[(θ) for all n ∈ N. Moreover, it can be
easily checked that for any c ∈ R>0 and any bounded neighborhood H of
θ0, condition (ii) of Theorem 4.2 is satisfied, while condition (iii) holds for
instance when the functional V satisfies V (w, λ) = V (w Iλ−1(]0,1]), λ) for all
pairs of functions (w, λ) ∈ W×Λ. That is, Theorem 4.2 implies the (strong)
consistency of all sequences of estimators δn resulting from likelihood deci-
sion criteria with the property that each evaluation V (wd, λ) does not depend
on the loss associated with values of θ with zero likelihood.

The three examples of likelihood decision criteria explicitly considered in
Section 3 have this property, and for each n ∈ N, they lead to uniquely
defined likelihood decision functions δn : (x1, . . . , xn) 7→ κn x(n). Therefore,
Theorem 4.2 implies limn→∞ κn = 1. In fact, for the MLD criterion κn = 1
holds for all n ∈ N, while κn = κ(αn) and κn = κ′( n

√
β) hold for the

MPL criterion with exponent α and the LRM criterion with threshold β,
respectively, where κ : R>0 → ]1, 2[ and κ′ : ]0, 1[ → ]1, 2[ are decreasing
bijections. More precisely, κ′ : y 7→ 2/(y+1), while κ assigns to each y ∈ R>0

the unique solution s > 1 of the equation (s− 1) sy = yy/(y+1)y+1.

4.3. Efficiency. Stronger assumptions about the statistical model, the
loss function, and the likelihood decision criterion allow asymptotic proper-
ties stronger than consistency for the sequences of likelihood decision func-
tions. For example, in a parametric estimation problem, the following the-
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orem gives simple sufficient conditions for a sequence of likelihood decision
functions to be an asymptotically efficient sequence of estimators. Its proof
uses the result (strictly related to the Bernstein–von Mises theorem) that,
under some regularity conditions, the likelihood function tends to a normal
density around the maximum likelihood estimate (see for example Brenner,
Fraser and McDunnough, 1982; Fraser and McDunnough, 1984; Schervish,
1995, Subsection 7.4.2; van der Vaart, 1998, Section 10.2). When a continu-
ous prior likelihood function taking only positive values is used, the theorem
still holds. For simplicity, its statement is restricted to the estimation of the
natural parameter of a minimal regular exponential family (see for example
Brown, 1986) under a power loss function, and to the three examples of
likelihood decision criteria explicitly considered in Section 3 (for a version
of the theorem with weaker, but more complex assumptions see Cattaneo,
2007, Subsection 5.1.1). An example of a likelihood decision criterion for
which the result does not hold is the minimin version of the LRM criterion,
described by the functional (w, λ) 7→ infθ∈Θ :λ(θ)>β w(θ) (for some threshold
β ∈ ]0, 1[).

Theorem 4.3. Let the sequence of random variables Xn (with n ∈ N and
Xn = X ) be independent and identically distributed according to a minimal
regular exponential family with natural parameter space Θ ⊆ Rk. Let W be
the loss function (θ, d) 7→ |θ−d|γ, where D = Θ and γ ∈ R>0. If the sequence
of decision functions δn : X n → Θ (with n ∈ N) is optimal according to the
MPL criterion (for some exponent α ∈ R>0), the LRM criterion (for some
threshold β ∈ ]0, 1[), or the MLD criterion, then it is asymptotically efficient.

Example 4.4 (normal distribution). Let the sequence of random vari-
ables Xn (with n ∈ N and Xn = R) be independent and normally distributed
with expected value θ and variance 1, where Θ = R. Consider the problem
of estimating θ with the power loss function W : (θ, d) 7→ |θ − d|γ, where
D = R and γ ∈ R>0. For each n ∈ N, let X̄n denote the mean of the sample
X1, . . . , Xn. From (P2) with the reflection with respect to X̄n as bijection
b : R → R it follows that for each n ∈ N, when a likelihood decision function
δn : Rn → R is uniquely defined, it satisfies δn(X1, . . . , Xn) = X̄n. This
holds in particular for the likelihood decision functions resulting from the
MPL, LRM, and MLD criteria (independently of the exponent α and the
threshold β), which is in accordance with Theorem 4.3, since the sequence
of estimators X̄n is asymptotically efficient.

Asymptotic efficiency is not necessarily a desirable property when the loss
function is asymmetric. Consider for instance the so-called pinball (or check)
loss function W : (θ, d) 7→ (θ− d)

(
τ − I]θ,∞[(d)

)
, where τ ∈ ]0, 1[. This loss
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function penalizes the overestimation of θ more than its underestimation
when τ < 1/2, and vice versa when τ > 1/2. For each n ∈ N, since the mean
X̄n is a sufficient statistic of X1, . . . , Xn for θ, and the decision problem
is location invariant, when a likelihood decision function δn : Rn → R is
uniquely defined, it satisfies δn(X1, . . . , Xn) = X̄n + κn for some constant
κn ∈ R. More generally, for each likelihood decision criterion an optimal
sequence of decision functions of the form δn(X1, . . . , Xn) = X̄n+κn always
exists. Such a sequence of estimators is asymptotically efficient if and only
if limn→∞

√
nκn = 0. However, when τ ̸= 1/2, a sequence of estimators with

limn→∞
√
nκn ̸= 0 can have expected loss up to exp( z2τ/2) times smaller

than that of X̄n (where zτ denotes the τ -quantile of the standard normal
distribution), independently of θ and n.

In particular, if the likelihood decision function δ1 : x1 7→ x1 + κ1 is
uniquely defined, and the likelihood decision criterion is described by a func-
tional V such that V (cw, λ) = c V (w, λ) for all pairs of functions (w, λ) ∈
W ×Λ and all constants c ∈ R>0 (that is, the evaluation of the loss is scale
equivariant), then δn : (x1, . . . , xn) 7→ x̄n + κ1/

√
n is the uniquely defined

likelihood decision function for each n ∈ N. This follows from (P2) with the
scaling by

√
n as bijection b : R → R, and is true in particular for the like-

lihood decision functions resulting from the MPL, LRM, and MLD criteria.
More precisely, κ1 = 0 and κ1 =

√
−2 lnβ (2 τ − 1) hold for the MLD crite-

rion and LRM criterion with threshold β, respectively, while κ1 = s/
√
α holds

for the MPL criterion with exponent α, where s is the unique real solution
of the equation 1+ s/2 (s−

√
s2 + 4) = (1/τ − 1) exp(s/2

√
s2 + 4). Therefore,

the sequence of estimators X̄n resulting from the MLD criterion is asymp-
totically efficient, but for example when τ = 1/10, the estimators resulting
from the MPL criterion with α = 1 and the LRM criterion with β = 1/2
have expected losses approximately 2.21 and 2.13 times smaller than that of
X̄n, respectively (independently of θ and n).

5. Conclusion. In the present paper, the likelihood approach to statis-
tics is extended and unified by the concept of likelihood decision function.
Such a decision function is obtained by a post-data evaluation of the possible
decisions on the basis of the likelihood function (interpreted as a description
of uncertain knowledge about the parameters of the statistical model, and
possibly including prior information). Besides the conceptual and computa-
tional advantage of being based on post-data evaluations, likelihood decision
functions have several invariance properties, and also (under regularity con-
ditions) asymptotic properties such as consistency and efficiency. Moreover,
in the likelihood approach to decision making, prior knowledge about the
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parameters is not needed, and some special cases of likelihood decision func-
tions (such as maximum likelihood estimators and likelihood ratio tests) are
among the most successful statistical methods.

Future work includes a detailed analysis of the decision-theoretic proper-
ties characterizing the MPL criterion (see Cattaneo, 2007, Sections 3.1 and
4.1), in connection with the theories of risk measurement (see for instance
Föllmer and Schied, 2002; Artzner et al., 1999) and of nonadditive measures
and integrals (see for example Cattaneo, 2007, Chapter 2; Denneberg, 1994;
Shilkret, 1971). Applications of the likelihood approach to decision making
will also be further developed, in particular in the fields of robust statistics
(see Cattaneo and Wiencierz, 2012) and probabilistic graphical models (see
Cattaneo, 2010; Antonucci, Cattaneo and Corani, 2012).

APPENDIX

Proofs of Theorems 4.1 and 4.2. Theorem 4.1 is a special case of
Theorem 4.2, so it suffices to prove the latter. Define i0 = infd∈D W (θ0, d),
and choose an ε ∈ ]0, (c−i0)/6[. Let d′ ∈ D be a decision such that wd′(θ0) <
i0 + ε. Condition (ii) implies that there is a neighborhood H′ of θ0 such
that H′ ⊆ H and |wd(θ

′)− wd(θ0)| < ε for all θ′ ∈ H′ and all d ∈ D with
infθ∈Hwd(θ) < c. The assumptions of Theorem 4.2 ensure that there is an
m ∈ N such that Pθ0-a.s. the following five properties hold for sufficiently
large n:

(a) the likelihood function λ(X1,...,Xn) ∈ Λ is well-defined (this is part of
condition (i)),

(b) V (wδn(X1,...,Xn), λ(X1,...,Xn)) < V (wd′ , λ(X1,...,Xn))+ε (as implied by the
optimality of the sequence δn),

(c) V (wd′ , λ(X1,...,Xn)) < V (wd′ ∧m,λ(X1,...,Xn)) + ε (this is a consequence
of condition (iii)),

(d) V
(
(wd′(θ0) + ε) IH′ +mIΘ\H′ , λ(X1,...,Xn)

)
< wd′(θ0) + 2 ε (as follows

from (P3) and condition (i)),
(e) V

(
(i0 + 6 ε) IH′ , λ(X1,...,Xn)

)
> i0 + 5 ε (this is again a consequence of

(P3) and condition (i)).

From the above choice of H′ it follows that the (pointwise) inequality
wd′ ∧ m ≤ (wd′(θ0) + ε) IH′ + mIΘ\H′ is valid. Therefore, (P1) and the
properties (a), (b), (c), and (d) imply that Pθ0-a.s. the following result holds
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for sufficiently large n:

V (wδn(X1,...,Xn), λ(X1,...,Xn))

< V (wd′ , λ(X1,...,Xn)) + ε

< V (wd′ ∧m,λ(X1,...,Xn)) + 2 ε

≤ V
(
(wd′(θ0) + ε) IH′ +mIΘ\H′ , λ(X1,...,Xn)

)
+ 2 ε

< wd′(θ0) + 4 ε

< i0 + 5 ε

In order to complete the proof, it suffices to show that from this re-
sult and the properties (a) and (e) it follows that Pθ0-a.s. the inequality
wδn(X1,...,Xn)(θ0) < i0 + 7 ε holds for sufficiently large n. In particular,
it suffices to show that for any decision d ∈ D and any likelihood func-
tion λ ∈ Λ, the inequality wd(θ0) < i0 + 7 ε is implied by the inequalities
V (wd, λ) < i0 + 5 ε and V ((i0 + 6 ε) IH′ , λ) > i0 + 5 ε.

This implication is a simple consequence of (P1) and the above choice of
H′, and can be proved as follows. First note that infθ∈H′ wd(θ) < c holds,
since otherwise (P1) would imply V (wd, λ) ≥ V ((i0 + 6 ε) IH′ , λ) > i0 + 5 ε.
Now, from infθ∈H′ wd(θ) < c and the above choice of H′ it follows that
the (pointwise) inequality wd > (wd(θ0)− ε) IH′ is valid. Therefore, the
desired result wd(θ0) < i0 + 7 ε holds, because otherwise (P1) would imply
V (wd, λ) ≥ V ((i0 + 6 ε) IH′ , λ) > i0 + 5 ε.

Proof of Theorem 4.3. For each n ∈ N, let Xn denote the random
variable (X1, . . . , Xn), and define the function θn : X n → Θ as follows:
θn(xn) = θ̂ for all xn ∈ X n such that the likelihood function λxn ∈ Λ and the
maximum likelihood estimate θ̂ are well-defined, and θn(xn) = θ0 otherwise
(with θ0 ∈ Θ arbitrary). Under each Pθ (with θ ∈ Θ), the probability that
the likelihood function λXn ∈ Λ and the maximum likelihood estimate θ̂ are
well-defined tends to 1 as n tends to ∞, and

√
n (θn(Xn)− θ)

d−→ Nk

(
0, I(θ)−1

)
,

where I(θ) is the Fisher information matrix (see for example Schervish, 1995,
Theorem 7.57). Hence, in order to prove the theorem it suffices to show that

√
n (δn(Xn)− θn(Xn))

Pθ−→ 0

for all θ ∈ Θ (see for instance van der Vaart, 1998, Theorem 2.7 (iv)).
For each n ∈ N, define the function λn : X n × Rk → [0, 1] as follows:

λn(xn, τ) = λxn

(
θn(xn) + (1/

√
n) I(θn(xn))

−1/2 τ
)
for all (xn, τ) ∈ X n × Rk
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such that the likelihood function λxn ∈ Λ is well-defined and its argument
θn(xn) + (1/

√
n) I(θn(xn))

−1/2 τ lies in Θ, and λn(xn, τ) = 0 otherwise. The
following result (strictly related to the Bernstein–von Mises theorem) is im-
plied by Theorem 7.89 of Schervish (1995), whose regularity conditions can
be easily checked thanks to the analytic properties of exponential families
(see for example Brown, 1986, Chapter 2):

sup
τ∈Rk : |τ |<t

∣∣λn(Xn, τ)− exp
(
−1

2 |τ |
2
)∣∣ Pθ−→ 0

for all t ∈ R>0 and all θ ∈ Θ.
Assume that the sequence δn is optimal according to the MPL criterion

with exponent α ∈ R>0. For each n ∈ N, define the function vn : X n×Rk →
R≥0 by vn(xn, ζ) = n−γ/2 supτ∈Rk

∣∣I(θn(xn))
−1/2 τ − ζ

∣∣γ λn(xn, τ)
α. Then

VMPL,α(wd, λxn) = sup
θ∈Θ

|θ − d|γ λxn(θ)
α = vn

(
xn,

√
n (d− θn(xn))

)
for all n ∈ N, all d ∈ Θ, and all xn ∈ X n such that the likelihood function
λxn ∈ Λ is well-defined.

For each θ ∈ Θ, let υθ : Rk → R≥0 be the function defined by υθ(ζ) =
supτ∈Rk

∣∣I(θ)−1/2 τ − ζ
∣∣γ exp(−α

2 |τ |2
)
. Since the function τ 7→ λn(xn, τ) is

logarithmically concave for all xn ∈ X n, and the Fisher information matrix
is a continuous function of θ,

sup
ζ∈Rk : |ζ|<z

∣∣∣nγ/2 vn(Xn, ζ)− υθ(ζ)
∣∣∣ Pθ−→ 0

holds for all z ∈ R>0 and all θ ∈ Θ. For each xn ∈ X n, the function ζ 7→
nγ/2 vn(xn, ζ) is quasiconvex, and for each θ ∈ Θ, the function υθ is strictly
quasiconvex with a unique minimum at ζ = 0. Therefore, for each ε ∈ R>0

there is an η ∈ R>0 such that under each Pθ (with θ ∈ Θ), the probability
that there is a ζ ∈ Rk with |ζ| > ε and nγ/2 (vn(Xn, ζ)− vn(Xn, 0)) < η
tends to 0 as n tends to ∞. Hence,

sup
ζ∈Rk : vn(Xn,ζ)<vn(Xn,0)+2−n

|ζ| Pθ−→ 0

for all θ ∈ Θ, and this proves the desired result for the MPL criterion. The
proofs for the LRM and MLD criteria are analogous.
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