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Regression Models with Correlated Binary

Response Variables� A Comparison of Di�erent

Methods in Finite Samples

Martin Spiess and Alfred Hamerle�

Abstract

The present paper deals with the comparison of the performance of
di�erent estimation methods for regression models with correlated binary
responses� Throughout� we consider probit models where an underlying
latent continous random variable crosses a threshold� The error variables
in the unobservable latent model are assumed to be normally distributed�
The estimation procedures considered are ��� marginal maximum likeli�
hood estimation using Gauss�Hermite quadrature� �	� generalized estima�
tion equations �GEE� techniques with an extension to estimate tetrachoric
correlations in a second step� and� �
� the MECOSA approach proposed
by Schepers� Arminger and K�usters ������ using hierarchical mean and
covariance structure models� We present the results of a simulation study
designed to evaluate the small sample properties of the di�erent estima�
tors and to make some comparisons with respect to technical aspects of the
estimation procedures and to bias and mean squared error of the estima�
tors� The results show that the calculation of the ML estimator requires
the most computing time� followed by the MECOSA estimator� For small
and moderate sample sizes the calculation of the MECOSA estimator is
problematic because of problems of convergence as well as a tendency of
underestimating the variances� In large samples with moderate or high
correlations of the errors in the latent model� the MECOSA estimators are
not as ecient as ML or GEE estimators� The higher the �true� value of
an equicorrelation structure in the latent model and the larger the sample
sizes are� the more is the eciency gain of the ML estimator compared
to the GEE and MECOSA estimators� Using the GEE approach� the ML
estimates of tetrachoric correlations calculated in a second step are biased
to a smaller extent than using the MECOSA approach�
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� �� INTRODUCTION

� Introduction

The subject of the present paper is to discuss and compare three di�erent meth�
ods for the estimation of regression models applied to data sets with correlated
binary response variables� This kind of data sets often arise in applied sciences�
for example in studies with �t � �� � � � � T 	 repeated measures on �n � �� � � � � N	
individuals or with Tn measures on di�erent individuals within the same families
or blocks� The selection of a statistical model as well as an estimation method
then hinges e�g� upon the number of observations per realization of the vector of
covariates or whether the structure of association between the response variables
is of scienti
c interest or not� In general� serious computational di�culties arise
in the application of the method of maximum likelihood �ML	 to these models
because of the lack of a rich class of distributions such as the multivariate Gaus�
sian in the case of continuous response variables� Hence likelihood methods are
only available in a few cases�

An example is the random e�ects probit model �e�g� Bock and Lieberman�
���� Heckman� ����	� Starting with a latent linear regression model� with the
observable response variable taking on the value � if �and only if	 the latent� not
observable response variable crosses a threshold� and � otherwise �Pearson� ����	�
it is often assumed that the error term of the latent linear model has a components
of variance structure which in turn implies an equicorrelation structure in the
correlation matrix of the latent errors� Assuming this association structure the
computation of the log�likelihood function and their derivatives becomes feasible
because only one�fold integrals have to be evaluated� This can approximately
be done using Gauss�Hermite quadrature �Anderson and Aitkin� ����� Bock and
Lieberman� ���� Butler and Mo�t� ����	� Provided that enough evaluation
points are used the ML estimators and their estimated variances are unbiased
�Butler� ����	�

To estimate a broader class of models alternative approaches have been sug�
gested� One approach is the �generalized estimation equations� approach �Liang
and Zeger� ����� Zeger and Liang� ����	 which leads to consistent and asymp�
totically normally distributed estimates for the vector of regression parameters
given only the correct speci
cation of the 
rst moments of the response variables
�GEE� approach	� In addition� consistent estimates for the variances of the re�
gression parameter estimators are available� Although the dependencies between
the observable or manifest response variables are taken into account to increase
e�ciency� the association is treated as a nuisance� In contrast� Zhao and Pren�
tice ������ see also Prentice �����	 and Liang� Zeger and Qaqish �����		 de
ne
a �generalized estimation equations� approach for simultaneous inference on re�
gression and association parameters �GEE� approach	� The consistency of these
parameters depends upon the correct speci
cation of the 
rst moments of the
response variables and the correct modelling of the association structure� Note
that the regression parameter estimates using GEE� are consistent whether or



�

not the association structure is correctly speci
ed� while this not necessarily holds
for the GEE� approach� Liang� Zeger and Qaqish �����	 found the regression
parameter estimates using both approaches to be similar e�cient if they are esti�
mated under correct speci
cations� On the other hand� the GEE� approach may
lead to ine�cient estimation of the association parameters�

The results of simulation studies using the GEE� approach have been pre�
sented by Hamerle and Nagl ����	 or Sharples and Breslow �����	 showing that
in general the relative e�ciency of the GEE� estimators calculated under di�erent
assumptions on the association structure between the observable response vari�
ables depends upon e�g� the true structure and strength of the association� N and
Tn� In both studies the GEE� estimator calculated under the assumption of an
equicorrelation structure was in general found to be very e�cient relative to ML
estimators� Hamerle and Nagl ����	 considered models with one time invariant
and one free varying covariate� In contrast� Sharples and Breslow �����	 used
dichotomous covariates� In the present paper we consider models with a dichoto�
mous� a normal and an uniform distributed covariate� because in most practical
applications the covariates do not belong to the same scale or distribution� The
three covariates used are varying over all NT observations� Di�erent e�ects of
time invariant� block invariant and free varying covariates on the properties of
the GEE� estimators are discussed in Spiess and Hamerle �in preparation	� Un�
like Hamerle and Nagl ����	 or Sharples and Breslow �����	� who used small
to medium sample sizes �N � �� to N � ���	 we present estimation results for
small �N � ���	 to large �N � ����	 sample sizes�

Using a threshold probit model not only the regression parameters but also the
pairwise correlations of the error components of the latent regression model may
be of scienti
c interest� In the present paper an extension of the GEE� approach
�henceforth called �GEE� approach	 is suggested which � in an additional ML�
estimation step � allows the estimation of these tetrachoric correlations�

Another approach was suggested by K�usters ����� ����	� Schepers �����	
and Schepers� Arminger and K�usters �����	� They propose the estimation of
complex hierarchical mean and covariance structure models e�g� for metric� or�
dinal or binary response variables � again using a threshold model � in three
stages ��mean and covariance structure analysis� henceforth called �MECOSA�
approach	� This estimation procedure leads to consistent and asymptotically
normally distributed estimates �K�usters� ���	� Again� consistent estimators for
the asymptotic variances of the parameter estimates are available�

Although some special cases of the general model have been shown to work
using �real� datasets �e�g� Sobel and Arminger� ����	 the properties of these
�MECOSA��estimators in 
nite samples have not yet been investigated�

One simple submodel of the general model is the probit regression model
with dependent binary response variables which can also be estimated using the
GEE approach� In the present article results of a simulation study will be pre�
sented comparing the properties of the estimators in 
nite samples using both



� �� ESTIMATION PROCEDURES

approaches�� For special correlation matrices in the error component of the la�
tent regression model the appropriate ML�estimator is computed and compared
to GEE� and MECOSA�estimators� In all cases estimation of the regression pa�
rameters is the main interest�

In section � the general model �section ���	 and the di�erent estimation ap�
proaches are described� i�e� the ML approach �section ���	� the GEE approach
�section ���	 and the MECOSA approach �section ���	� Section � gives a de�
scription of the simulated models� e�g� the used combination of sample sizes and
correlation structures of the latent error terms� The results can be found in
section �� In section ��� the technical results� e�g� required computing time or
convergence problems� and in section ��� the results with regard to bias and e��
ciency are presented� A discussion of the results and concluding remarks can be
found in section ��

� Estimation Procedures

��� Model

For the models considered we have N blocks �n � �� � � � � N	 and T observations
�t � �� � � � � T 	 in every block�� Let Yn � �Yn�� � � � � YnT 	

� denote the �T ��	 vector
of binary responses for the nth block and Y the �NT � �	 vector of binary re�
sponses for all NT observations� Furthermore let Xnt � �Xnt�� � � � �XntP 	� denote
the �P � �	 vector of covariates associated with the ntth observation� Xn the
�T �P 	 matrix of covariates associated with the nth block and X the �NT �P 	
matrix having full column rank associated with all NT observations�

Throughout we assume a threshold model �Pearson� ����	 with

Y �
nt � X �

nt�
� � �nt�

a linear latent regression model where Y �
nt is the latent� i�e� not observable� con�

tinuous response variable� �nt is the error term� and �� is the unknown regression
parameter vector �n � �� � � � � N and t � �� � � � � T 	� For the binary probit model
considered in this article let �n � ��n�� � � � � �nT 	�� �n � N����	 � observations
from di�erent blocks are assumed to be independent � and

Ynt �

�
� if Y �

nt � ��
� otherwise�

In the sequel let ���	 denote the standard normal cumulative distribution function
�cdf	 and ���	 denote the standard normal density function �df	�

�A third possibility would be to compute the ML�estimator using the simulation method
�e�g� B�orsch�Supan and Hajivassiliou� ���	
� The comparison of this method with the ML�
GEE and MECOSA approach is left for further studies�

�The results discussed in this paper may easily be generalized allowing the number of time�
series observations� Tn� to vary between blocks� Only for simplicity� we assume T� � � � � � TN �



��� Maximum Likelihood �

��� Maximum Likelihood

Assuming �nt � �n � 	nt� where �n � N��� 
��	� 	nt � N��� 
�� 	 and E��n	nt	 � ��
leads to the random e�ects probit model with an equicorrelation structure in the
errors of the latent model� Because the observations Ynt and Ynt� are conditionally
independent� the probability p�Y jX	 is

p�Y jX	 �
NY
n��

p�YnjXn	

p�YnjXn	 �
Z �

��

TY
t��

���nt	����n	 d��n�

where ��n � 
��� �n� �nt � ��ynt��	�X �
nt�A���n
A	� �A � 
��� �� and 
A � 
��� 
��

In this model only the parameter �A � ���A 
A	
� is identi
ed�

The log�likelihood function lN��A	 � lnLN ��A	 �
PN

n�� ln p�YnjXn� �A	 and
their derivatives can approximately be calculated using Gauss�Hermite quadra�
ture �Bock and Lieberman� ���� Butler and Mo�t� ����	� Let ��n �

p
�m and

therefore d��n �
p
� dm we have

lN��A	 � lnLN ��A	 � �N

�
ln� �

NX
n��

ln
KX
k��

exp

�
TX
t��

ln���nt�mk		

�
wk

where K is the number of evaluation points mk �k � �� � � � �K	� wk is the weight
given to the kth evaluation point and �nt�mk	 � ��ynt � �	�X �

nt�A �
p
�mk
A	

is evaluated at the kth point� Evaluation points and corresponding weights can
be found in Stroud and Secrest �����	�

To compute the ML estimate ��A the Newton�Raphson method together with
a line search method for global convergence is used �Dennis and Schnabel� ����	�
The diagonal elements of �H�����A	� where H��	 is the matrix of partial second
derivatives� are used as estimates for the variances of ��A�

For the estimates to be comparable across the di�erent approaches we com�
pute �� � �� � �
�A	

������A� The estimated variances have to be transformed cor�
respondingly� Provided that enough evaluation points are used �see e�g� Butler�
����	 the ML�estimators are consistent and asymptotically normal� The number
of evaluation points for an unbiased estimation of parameters and their variances
is a�ected by several factors �Spiess� ����	� Above all the value of 
 plays a
signi
cant role� the higher the value of 
 the more evaluation points are needed�

��� GEE Approach

The generalized estimation equations �Liang and Zeger� ����	 for the estima�
tion of the regression parameter � � � � 
��� �� using the binary probit model
considered above are

NX
n��

X �
nDn�

��
n �Yn � ��Xn�		 � �
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where Dn � DIAG���X �
n��	� � � � � ��X

�
nT�		 is a diagonal matrix and ��Xn�	 �

���X �
n��	� � � � ���X

�
nT�		

� is a �T � �	 vector� Furthermore� �n � A���
n R�	A���

n

and An � DIAG�VAR�Yn�	� � � � �VAR�YnT 		 where VAR�Ynt	 � ��X �
nt�	�� �

��X �
nt�		� R�	 is a �working correlation matrix� whose structure re ects the

assumed correlation structure in the observable response variables and  is a
vector that fully characterizes this structure� If R�	 is the true correlation
matrix and  � �� the true value� then �n will be equal to the true correlation
matrix of the observable response variables�

Given a consistent estimator �� Liang and Zeger �����	 have shown that the
GEE�estimator �� is consistent and asymptotically normal with covariance matrix
N��G��

� W�G
��
� � where

G� � � lim
N��

N��
NX
n��

�
X �
nDn�

��
n DnXn

�
����� 	��	

and

W� � lim
N��

N��
NX
n��

�
X �
nDn�

��
n COV�Yn	�

��
n DnXn

�
����� 	�	�

�

A consistent estimator for this covariance matrix is N�� �G
��

N
cWN

�G
��

N � where

�GN � �N��
NX
n��

�
X �
nDn�

��
n DnXn

�
����� 	��	

�

cWN � N��
NX
n��

�
X �
nDn�

��
n
dCOV�Yn	���

n DnXn

�
����� 	��	

and

dCOV�Yn	 � �Yn ���Xn
��		�Yn ���Xn

��		��

Note that these properties do not depend on the assumed correlation struc�
ture� that is� they hold � beside some regularity conditions � as long as � is
consistent�

In the case of time or block invariant covariates some special results can be
derived �see Spiess and Hamerle� in preparation	� Therefore in the present paper
we only consider free varying covariates� i�e� covariates that vary freely over all
NT observations�

Following Liang and Zeger �����	 �� is iteratively computed switching between
a modi
ed Fisher scoring for �� and a moment estimation for �� Given current
estimates �j and ��j �j � �� �� � � �	� ��j�� is estimated by

��j�� � ��j � �X �D���DX	��X �D����Y � ��X�		�



��� GEE Approach 

where D � DIAG�D�� � � � �DN	 and � � DIAG���� � � � ��N	 are both block di�
agonal matrices and ��X�	 � ���X��	�� � � � ���XN�	�	� is a �NT � �	 vector
consisting of the �T � �	 vectors ��Xn�	� n � �� � � � � N �

Unlike Liang and Zeger �����	 or Sharples and Breslow �����	 we estimate
� starting with the Pearson correlation matrix of the residuals� �Y ���X ��		�

�R � DIAG��Sd	
��� �S DIAG��Sd	

����

where �Sd is the vector of diagonal entries of the covariance matrix �S computed as

�S � N�� �U
�
�IN �N���N�

�
N 	 �U

where �U � ��U�� � � � � �UT 	 is a �N � T 	 matrix with elements �Ut � ��Y�t �
��X �

�t
��		� � � � � �YNt � ��X �

Nt
��			�� IN is the �N � N	�identity matrix and �N �

���� � � � � �N 	� is a �N � �	 vector� For �U having full column rank this correlation
matrix is guaranteed to be positive de
nite�

The o��diagonal elements of the matrix �R are then Z�transformed �Fisher�
����	 for all but one choice of correlation structure to get unbiased estimates
�� the exception being a �free� correlation structure where � is a vector whose
elements are the o��diagonal elememts of �R� The corresponding GEE�estimator
will be denoted GEEF �estimator�

If all o��digonal elements are restricted to the same value �i�e�  is ����	 and
� � jj � �	� the resulting correlation structure is an equicorrelation structure in
the observable response variables� In this case � is calculated as � � �exp��!z	�
�	��exp��!z	��	 where !z is the arithmetic mean of the Z�transformed o��diagonal
elements of the matrix �R� The corresponding GEE�estimator will be denoted
GEEE�estimator� The restriction  � � implies an GEE�estimator calculated
under the assumption of independence�

Two other speci
cations lead to estimators which will be denoted GEEAR��
and GEEARH �estimator� respectively� Under both speci
cations the estimates
� are calculated iteratively using the Newton�Raphson method �for details see
Spiess �����		� The calculation of the GEEAR��estimator is based upon the as�
sumption of a stationary stochastic AR��	 process in the observable response
variables� In this case the o��diagonal elements of the matrix �R� rtt�� were t �� t��
are de
ned as rtt� � �jt�t

�j �j�j � �	 and � � ��� For the GEEARH �estimator
we estimate � � ��
� ��	�� the parameter of a mixed AR��	� and equicorrelation
structure rtt� � 
� � ��� 
�	�jt�t

�j� j�j � � and 
� � ��
Although Prentice �����	 pointed out the restrictions on the values of the

correlations of binary variates� it is not clear if and in which way or to which
extent the estimators themselves or the calculation of the estimates are in u�
enced negatively in some sense if these restrictions are violated� Only Sharples
and Breslow �����	 reported some problems� noting that for cases in which these

�We also used the standardized residuals but found no advantage over the not standardized
residuals with regard to the properties of the GEE estimators�
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constraints were violated there were multiple solutions to the generalized estima�
tion equations� However� in cases with covariates varying over all observations
it is to be expected that these restrictions are violated at least for some pairs of
observations� Therefore in our simulation study we calculated the percentage of
violations in each dataset to search for a connection between these violations and
possible problems in the calculation of the estimates or defective parameter or
variance estimates�

If a latent regression model is assumed one may be interested in the correla�
tions �tt� between the errors of that latent model� To estimate these tetrachoric
correlations we use the ML�method in a second step after the solution to the gen�
eralized estimation equations is found �for a di�erent approach see Qu� Williams�
Beck and Medendorp� ����	� that is we maximize the log�likelihood function

lN��tt�	 �
NX
n��

ln p�Ynt � ynt� Ynt� � ynt�j ��nt� ��nt�� �tt�	�

where ��nt � X �
nt
�� and ��nt� � X �

nt�
�� and �� is the GEE�estimator from the 
rst

step� The probability p�Ynt � ynt� Ynt� � ynt�j ��nt� ��nt�� �tt�	 is a function of Ynt�
Ynt� � ����nt	� ����nt�	 and

p�Ynt � �� Ynt� � �j ��nt� ��nt�� �tt�	 �
Z �
nt

��

Z �

nt�

��
���x� y� �tt�	 dx dy

where ���x� y� �tt�	 is the df of a bivariate standard normal distribution evaluated
at the points ��nt� ��nt� and �tt�� This two dimensional problem may be reduced to
a one dimensional problem �Owen� ����	 and the resulting integral may approxi�
mately be calculated using Gauss�Legendre quadrature� We estimated tetrachoric
correlations using di�erent numbers of evaluation points� di�erent true values for
��tt� and di�erent values for ��t and ��t� and found sixteen points in all cases to be
enough to get stable results��

Although following K�usters �����	 this �second stage� estimator� ��tt�� is con�
sistent its asymptotic normality has still to be shown�

��� MECOSA Approach

The probit model described in section ��� may also be derived from a more general
�mean and covariance structure� model as discussed by K�usters ����	 �see also
Sobel and Arminger �����	 for a special application	� The latent linear regression
model simpli
es in the case considered in the present paper to

Y �
n � "Xn � �n�

�For the computation of the estimates ��tt� we again used the Newton�Raphson method
together with a line search method for global convergence �Dennis and Schnabel� ��	� for the
derivatives see Spiess� ����
�



��� MECOSA Approach �

where " � DIAG����� � � � � � �
��
T 	 is a �T � TP 	 matrix� Xn � �X �

n�� � � � �X
�
nT 	

� is a
�TP � �	 vector� �n � N����	 and the elements of the �T � �	 vector of latent
response variables Y �

n � are connected to the observable response variables Ynt by
means of the threshold relation described in section ����

The estimation of the parameters� henceforth denoted MEC estimators� is car�
ried out in three steps� In the 
rst step the ML estimates of ��t � 
���t �

�
�t for T

independent probit models are calculated using the Newton Raphson method� In
the second step the ML estimates for pairwise tetrachoric correlations are calcu�
lated using bivariate marginal models and the estimated values for the regression
parameters from step one �see section ���	� The techniques used to calculate the
estimates are the same as described in section ���� Still in the second step� an
estimator of the asymptotic covariance matrix of all estimators of the 
rst two
steps is calculated�

In the third step a weighted least squares estimator for ��� a vector of funda�
mental parameters� is � in the most cases � iteratively calculated again using
the Newton Raphson method �for the derivatives see Spiess� ����	� where the
quadratic function

qN��	 � ��� � g��		� cW�� ��� � g��		�

is minimized for �� where �� is the vector containing all the parameter estimates of
the 
rst two steps and cW is the estimate of the asymptotic covariance matrix of ���
The restrictions imposed on the elements of �� namely �t � �t� �t� t� � �� � � � � T
and t �� t�� to make the estimates comparable using the di�erent approaches�
are realized through the function g��	� In the models considered here � � � �
���� ��c	

�� were � is the �P��	 vector of regression parameters and �c is a scalar or
vector depending on the assumed correlation structure� e�g� if an equicorrelation
structure is assumed �c � �tt� �t� t��

It can be shown �see K�usters� ���� Shapiro� ����	 that the estimators�
��N � are consistent and asymptotically normal with asymptotic covariance ma�
trix N���G�W

��
� G�

�	
��� where W� is the asymptotic covariance matrix of ��N �

G� � ��g��	���	���� and W� can consistently be estimated using cW �
As mentioned above� the dimension of the vector � in the models considered

here depends upon the dimension of � and the assumed correlation structure
of the latent error terms� For the sake of comparability we restrict the matrix
� to be a correlation matrix� This correlation matrix is assumed to have one
of the following structures� an equicorrelation structure �the estimator will be
denoted MECE	� an AR��	 structure �MECAR	� a mixed equicorrelation and
AR��	 structure �MECARH	 and no structure at all� that is� the o��diagonal
elements of � are allowed to vary freely �MECF 	�

Since the estimators of the parameters determining the correlation structure
were usually biased� the estimated tetrachoric correlations in step two were Z�
transformed �see Fisher� ����	 to get unbiased estimates in the third step� The



�� �� SIMULATION STUDY� DESCRIPTION

estimated variances and covariances of the Z�transformed correlations were trans�
formed correspondingly�

� Simulation Study� Description

All three approaches lead to consistent and asymptotically normally distributed
estimators� The question that motivated this study then is� Which of the ap�
proaches is preferable in which situation not only in terms of bias and relative
e�ciency of the estimators in 
nite samples� but also with respect to computing
time or robustness of the estimation method� To answer this question we used
the three approaches to estimate simulated datasets where the following factors
were varied� ��	 the sample size �N � ���� N � ��� and N � ����	 and ��	 the
structure of the correlation matrix of the error terms in the latent model and the
values of the corresponding parameter values� i�e� �i	 equicorrelation� �tt� identi�
cal �t� t� � �� � � � � T �t �� t�	 with values ���� ��� and ���� �ii	 AR��	� �tt� � �jt�t

�j�
j�j � �� whith values � � ��� and � � ��� and �iii	 mixed equicorrelation and
AR��	� �tt� � 
� � �� � 
�	�jt�t

�j� j�j � � and 
� � 
���

�
�� with 
� � ��� and

� � ���
The main program and the modules for simulation and estimation were writ�

ten in SAS#IML� the �interactice matrix language� included in the SAS system
��statistical analysis system�	� version � �SAS Institute Inc�� ����	� Random
numbers were generated using the random number generators RANNOR and
RANUNI provided by the SAS system �SAS Institute Inc�� ����	�

We generated dichotomous� normal and uniform distributed covariates � the
latter two having mean zero � which were held constant over the s simulated
samples� The dichotomous variables were generated via the uniform distributed
random number generator RANUNI with the value � if the generated random
number exceeds �� and � otherwise� The corresponding regression coe�cients are
��� ��� �� and �� denotes the intercept�

The values of the error term were drawn from the standard normal distri�
bution using RANNOR� For the simulation of an equicorrelation structure we
generated f�ng � N��� 
��	 and f�ntg � N��� 
��	 independently from each other�
where 
�� � 
�� � 
�� � �� The AR��	 structure was simulated multiplying
	 � �	n�� � � � � 	nT 	� by the Cholesky root of the corresponding Toeplitz matrix�
where f	ntg � N��� �	� The mixed AR��	 and equicorrelation structure was
generated mixing both of these techniques� again with 
�� � 
�� � 
�� � ��

If possible the parameter values that were used to simulate the datasets were
also used as starting values for the calculation of the estimates� However� in some
cases this was either not possible or some other strategy was superior�

As mentioned in section ��� for the ML estimator to be unbiased a su�cient
number of evaluation points is needed� Because this number is a priori unknown
a predetermined number of evaluation points has to be increased successively by



��

one� If the estimates and the estimated variances are constant within a predeter�
mined range of at least three such trials� a su�cient number of evaluation points
is found�

Because the ML estimators may be biased� the parameter values used to
simulate the datasets were not always optimal as starting values for the estimation
procedure� We therefore used the ML estimates of the independent probit model
as starting values for the regression parameters and the �true� value for 
 �

A��� � 
�A	

���� Even if the number of evaluation points were su�cient� this
strategy in general led to lesser computing time required�

Calculating the GEE estimates under the assumption of an AR��	 or a mixed
AR��	 and equicorrelation structure in the correlation matrix of the observable
response variables the corresponding correlation structure parameters have to
be calculated iteratively within each iteration step for the GEE estimates� As
starting values we calculated arithmetic means of the Z�transformed Pearson
correlations of the residuals at the 
rst iteration step in the calculation of the
GEE estimates� At any further call of the corresponding module� the estimates
calculated within the previous iteration were used as starting values�

The iterations stopped in all cases if all elements of the vector of 
rst deriva�
tives or estimation equations and all elements of the vector of increments of the
last iteration were smaller in absolute value than � � ���	�

� Simulation Study� Results

��� Convergence

The estimation of the simulated datasets showed that although the log likelihood
function from section ��� is not globally concave� and few random starting values
led to diverging sequences of estimates� in all cases the sequence of estimates f��jg�
where j denotes the jth iteration �j � �� �� � � �	� converged � if they converged
� to the same solution� Furthermore we compared the iterations and the time
needed for convergence using the matrix of second derivatives vs� using the sum
of the outer product of 
rst derivatives in the calculation of the estimates� In the
examples we considered using the matrix of second derivatives for the calculation
of the estimates about only half as much iterations were needed than using the

rst derivatives only� Accordingly� using the matrix of second derivatives led to
considerably less required computing time�

Calculating the GEE estimates we encountered convergence problems only
with two out of thousands of datasets� the estimation results of most of them
being not reported here because of the limited space� In both cases � GEEE

and GEEAR� estimators� respectively� for two di�erent datasets both with a �true�
equicorrelation structure of the latent error terms with �tt� � �� � no solution
was found despite trying di�erent starting values and the implementation of a



�� �� SIMULATION STUDY� RESULTS

global strategy �see Dennis and Schnabel� ����	� On the other hand we found
violations of the constraints on the estimated correlations of the observable re�
sponse variables in most of the cases �see section ���	� When we calculated the
portions of violations over s samples in each situation we found the highest por�
tion of violations of the upper bound to be ��� and of the lower bound to be
����

We also calculated the portions of response variables having value one at any
point t over s simulations at a time � the portions varied depending on the
covariates used between �� and ���� In both cases there were no convergence
problems
�

Defective parameter or covariance matrix estimates �e�g� not positive de
nite	
did in no case emerge� Estimating the tetrachoric correlations as described in
section ��� was problematic in cases with small N and high true values� In these
cases the estimator often converged to the boundary point unity�

This was also true for the MECOSA estimators� Whereas the GEE regres�
sion parameter estimates were calculated before the tetrachoric correlations� the
calculation of the MECOSA estimates depend heavily on the estimation of the
tetrachoric correlations� With small sample sizes �N � ���	 and moderate to
high true correlations of the latent error terms not only the estimates of the
tetrachoric correlations often converged to boundary points but also singular ma�
trices cW occured� This is not surprising since for example with T � � and four
regression parameters to be estimated cW is a ��� � ��	 matrix�

We also found considerable problems in the calculation of the MECARH es�
timator with low �N � ���	 to moderate sample sizes �N � ���	� For example
with N � ���� T � �� �� � ����� ��� ������	� and 
�� � �� and �� � �� the esti�
mate for 
� converged in � out of s � ��� simulations to zero and the estimated
variance to in
nity� In those cases � for sample sizes N � ��� but also� although
to a smaller extent� for sample sizes N � ���� � in which all the elements of the
MECARH estimate converged to values inside the paramater space the estimators
�
 and �� turned out to be highly correlated in this nonlinear model�

The computing time required for the calculation of the ML estimates depends
on di�erent factors� As mentioned in section ��� a su�cient number of evalua�
tion points is needed to get unbiased estimates� The number of evaluation points
depends above all upon the value of the true intraclass correlation� The higher
this value the more evaluation points are needed and the more computing time is
required� By comparing the mean and the estimated standard deviations of the
ML estimates over s simulations �see section ���	 with di�erent numbers of eval�
uation points we ensured the estimation results to be unbiased� In problematic
cases� e�g� for a model with N � ��� blocks and a high value of ��tt�� up to ��
evaluation points were needed�

�This did also hold using block invariant covariates with portions of response variables having
value one varying between ��� and ����



��� Bias and e�ciency ��

The time required to calculate the GEE estimates depends upon the number
of observations or the number of parameters to be estimated� i�e� factors that
in uence the time required in the calculation of the ML and the MECOSA esti�
mates as well� In fact� we found the calculation of the di�erent GEE estimates
to be very similar in required computing time and independent of factors such as
the true values of the correlations�

A main factor that in uences the time required to calculate the MECOSA
estimates is the number of observations T in every block n� The value of T
determines the number of independent probit models to be estimated in the 
rst
step and the number of correlations to be estimated in the second step�

The calculation of the ML estimates as well as the calculation of the MECOSA
estimates required de
nitely more computing time in all our simulations than the
calculation of the GEE estimates� In the simulated models used in this paper the
calculation of the ML estimates in general required more computing time than
the calculation of the MECOSA estimates� but these di�erences depend heavily
on the true correlations and on the number of observations within each block�

As an example with N � ��� blocks� T � � observations within each block�
four regression parameters to estimate and a true correlation of the latent errors
of � � �� over s � ��� simulations the ML estimation required about ��� minutes
with �� evaluation points needed for unbiased estimation� the GEEE estimation
required about � minutes and the MECE estimation required about ��� minutes
of computing time� Although these values � beside the above mentioned factors
� are also subject to programming techniques� they nevertheless give rough hints
on the di�erences in required computing time�

��� Bias and e�ciency

To compare the results of the estimation of the simulated datasets using the three
approaches the mean of the estimates �m	� the root mean squared error� de
ned

as rmse �
�
s��
Ps

r���
��r � ��	

�
����

� where s is the number of simulations� ��r is the
estimate for the �true� value �� in the rth simulated sample� and the estimated

standard deviation of the estimates� de
ned as csd���	 �
�
s��
Ps

r��dvar���r	�����
where dvar���r	 is the estimated asymptotic variance of ��r� are calculated� In all
cases reported in the following section the values of rmse were virtually the same
as the standard deviations of the estimates over the simulations�

Using N � ��� blocks and T � � observations in every block for small values
of ��tt� of an equicorrelation structure the ML and the GEEE estimators have
virtually the same values csd and rmse �see Table �	� The higher the value of the

true correlation is� the larger the di�erence between the values csd and rmse of the
ML and the GEEE estimator� with the ML estimator being more e�cient than
the GEEE estimator in terms of these measures�

The picture becomes slightly di�erent if one compares the values csd and rmse
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Table �� Mean �m�� estimated standard deviation �csd	 and root mean squared
error �rmse� of di�erent estimators for a model with N � ���� T � �� ��� � ����
��� � ��� ��� � �� and ��� � ��� and di�erent values for an equicorrelation
structure over s � ��� simulations

mcsd ��tt� � �	 ��tt� � �� ��tt� � ��

rmse
ML GEEE MECE ML GEEE MECE ML GEEE MECE
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of the MECE estimator on one hand and of the ML and GEEE estimator on the
other� With a small value of ��tt� the values csd are systematically lower and the
values of the rmse are systematically higher for the MECE estimator than for the
ML and the GEEE estimator� In terms of higher values csd and rmse the MECE

becomes more ine�cient relativ to the other two estimators the higher the true
correlation is�

A look at Table � reveals that essentially the same results hold for the GEE
and the MECOSA estimators using an AR��	 and a mixed correlation structure
in the correlation structure of the latent error term� In this Table only the
estimation results of a model with a mixed correlation structure with 
�� � ��
and �� � �� are shown because � as described in section ��� � in the case of
a model with 
�� � �� and �� � �� only ��� estimation results out of ��� were
valid using the MECARH estimator �there were no problems with the use of the
GEEARH estimator	�

Another point that should be mentioned is the use of the GEEARH estimator
when in fact the true correlation structure of the latent error term is AR��	� This
is because the correlation structure in the observable response variables which is
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Table �� Mean �m�� estimated standard deviation �csd	 and root mean squared
error �rmse� of di�erent estimators for a model with N � ���� T � �� ��� � ����
��� � ��� ��� � �� and ��� � ��� and di�erent �true� correlation structures of the
latent errors C� over s � ��� simulations

m C�csd �� � �	 �� � �� ��� � ��� �� � �	
rmse GEEARH MECAR� GEEARH MECAR� GEEARH MECARH
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no more an AR��	 structure especially for high values of �� is better modeled by
the GEEARH estimator than by the GEEAR� estimator �see Spiess� ����	� For a
low value of �� ��� � ��	 both estimators turned out to lead to the same mean�csd and rmse of the estimates�

To see whether these results depend upon s� we increased the number of
simulations up to s � ���� using the same �true� models and the same estimators�
With s � ��� simulations the numerical results were similar and the overall
results did not change at all�

We also increased and decreased the number of observation blocks to N �
���� and N � ���� respectively� Because of the problems calculating the ME�
COSA estimators for small sample sizes �see section ���	 the results for the ME�
COSA estimator were not valid and are not reported for N � ��� blocks�

For N � ���� blocks and ��tt� � �� for the true equicorrelation structure the
ML estimates and the GEEE estimates have nearly the same means and values
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csd and rmse� With increasing values of ��tt� the GEEE estimator becomes more
ine�cient relativ to the ML estimator �see Table �	� For low ��tt� the means

and values of csd and rmse of the MECE estimates are similar to the means and
values csd and rmse of the ML and the GEEE estimates� but are signi
cantly
higher for moderate and high values of ��tt� than for the GEEE estimates� The
same systematic di�erence between the GEE and the MECOSA estimates is also
true for other �true� correlation structures� that is for an AR��	 and a mixed
equicorrelation and AR��	 structure �See Table �	�

Table �� Mean �m�� estimated standard deviation �csd	 and root mean squared
error �rmse� of di�erent estimators for a model with N � ����� T � �� ��� � ����
��� � ��� ��� � �� and ��� � ��� and di�erent values for an equicorrelation
structure over s � ��� simulations
mcsd ��tt� � �	 ��tt� � �� ��tt� � ��

rmse
ML GEEE MECE ML GEEE MECE ML GEEE MECE
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With a small sample size �N � ���	 and a true correlation structure with low

and moderate values for ��tt� there is no systematic di�erence in the csd and rmse
between the ML and GEEE estimators �see Table �	� Only for a high correlation
���tt� � ��	 the GEEE estimator seems to become ine�cient relative to the ML
estimator�

For moderate sample sizes �N � ���	 there is a general tendency to underesti�
mate the variances of the parameters using the MECOSA approach� For N � ���
blocks the calculation of the MECOSA estimates may lead to singular matricescWN or to convergence of the estimates of the tetrachoric correlations to boundary
points� In the case of large sample sizes �N � ����	 the MECOSA estimators are
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Table �� Mean �m�� estimated standard deviation �csd	 and root mean squared
error �rmse� of di�erent estimators for a model with N � ����� T � ��
��� � ���� ��� � ��� ��� � �� and ��� � ��� and di�erent �true� correlation
structures of the latent errors C� over s � ��� simulations
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as e�cient as the GEE estimators or� in the case of an equicorrelation structure�
as the ML estimator� for low true correlations of the latent error terms� As the
values of the true correlations increase� the MECOSA estimators become more
and more ine�cient relative to the GEE and ML estimators� respectively�

The calculation of the GEE and the ML estimates in general were not prob�
lematic with N � ���� N � ��� and N � ���� blocks� In equicorrelation models
with low true correlations the ML and the GEEE estimators are nearly equally
e�cient� whereas with increasing true correlations the GEEE estimator becomes
ine�cient relative to the ML estimator in terms of the used measures� This dif�
ference is clearer in large samples �N � ����	 than in small samples �N � ���	�

To compare the estimation of the tetrachoric correlations using the GEE ap�
proach as described in section ��� and the MECOSA approach we simulated
a model with N � ��� and N � ���� blocks� respectively� T � �� � �
����� ��� ������	� and a true equicorrelation matrix with ��tt� � �� and an AR��	
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Table �� Mean �m�� estimated standard deviation �csd	 and root mean quared
error �rmse� of di�erent estimators for a model with N � ���� T � �� ��� � ����
��� � ��� ��� � �� and ��� � ��� and di�erent values for an equicorrelation
structure over s � ��� simulations
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structure in the correlation matrix of the latent error term with �� � �� �see Table
�	� As estimators we used the GEEF and the MECF estimator�

Looking at Table � there seems to be no signi
cant di�erence between the
means of the estimated tetrachoric correlations using the GEE and the MECOSA
approach� respectively� Altogether� if the values of the l��norm of the vectors
of di�erences between the means of the estimated tetrachoric and the realized
underlying correlations are considered� the GEE approach leads to a slightly
better 
t�

As can be seen from the means of the estimates in Table � to Table � there is
no systematic and signi
cant di�erent bias in the mean values of the ML� GEE
and MECOSA estimates� This holds for all our simulation results�

For the di�erent estimates over the s simulations� in general� there were no
systematic signi
cant deviations from the normal distribution� the exceptions
beeing distributions of the estimates �
N with 
�� � �� either of the MECARH

estimator and true mixed correlations structures �Tables � and �	 or of the ML
estimate for 
�� in the model withN � ��� blocks and an equicorrelation structure
with 
�� � �� �see Table �	� In all three cases the distributions of the estimates
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were negatively skewed� This is not surprising because of the high mean and the
large variance of the estimates�

Table �� True correlations ���tt�	� mean of simulated correlations �m��Ntt�	� and
mean of estimated tetrachoric correlations �m���Ntt�	�� t � t�� over s � ��� using
GEEF � and MECF estimator respectively for a model with T � �� ��� � ����
��� � ��� ��� � ��� ��� � ��� and N � ��� and N � ����� respectively

C� � ��tt� � �	
N � ��� N � ����

GEEF MECF GEEF MECF

��tt� m��Ntt�� m���Ntt�� m���Ntt�� ��tt� m��Ntt�� m���Ntt�� m���Ntt��

	� �	 �	��	 �	�

 �	��� �	 �	�		 �	�	� �	�
�

� �	 �	��� �	�	� �	��� �	 ����� ����� �����

	 �	 �	��� �	��
 �	��� �	 �	��� �	��� �	��	
�� �	 ����� �	��
 �	��� �	 �	��� �	�		 �	���

tt� �	 �	 ����� �	��� �	��� �	 �	��� �	��	 �	���
�
 �	 ����� ���
	 ����
 �	 ����� ����� �����
�� �	 ����� ����	 ����� �	 ����� ����	 �����
�	 �	 ����� �	��� �	��� �	 �	��	 �	�	� �	�
�
�
 �	 �	��� �	��� �	�
� �	 �	��	 ����� �����
�� �	 ����� ���	� ���
� �	 ����� ����� �����

C� � �� � ��
N � ��� N � ����

GEEF MECF GEEF MECF

��tt� m��Ntt�� m���Ntt�� m���Ntt�� ��tt� m��Ntt�� m���Ntt�� m���Ntt��

	� ����� ����� ����� ����� ����� ����� ���
� ����	

� ����� ����� ���	� ���
� ����� ��
�� ����
 ���	�

	 ����� ���	� ����� ����� ����� ����� ����� ���
�
�� ���	� ����� ��	�� ��	�	 ���	� ���	� ����� ���	


tt� �	 ����� ���

 ����	 ����
 ����� ����� ����� ����

�
 ����� ����� ����
 ����� ����� ����� ����	 ���
�
�� ����� ����� ���
� ����� ����� ����� ����� �����
�	 ���	� ���	� ����� ����� ���	� ���		 ���

 �����
�
 ����� ��
�� ��
�	 ��
�� ����� ��
�� ����� �����
�� ����� ����� ����� ����� ����� ����� ����	 �����

Note� The means of the correlations are calculated using Fisher�s Z�transformation�

A further � although not surprising � result indicates the essential but of�
ten overlooked e�ect of the distribution� or more generally� of the type of the
covariates on the properties of the estimators� the values csd and rmse are sys�
tematically highest for the estimated regression parameter which weights the
uniform distributed covariate� whereas those for the parameter estimator which
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weights the normal distributed covariates are systematically lowest� The valuescsd and rmse for the regression parameter estimator that weights the dichotomous
covariates are in between�

� Discussion

The GEE estimates required substantially lesser computing time than the other
estimates� Furthermore� in contrast to Sharples and Breslow �����	 in the calcula�
tion of the GEE estimates we found no connection between convergence problems
and features of datasets or true values of some parameters� However� in further
studies the calculation of the GEE estimates may be found to be more problem�
atic for datasets with very low or very high portions of response variables having
value one or for datasets were the portions of violations of the restrictions on the
correlations �Prentice� ����	 are higher than in our study�

Again� from a technical point of view the calculation of the MECOSA esti�
mates as well as the calculation of the tetrachoric correlations using the GEE
approach are not recommended in small samples because of the possibility of
considerable convergence problems�

Although the calculation of the ML estimates required the most computing
time� this approach was the one that did not cause any problems� provided suit�
able starting values were used� Whereas for the regression parameters the ML
estimates from the independent probit model seemed to be a good choice in prac�
tice� the starting value for the standard deviation of the heterogenity component
has to be chosen by theoretical considerations�

Another point worth mentioning is the use of the matrix of second derivatives
in the calculation of the ML estimator� Although the second derivative of the
log likelihood function is costly to derive� its use leads to lesser computing time
required than the use of the 
rst derivatives only and� furthermore� a robust
variance estimate may be calculated in practical applications �see White� ����	�

The ML estimator in general seems to be the most e�cient estimator	� There�
fore� if a latent variance component model with an equicorrelation structure can
be assumed and computing time is no issue the ML approach is prefered over the
GEE and MECOSA approach�

On the other hand� if only small correlations between the error terms can be
assumed� the GEE estimator may be used in practical applications with only a
negligible loss of e�ciency� The same seems to be true in small samples and for
low to moderate true correlations� where we found no signi
cant and system�
atic di�erence in the e�ciency of the ML and GEE estimators� Clearly� if no
equicorrelation structure of the error terms of a latent model can be assumed�

�Although it is clear that the results reported should not be overgeneralized� we expect them
to be valid not only for the examples considered in this article� since we found the same general
results simulating and estimating a lot of more models than reported here�
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the adoption of the ML approach as described in section ��� leads to a model
misspeci
cation� Using the GEE approach in this case it is possible to model the
structure of dependence in the observable response variables more properly�

In small samples the use of the MECOSA approach led to results which are
not reliable� mainly caused by estimates converging to boundary points in the
second step and by nearly singular weight matrices used in the third step� In
moderate samples we observed a tendency of underestimating the variances of the
estimators� This tendency vanished with the use of a large number of observation
blocks but in this case the MECOSA estimators were found to be ine�cient
relative to the GEE estimators for moderate to high true correlations� Hence
the MECOSA estimators cannot be recommended for small or moderate sample
sizes�

Obviously� an advantage of the MECOSA approach is its generality and the
possibility to estimate complicated models including the estimation of param�
eters determining di�erent correlation structures in the latent model� As was
shown in section ��� and in section ���� the GEE approach may be extended to
estimate the tetrachoric correlations using the ML method in a second step� Be�
yond the estimation of the pairwise correlations of the latent errors it should be
possible to estimate functions of the correlations� dependent upon the assumed
correlation structure in the latent errors� The advantage of this approach over
the MECOSA approach is that the properties of the estimators of the regression
parameters would not depend on the properties of the estimators of the tetra�
choric correlations� Further theoretical and practical work is needed to derive
those estimators and their asymptotic properties as well as to investigate their
properties in 
nite samples�

In this paper we included only free varying covariates in our models� The
results for the di�erent regression parameter estimates illustrate the fact� that
although overlooked in many cases� the distribution� or more generally spoken
the kind of covariates� play an important role regarding the properties of the
estimators �see also Li and Duan� ����	� Therefore� the results presented in this
paper are strictly speaking only valid for estimators of models which include free
varying covariates� In a di�erent paper we address the question of the e�ect
of time and block invariant covariates on the properties of the GEE estimators
�Spiess and Hamerle� in preparation	�
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