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Summary

A major issue in exploring and analyzing life history data with multiple states

and events is the development and availability of �exible methods that allow si�

multaneous incorporation and estimation of baseline hazards� detection and mo�

delling of nonlinear functional forms of covariates and time�varying e�ects� and

the possibility to include time�dependent covariates� In this paper we consider a

nonparametric multiplicative hazard model that takes into account these aspects�

Embedded in the counting process approach� estimation is based on penalized li�

kelihoods and splines� The methods are illustrated by two real data applications�

one to a more conventional survival data set with two absorbing states� and one

to more complex sleep�electroencephalography data with multiple recurrent states

of sleep�
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�� Introduction

Cox�s proportional hazard model is generally used as the standard tool for

survival data analysis in studies where the e�ect of risk factors or covariates

on the time until occurrence of a certain event is of prime interest� The

hazard rate is written in semiparametric multiplicative form

��t� z�� � � � � zp� � ���t� exp ���z� 	 � � �	 �pzp��

where the baseline hazard rate ���t� is left unspeci
ed and is estimated se�

parately if necessary� Through the choice of a parametric exponential risk

function for the second factor� covariates z�� � � � � zp� which may also be time�

dependent� act multiplicatively on the hazard rate�

In a number of applications there is a need for extending and further

developing this basic model with respect to several aspects� such as allowing

more exible functional forms for covariates� inclusion of time�varying ef�

fects� thereby dropping the proportional hazards assumption� simultaneous

estimation of baseline hazards and covariate e�ects and incorporation of un�

observed heterogeneity� Increased exibility becomes even more important in

applications to more complex event history data as considered in this paper�

To illustrate the methods by a simple example� we use a data set on survi�

val with malignant melanoma� presented and analyzed in Andersen� Borgan�

Gill and Keiding ������� Patients were followed after operation� and survi�

val times were recorded distinguishing �death due to malignant melanoma�

and �death due to other causes�� Thus� transition rates �� and �� for these

absorbing states and the inuence of covariates like sex� thickness of tumor

etc� are of interest�
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Figure �� Transitions after operation for malignant melanoma

Our main application deals with sleep�electroencephalography �EEG� data�

recording various stages of sleep� The data are described in more detail in

Section �� Here we consider only the three recurrent states rapid eye move�

ment �REM� sleep� non rapid eye movement �NREM� sleep and AWAKE�

following the diagram of Figure ��

REM NREM

AWAKE
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Figure �� Transitions between sleep stages

Various extensions of the basic Cox model� mostly for survival data� have

been developed with regard to the aspects mentioned above� First� the simple

parametric form of the exponential risk function may not be suitable� Using

local or penalized partial likelihood approaches� Hastie and Tibshirani ������

����� and O�Sullivan ������ model and estimate the e�ect of continuous

covariates nonparametrically� replacing �jzj by a smooth function fj�zj��

This approach is further extended in Hastie and Tibshirani ������ to allow for

varying e�ects of the form �j�x�zj� where �j�x� is a smooth function of some
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covariate x� Viewing time t as a covariate� time�varying e�ects �j�t�zj� e�g��

with �j�t� as the e�ect of a certain therapy zj varying over time� are obtained

as an important special case� A related multiplicative model for time�varying

e�ects is also studied in Zucker and Karr ������� A nonparametric additive

model� incorporating time�varying e�ects� was introduced by Aalen �������

further developed in Aalen ������ ����� and is described in some detail in

Andersen et al� ������ Ch� VII���� A general nonparametric regression

model for survival data� without assuming additive or multiplicative hazards�

is considered in Mc Keague and Utikal ������ and in Keiding ������� but

dimensionality� i�e�� the number of covariates included� becomes more critical

here� and� as general with nonparametric models for complex data structures�

more experience with applications is needed to gain insight into required

sample sizes�

Time�varying e�ects can also be nicely dealt with in the Bayesian nonpa�

rametric framework of state space or dynamic models and Kalman 
ltering�

see Gamerman ������ for a dynamic version of the piecewise exponential

model and Fahrmeir ������� Fahrmeir and Wagenpfeil ������ for dynamic

discrete time survival and competing risk models� A related but somewhat

di�erent approach is proposed in Arjas and Liu ������� using MCMC tech�

niques like the Gibbs sampler for inference�

In this paper� we propose a nonparametric multiplicativemodel that takes

the aspects discussed above into account and allows simultaneous incorpo�

ration and exible estimation of baseline hazards and covariate e�ects for

survival data and more complex event history data� Time t is essentially

treated in the same way as other covariates or further time scales� including

it as expf���t�g� ���t� � logf���t�g� in the predictor of the exponential risk

function� The baseline e�ect� as well as continuous covariates and varying

e�ects� is modelled by continuous or discrete�time smoothing splines� and a

penalized likelihood approach is used to obtain smooth estimates� In certain

circumstances� e�g� in the presence of several time scales� individual unobser�

ved heterogeneity or frailty can be modelled by individual�speci
c e�ects� as
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in the sleep data example� The degree of smoothness can be chosen subjec�

tively� but data driven methods for choice of smoothing parameters are also

discussed�

Section � describes the sleep study and the data set used in our main

application in more detail� Section � introduces the model and the resulting

penalized likelihood� Section � provides details on estimation� Section �

contains analyses of the examples� in particular our main application to the

sleep study�

�� Example� Sleep�EEG Data

Most sleep studies focus on sleep structure� characterized by recurrent

alternations of electroencephalographic �EEG� patterns� and its relation to

nocturnal hormonal secretion or to psychiatric diseases like depression� Sleep�

EEG data are recordings of nocturnal sleep rhythm� usually classi
ed in

several stages such as awake� rapid eye movement �REM� and states of non�

rapid eye movement �NREM� sleep� The sleep�EEG data in our example are

part of a larger study at the Max�Planck�Institut f�ur Psychiatrie in Munich�

Sleep stages during one night� from � pm till � am next morning� are recorded

every �� seconds for a homogeneous group of �� patients� In addition to

REM stage and four NREM stages �������� indicating depth of sleep� the data

include the stages AWAKE and� only for some patients� PAUSE �no recording

during PAUSE�� Figure � shows sleep�EEG data for two patients� In addition�

secretion of several hormones is measured every ��� �� or �� minutes� Figure

� contains corresponding recordings of cortisol plasma concentration for the

same two patients� Figure � is typical for most patients of the study group�

There is a low during the 
rst hours of sleep followed by a marked increase

in early morning� It is much more di�cult for the human eye to detect

typical patterns in sleep�EEG recordings� and some kind of smoothing and

synchronization seems appropriate�
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Figure �� Individual sleep processes for two patients�

Previous statistical analyses of possible interrelation between hormonal

secretion and sleep structure is mostly based on 
rst constructing and extrac�

ting simpler characteristic variables from the original data and then applying

more conventional methods like correlation and variance analysis� In Section

�� we will apply a speci
c nonparametric multiplicative model for transition

intensities between sleep stages� providing some evidence on sleep structure

and the e�ect of cortisol on it�
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Figure �� The two patients� nocturnal hormone secretion�

�� Models and likelihood

We 
rst discuss the special but important case of time�independent covaria�

tes� Consider n individuals and let Nhi� h � �� � � � � k� i � �� � � � � n� denote

the individual counting processes for events of type h� i�e� Nhi�t� indicates

the number of observed type h events experienced by the ith individual up to

time t� We assume that individual intensity processes �hi�t� exist and have

multiplicative structure

�hi�t� � Yhi�t��hi�t� zhi�� h � �� � � � � k� i � �� � � � � n�

compare for example Andersen et al� ������ Ch�VII� The predictable � � �

processes Yhi�t� indicate whether individual i is at risk for experiencing a

type h event just before time t� The individual type h hazard or transition
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rates �hi�t� zhi� generally depend on time t and type�speci
c covariates or

design vectors zhi� often constructed from basic covariates�

���� Models

Hazard rates are related to predictor functions �hi�t� zhi� with additive

structure by the exponential link

�hi�t� zhi� � expf�hi�t� zhi�g�

By the properties of the exponential function� hazard rates are nonnegative

and have multiplicative structure� Before describing a general and exible

form for the predictors� we discuss some simpler examples� To simplify nota�

tion� we consider only two basic covariates x and w� where x is a continuous

variable like tumor thickness and w is binary� indicating for example sex or

treatment group� The simplest model is

�hi�t�xi� wi� � �h��t� exp ��h�xi 	 �h�wi�

� expf�h��t� 	 �h�xi 	 �h�wig�

i�e�

�hi � �hi�t�xi� wi� � �h��t� 	 �h�xi 	 �h�wi�

The predictor �hi maintains the linear parametric form for the inuence of

the covariates as for the Cox model� The e�ect may be type�speci
c or

common to some or all predictors� i�e� �h� � ��� �h� � ��� If a covariate

is included only in one or some of the predictors�it becomes type�speci
c�

Baseline e�ects �h��t� are modelled nonparametrically by smoothing splines

or �smooth� piecewise constant functions over a 
ne grid � � a� � � � � �

at�� � at � � � � � aT � T of the observation period ��� T �� The gridpoints

or knots fatg can be determined by observed event times� or can be cho�

sen subjectively� usually with small intervals �at��� at� in periods with many

observations and larger intervals towards the end of the observation period�

where data become sparse� Estimation is carried out simultaneously with
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estimation of covariate e�ects �h�� �h�� using a penalized likelihood approach

with penalty terms enforcing smoothness of the estimated baseline�e�ects�

see further below�

More exibility is obtained by dropping the simple linear parametric as�

sumption for modelling covariate e�ects� If a certain functional form for the

inuence of xhi cannot be speci
ed in advance� �h�xi can be replaced by a

smooth function �h��x� evaluated at xi� Simultaneous estimation of �h��t�

and �h��x� is carried out in analogy to generalized additive models �Hastie

and Tibshirani� ������

Models with time�varying e�ects are obtained by assuming

�hi � �h��t� 	 �h��t�xi 	 �h��t�wi�

where� for example� �h��t� could be the e�ect of a certain therapy decreasing

over time� In the more restricted context of survival data such time�varying

coe�cient models have recently gained much interest� and several proposals

have been made for modelling and estimation� Note that for 
xed t� this

is a conventional linear predictor model� Nonparametric methods are ba�

sed on penalized likelihood estimation �Zucker and Karr� ����� Hastie and

Tibshirani� ���� � Klinger� ����� on local likelihoods �Tutz� ����� or on

smoothing of appropriate residual plots �Grambsch and Therneau� ������

Bayesian approaches are considered in Gamerman ������� Fahrmeir �������

in a discrete�time setting� and Arjas and Liu �������

As in Hastie and Tibshirani ������� one may go a step further and consider

varying coe�cient models of the form

�hi � �h��t� 	 �h��xi� 	 �h��xi�wi 	 �h��t�wi�

Here the smooth function �h� may be viewed as an e�ect of wi varying over

the covariate x� or �h��xi�wi is interpreted as an interaction term between

the continuous covariate x and the binary covariate w�

In some cases of event history data it is also possible to include individual�
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speci
c e�ects� common to some or all type�speci
c predictors� i�e�

�ih � �i�t� 	 other terms�

We include such individual�speci
c e�ects in our model for analyzing the sleep

data to separate individual�speci
c sleep intensities� that cannot be explained

by covariates� from more systematic e�ects� e�g� the inuence of cortisol�

Subsection ��� provides a more detailed discussion on the incorporation of

individual�speci
c e�ects�

A general form for all these models is

�hi�t� zhi� � �i�t� 	
pX

j��

zhij�j�t� 	
p�qX

j�p��

zhij�j�xj�� ���

where x�� � � � � xq are continuous covariates� and zhi � �zhij� j � �� � � � � p 	 q�

is a design vector� formed from basic covariates� By de
ning corresponding

� � � dummies in zhi� the functions �j�t�� �j�xj� can be made type�speci
c

or can be common to some or all predictors�

���� Likelihood and penalty function

Under appropriate assumptions on censoring or 
ltering mechanisms� e�g�

noninformative right censoring� the corresponding likelihood has the form

l��� �
nX

i��

kX
h��

�Z T

�
logf�hi�t� zhi�gdNhi�t��

Z T

�
�hi�t� zhi�Yhi�t�dt

�
���

�
nX

i��

kX
h��

�Z T

�
�hi�t� zhi�dNhi�t��

Z T

�
expf�hi�t� zhi�gYhi�t�dt

�
�

see Andersen et al� ������ Ch� III and VII�� To obtain computationally trac�

table expressions for the likelihood� the predictors �hi�t� zhi� are considered �

or approximated � as piecewise constant functions over the intervals �at��� at�

of the chosen time�grid� This means that the smooth time�varying e�ects

�j�t� are treated as piecewise constant functions over �at��� at�� with value
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�j�at�� regardless whether continuous�time smoothing splines or discrete spli�

nes are used for modelling �j�t�� For 
xed zhi� let now �hi�t� �� �hi�t� zhi�

denote the value of �hi over �at��� at�� Then the log�likelihood ��� becomes

l��� �
X
i�h

TX
t��

h
�hi�Nhi�t�� Y �

hi�t� expf�hi�t�g
i
�

where �Nhi�t� indicates a type h event in �at��� at� for individual i and

Y �
hi�t� �

Z at

at��
Yi�t�dt

is the total amount of time of being at risk for a type h event in �at��� at��

De
ning the risk set Rth � fi � Y �
hi 	 �g� one obtains

l��� �
TX
t��

kX
h��

X
i�Rth

h
�hi�t��Nhi�t�� Y �

hi�t� expf�hi�t�g
i

���

More details of computational evaluation of l��� are given in Section ��

Smooth estimates of the functions �j are obtained by maximizing a pe�

nalized log�likelihood

lp���� � � � � �p�q� � l����
p�qX
j��

�jJ��j� � ���

where J��j� is a roughness penalty� The most popular smoother is a cubic

smoothing spline� obtained with the integrated squared curvature

J��j� �
Z
f���j �x�g

�dx ���

as roughness penalty� Alternatively we use discrete versions� replacing deri�

vatives by di�erences� For example�

X
s��

n
�j�xs� � �j�xs���

o�
xs � xs��

� ���

� � x� � x� � � � � � xS�� � xS� corresponds to a discrete 
rst order spline�

For the special covariate x � time t� the knots xs are given by the grid

points as of the time axis� Using second di�erences leads to discrete second

order splines� For equally spaced small intervals� the latter are more or less

indistinguishable from cubic smoothing splines�
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���� Time�dependent covariates

So far� discussion was restricted to time�independent covariates� For�

mally� time�dependent covariates are included in hazard rates and predictors

by writing zhi�t� instead of zhi� For so�called de
ned time�dependent co�

variates �Kalbeisch and Prentice� ����� p����� the �conditional� likelihood

remains the same� and inference is performed as if covariate paths had been


xed in advance� For truly random processes zhi�t�� joint likelihoods for

fNhi�t�� zhi�t�g and censoring processes have to be considered� in principle�

Under appropriate assumptions� the log�likelihood l��� can be looked at as

the relevant conditional log�likelihood� A thorough discussion of model spe�

ci
cation in the presence of time�dependent covariates can be found in An�

dersen et al� ������ Ch� III� and Arjas ������� A fundamental assumption

is that the zhi�t� are predictable� i�e� the covariate value at time t is already

known just before t� For a continuously observed time�dependent covariate�

not 
xed in advance� its path has to be approximated by a discretized ver�

sion� In our application to sleep data� where duration in certain states and

cortisol concentration are included as covariates� these assumptions are ful
l�

led� To formulate the log�likelihood in analogy to the time�independent case�

it is convenient to consider individual covariate�speci
c counting processes

Nhzi� where z is an element of the discrete set Eh of possible covariate values

zh�t�� Then Nhzi�t� is the number of type h events up to time t experienced

by individual i under the covariate value z� For time�independent covariates

Nhzi�t� reduces to Nhi�t�� Assuming

�hzift� zhi�t� � zg � Yhzi�t� exp��hzift� zhi�t� � zg�

for the individual covariate�speci
c intensity processes� de
ning Y �
hzi�t� as the

total amount of time in �at��� at� of individual i at risk for a type h event

under covariate value z� one arrives at

l��� �
TX
t��

kX
h��

nX
i��

X
z�Eh

h
�hzi�t��Nhzi�t�� Y �

hzi�t� expf�hzi�t�g
i

�
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To group over individuals i with zhi�t� � z� we de
ne

�hz�t� � �hzift� zhi�t� � zg� Y �
hz�t� �

nX
i��

Y �
hzi�t�

and the risk set Rthz � fi � Y �
hzi�t� 	 �g� As resulting log�likelihood we have

l��� �
TX
t��

kX
h��

X
z�Rthz

h
�hz�t��Nhz�t�� Y �

hz�t� expf�hz�t�g
i

� ���

in complete analogy to ���� Here� �Nhz�t� counts the number of type h events

under covariate value z observed until time t� Y �
hz�t� is the total amount of

time being at risk for a type h event during �at��� at� for all individuals with

covariate value zhi�t� � z� and Rthz is the corresponding risk set�

���� Individual�specific effects and different time scales

Frailty concepts are incorporated into the framework of nonparametric multi�

plicative models by introducing individual�speci
c e�ects �i�t�� To illustrate

this� let us consider a simple sleep�EEG model where we are mainly interested

in the e�ect of high hormone concentration on the duration of the 
rst REM

phase� Besides duration of the 
rst REM phase �di� we also make use of time

since sleep onset �t� as second time scale� We suppose that characteristics

of individual sleep processes do also depend on unobserved covariates such

as personal habits� Because time since 
rst entry in a sleep phase t is more

appropriate to describe individual sleep processes� it is used as basic time�

while di is included as discretized time�dependent covariate� Let wi�t� � �

if the hormone level is high at t and wi�t� � � elsewhere� A multiplicative

model with predictor

�i � �i�t� 	 I�di 	 ��f���di� 	 ���di�wi�t�g ���

for the process counting terminations of the 
rst REM phase describes the

patients individual sleep histories� By the smoothness restrictions impo�

sed and the di�erent time scales used� identi
ability usually is guaranteed
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if ���di� is restricted to have mean �� see the next section for details� In

model ��� individual intensities depend on multiplicative individual speci
c

components expf�i�t�g characterizing the patients propensity to change sleep

states or frailty� The e�ect ���di� can be interpreted as a baseline e�ect and

indicates whether an �ideal� patient has high or low propensity to terminate

the 
rst REM phase after spending di minutes in this state� The coe�cient

of interest expf���di�g� can be seen as interaction of di and zi�t� and thus

explains relations between REM duration and high concentration of hormo�

nes� This concept is only based on exact description of individual histories

and no additional assumptions about frailty parameters are made�

Basically� individual�speci
c e�ects can be introduced when the model

assumption decomposes individual counting processes Nhi into two or more

type� or covariate�speci
c counting processes Nhzi� This decomposition can

be made by considering di�erent or recurrent events� di�erent time scales or

time�dependent covariates� The whole approach can be transferred to the

wide area of clinical studies� for example� by introducing a time scale t as

the patients age and considering duration di as time since disease onset or

operation� However� the basic time scale� age or calendar time� should be

chosen such that censoring processes and stochastic covariates are predictable

given the history in t�

�� Estimation

In this section we 
rst derive the back
tting algorithm for estimating the

functions �j�t� and �j�xj�� Introducing appropriate matrix notation� this can

be formulated in terms of familiar generalized linear or additive modelling

framework� Furthermore� we outline computation of con
dence bands and

selection of smoothing parameters� Although discussion here focusses on

hazard models� extensions to other types of varying coe�cient models are

immediate�
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���� The estimation procedure

Suppose nht distinct values z � Eh of the covariate vector contributing to

transition h were observed during time interval �at��� at�� Now let yht be a

nht � � vector containing the counts of type h events under each covariate

value z and de
ne exp��ht� as the corresponding vector of componentwise

exponential predictor evaluations� The experienced total time under risk for

this event� Y �
hz�t�� is stored in the same order in a diagonal matrix Qht �

diagfY �
hz�t�g� Rewriting the penalized log�likelihood criteria of Section ����

the vector of point evaluations �j � f�j�x��� � � � � �j�xS�g�� x� � � � � � xS � for

each function �j�t�� �j�xj�� is then estimated by maximizing

lp���� � � � � �p�q� �
kX

h��

TX
t��

fy�ht�ht � ��nhtQht exp��ht�g �
p�qX
j��

�jJ��j�� ���

where ��nht � ��� � � � � ���� and J��j� is one of the roughness penalties described

in Section ���� Note that the assumption of piecewise constant hazards may

reduce the length of the vectors drastically� since grouping can be done within

each time interval and for each transition type separately� Hence complex

models for large datasets are becoming computationally feasible within this

framework�

It is well�known that the roughness penalty derived from the integrated

squared curvature can be written as a quadratic form of the vector of point

evaluations� J��j� � ��jKj�j� and the uniquely minimizing functions are

natural cubic splines� See e�g� Green and Silverman ������ Ch� �� for details�

Clearly� discrete penalties can be written in the same form and the penalty

matrices Kj have simple band structure� For example for the discrete 
rst

order spline penalty ��� we have

Kj �

�
BBBBBBBBBBB�

�
x��x�

��
x��x�

� � � �
��

x��x�

�
x��x�

	 �
x��x�

��
x��x�

� � �
� � � � � � � � � �

�
� � � � � � � � �

� � � � ��
xS�xS��

�
xS�xS��

�
CCCCCCCCCCCA
�

��



Assuming the space of continuous functions with continuous derivatives in

intervals �xs��� xs�� the 
rst order penalty ��� is equivalent to a continuous

penalty

J��j� �
SX

s��

Z xs

xs��
f� �j�u�g

�du�

The unique minimizer in this function space is a polygon with knots in

x�� � � � � xS� Furthermore we introduce a transition speci
c response vector

as yh � �y�h�� � � � � y
�
hT �

�� To write the design in matrix notation� suppose

during interval �at��� at� the pairs �z�� x��� � � � � �znht� xnht� are the observed

values of covariates zhj and xhj � where xhj is a metrical variable� Let the

pairs be arranged in same order as yht� Then we de
ne design matrices

Zhj � fZ �
hj���� � � � � Z

�
hj�T �g

� with blocks given by

Zhj�t� �

�
BBBB�

� � � � � z� � � � �
���

���
���

���

� � � � � znht � � � �

�
CCCCA

�

t�th column

for a time�varying e�ect �j�t�zhj� respectively

x��th column

�

Zhj�t� �

�
BBBB�

� � � � z� � � � � �
���

���
���

���

� � � � � � � � znht � � �

�
CCCCA

�

xnht�th column

for an e�ect �j�xj�zhj with e�ect modi
er xj� By the de
nition of the design

matrices it is easy to see that the column vectors of each Zhj are orthogonal�

Since there is only one element in each row of Zhj � the design matrix can

e�ciently be stored in two vectors� Now we can write the transition speci
c

��



predictor �h � ���h�� � � � � �
�
hT �

� as �h � Zh��� 	 � � �	 Zh�p�q�p�q� where Zhj is

a matrix of zeros if zj doesn�t contribute to a type h event�

Using the notations above and equating the derivatives of ��� to zero�

yields the p 	 q generalized score equations

uj��� � 
lp����
�j �
kX

h��

Z �
hjs��h�� �jKj�j � �� ����

where

s��h� � yh �Qh exp��h�

is the log�likelihood score vector with Qh �diag�Qh�� � � � � QhT ��

It follows fromWhaba ������ Ch� � and ��� and Whaba� Wang� Gu� Klein

and Klein ������ that the solution of ���� exists and is unique in a broad

class of penalized likelihood schemes as soon as an embedded parametric

model� obeying J���� � � � � � J��p�q� � �� has a unique solution� For


rst order penalties as in ���� this embedded parametric model is de
ned by

constant functions �j � �j�t�� �j�x� � �j� and for second order penalties

by linear functions of t or x� If the sample provides no information about a

certain point evaluation �j�xj�� the unique maximizer of the penalized log�

likelihood is the linear or polynomial interpolant at this point� This happens

for example when all covariate values zhj for this e�ect are zero within one

time interval� Hence the dimension of the function space containing the

solution can be smaller than the number of point evaluations� Now consider

the solution for a model with predictor �h � ���t�	���x�	���t�w	���x�w�

Since the embedded parametric model �h � �� 	 �� 	 ��� 	 ���w contains

constant terms for the intercept and for the e�ect of w twice� the solution is

not unique� One way to overcome this phenomenon called concurvity �Buja�

Hastie and Tibshirani� ������ i�e� collinearity in function spaces � is to choose

a reference value or reference interval xR and write the predictor as

�h � ���t� 	 I�x 	� xR����x� 	 ���t�w 	 I�x 	� xR����x�w�

Technically the rows corresponding to xR are omitted in the design matrices

and the point evaluations ���xR� resp� ���xR� are inter� or extrapolated� This

��



is similar to dummy coding of a covariate with possible categories x�� � � � � xS

and reduces the dimension of the function space by one� An alternative

solution to concurvity introduced by Buja� Hastie and Tibshirani ������ is

discussed below�

System ���� is solved iteratively by a Fisher scoring procedure with in�

ner Gauss�Seidel loops or the equivalent local scoring procedure �Hastie and

Tibshirani� ����� Ch� �� ������ With � � ����� � � � � �
�
p�q�

� the matrix of ne�

gative expected second derivatives of the penalized log�likelihoods is given

by

H��� � �
�lp����
�
�� ��
BBBBBBB�

P
Z �
h�F ��h�Zh� 	 ��K� � � �

P
Z �
h�p�qF ��h�Zh�P

Z �
h�F ��h�Zh�

� � �
���

���
� � �

���P
Z �
h�F ��h�Zh�p�q � � �

P
Z �
h�p�qF ��h�Zhp�q 	 �p�qKp�q

�
CCCCCCCA
�

����

where

F ��h� � �
�l����
�h
�
�
h � Qh exp��h�� F ��� � diagfF ����� � � � � F ��k�g

is the usual Fisher information matrix for �� With 
rst derivative vector

u��� � fu������ � � � � u
�
p�q���g

�� Fisher scoring iterations have the common

form

H���o	����n	 � ��o	� � u���o	��

where ��o	 denotes results from the previous loop whereas ��n	 is the actual

coe�cient vector� Using working observations

�y�o	 � ��o	 	 F�����o	�s���o	�� s���o	� � fs��
�o	
� � � � � � s��

�o	
k �g

for a current coe�cient vector� the Fisher scoring algorithm can be transfor�

med to

H���o	���n	 � Z �F ���o	��y�o	� ����

��



Thus in each iteration normal equations for a penalized least squares problem

with design matrix

Z �

�
BBBB�

Z�� � � � Z��p�q

���
���

Zk� � � � Zk�p�q

�
CCCCA

have to be solved� This iteratively penalized least squares estimation stops

at convergence of �� i�e�  � � ��n	 
 ��o	� Due to the special structure of ����

a back
tting algorithm of Gauss�Seidel type can e�ciently solve the normal

equations� Working out each block row of the normal equations ���� results

in

�
kX

h��

Z �
hjF ���o	�Zhj 	 �jKj

�
�
�n	
j �

kX
h��

Z �
hjF ���o	�

	

��y�o	 �

X
l��j

Zhl�
�n	
l

�
�
����

for each Gauss�Seidel iteration� Since Z �
hjF ���o	�Zhj are diagonal� only few

modi
cations to standard fast smoothing�spline algorithms have to be done

to solve ����� see Klinger ������ and Fahrmeir� Gieger and Klinger ������

for details� Back
tting cycles the smoothing or projection operators

Sj �

�
kX

h��

Z �
hjF ���o	�Zhj 	 �jKj

��� kX
h��

Z �
hjF ���o	�

for j � �� � � � � p	 q� �� � � � � p 	 q� �� � � � on actual partial residuals

�y�o	 �
X
l��j

Zhl�
�n	
l

until ��n	
� � � � � � �

�n	
p�q only change within a small given range� Thus the algo�

rithm solves the system

�
�n	
� � S�

�
�y�o	� � �Zh��

�n	
� � � �� Zh�p�q�

�n	
p�q

�
��� �

���
���

�
�n	
p�q � Sp�q

�
�y�o	� Zh��

�n	
� � � �� Zh�p�q���

�n	
p�q�� ���

which is equivalent to the normal equations ����� From Buja� Hastie and

Tibshirani ������ and Hastie and Tibshirani ������ it is known that for a

��



certain class of projection operators� including those proposed here� back
t�

ting converges to any solution within the concurvity space� i�e� the space of

all functions minimizing the corresponding penalized least squares problem�

To obtain unique results� the authors propose to apply centered smoo�

thers where the average of �j is substracted from �j in each back
tting step�

Thus the e�ects �j�t� or �j�xj� are forced to have zero mean� When using

centered smoothers� linear terms have to be included into the predictor and

our concurvity example becomes

�h � �� 	 ��w 	 ���t� 	 ���x� 	 ���t�w 	 ���x�w�

Estimation of the �parametric� e�ects ��� �� is incorporated into the back�


tting algorithm by substituting Sj with an appropriate projection matrix

�X �X���X� X � ��� w�� familiar from linear models� Alternatively� by

centering only ���t� and ���x�� the parameters �� and �� are automatically

added to the �baseline� e�ects ���t� and ���x�� In our applications howe�

ver� we found it more convenient to deal with concurvity by introducing a

reference value as sketched above�

In presence of approximate concurvity back
tting tends to converge slowly

and solutions may get unstable� An analysis of the embedded parametric

model can help to detect this situation� Use of 
rst order penalties instead

of cubic smoothing splines when the slope is not very distinct may help to

overcome instability due to approximate concurvity�

���� Confidence bands

Heuristic derivations of approximate con
dence bands are usually based on

appropriate 
rst order expansions� As outlined by Gray ������ in the con�

text of survival data� more rigorous results may be obtained by assuming

that the number of time intervals and di�erent covariate values is held 
xed

as n increases� For a given vector �n of smoothing parameters� let ���n�

denote a maximizer of the expected log�likelihood or� in case of uniquen�

ess� equivalently a zero of the expected penalized score function uf���n�g�

��



Along similar lines as in asymptotic theory of maximum likelihood estima�

tion in misspeci
ed generalized linear models �e�g� Fahrmeir� ����� it can be

shown that n���f �n � ���n�g is asymptotically normal with mean zero and

covariance matrix

V � limn H��f���n�gcov �uf���n�g�H
��f���n�g�

If the true model� characterized by �� say� coincides with the embedded

model� i�e� the penalty terms are zero for ��� then ���n� � ��� Generally

however� ���n� 	� ��� but convergence ���n� � �� can be obtained by ap�

propriate asymptotic rate of smoothing� e�g� assuming �n � O�n����� Then

it can be shown that n���
n
 �n � ���n�

o
is asymptotically normal with mean

zero and covariance matrix limn V � with the sandwich matrix

 V � limn H��f���n�gZ
�F � ��ZH��f���n�g ����

Pointwise con
dence bands can be computed from the diagonal of  V � In

practice� the quality of approximation will of course depend on the ratio of

sample size versus numbers of parameters involved and the actual degree of

smoothing� Yet we use ���� as a useful approximation�

Asymptotic analysis becomes much more complicated if the number of

parameters increases with n� as for cubic smoothing splines� Consistency and

convergence rate results for the Cox model are given in O�Sullivan �������

but rigorous asymptotic distribution theory is still not available�

Since H�  �� is usually very big and unstructured� computation of  V requi�

res still a lot of time and memory� In principle this can be done by applying

the back
tting algorithm to an appropriate set of vectors and solving the

linear system H�  ��X � I� However in our experience this is a very unstable

procedure and thus we use direct inversion methods�

Based on Bayesian arguments Gu ������ and Whaba� Wang� Gu� Klein

and Klein ������ give some evidence� that by imposing appropriate Gaussian

smoothness priors for posterior mode estimation� leading to our penalized

likelihood equations� the posterior distribution of  � is approximate normal

��



with covariance matrix H�  ����� Hence pointwise con
dence bands may also

be computed from the diagonal of this matrix�

���� Selection of smoothing parameters

A common way to select smoothing parameters is to consider the traces of

the matrices �j � tr �Z�jSj 	 � � �	 ZkjSj� as �e�ective number of parameters�

or �degrees of freedom� of a smooth as proposed by Hastie and Tibshirani

������ Ch�� and ��� Smoothing parameters ��� � � � � �p�q are then chosen ac�

cording to a given number of parameters� Applying the penalties proposed

in Section ���� �j tunes the degrees of freedom from �� respectively �� corre�

sponding to the number of parameters for the embedded parametric model�

up to the number of distinct time intervals or covariate values xj or� more

precisely� up to the dimension of the vector space spanned by the columns

of �Z �
�j� � � � � Z

�
kj�

�� By using deviance statistics or looking at appropriate re�

sidual plots� one can decide whether more or less smoothing is adequate and

how much degrees of freedom to use�

Basically most criterions for automatic smoothing parameter selection�

such as generalized cross validation �GCV� or Akaikes information criterion

�AIC�� require the trace � � tr
n
F�T��� ��Z �H���  ��ZF����� ��

o
of the hat�

matrix� Since computation of H���  �� is very demanding and the criterion

has to be optimized over several parameters� smoothing parameter selection

by exact optimization of one of those quantities is still too time consuming

for practical use� One way to overcome this problem� is the proposal of

Girard ������� who studies GCV where a Monte�Carlo simulation based on

the relation

 � N��� I� E ��A� � tr�A�

is used to approximate the required trace�

Alternatively one can use only the e�ective number of parameters �j

which is cheaply calculated� and construct fast iterative algorithms for smoo�

thing parameter selection� In principle� these procedures mimic a statistician

��



watching goodness of 
t criterions and tuning smoothing parameters� One

such algorithm designed for survival data and general varying coe�cient mo�

dels is described in Klinger ������ and Dannegger� Klinger and Ulm �������

There it was applied successfully to various data sets�

In more complex situations like the sleep EEG study� where individual�

speci
c e�ects are included� further considerations are necessary� Heuristi�

cally� the degree of smoothing for individual�speci
c e�ects should not depend

on the sample size whereas for other e�ects smoothness should decrease with

increasing n� To ensure that the number of smoothing parameters does not

increase with order O�n�� grouping of the �j e�g� those belonging to indivi�

dual speci
c e�ects seems to be appropriate� However� still more experience

is needed for such complex models�

�� Applications

���� Survival with malignant melanoma

We 
rst illustrate the methods by an application to this survival data set

which is described in detail and used in a number of examples in Andersen�

Borgan� Gill and Keiding ������� Survival time is measured in days after ope�

ration� There are �� patients who died frommelanomawithin the observation

period and �� patients who died from other causes� The remaining ��� are

censored� Covariates included are sex S �� � male� � � female�� tumor thick�

ness X in mm and ulceration U �� � present� � � absent�� Let ���t� z� and

���t� z� denote the hazard rates for death from malanoma and death from

other causes� We choose a multiplicative model ���t� z�� � expf���t� z��g�

���t� z�� � expf���t� z��g with

���t� z�� � ���t� 	 ���t� 	 ���t�S 	 ���t�S 	 �
�t�U 	 I�X 	 �������X�

���t� z�� � ���t� 	 ���t�S �

Thus� for the hazard of dying from other causes� ���t� is a global baseline

e�ect and ���t� is the global possibly time�varying e�ect of sex� The baseline

��



e�ect for dying frommelanoma is modelled additively by ���t�	���t�� and the

time�varying e�ect of sex as ���t� 	���t�� Identi
ability is guaranteed� since

���t� and ���t� appears in both predictors� The e�ect �
�t� of ulceration is

also modelled as time�varying� and ���X� is the e�ect of tumor�thickness X�

Incorporation of the indicator function I�X 	 ���� guarantuees uniqueness�

compare Section �� While ���t�� ���t�� ���t�� �
�t� and ���t� are modelled by

cubic splines� the additional e�ect ���t� of sex in �� is modelled by a discrete


rst order spline� The reason is that ���t� is near to zero for all t� causing

instable estimation when using cubic splines due to near�concurvity� compare

the remarks in Section �� The e�ects are displayed in Figure �� together

with con
dence bands obtained from the sandwich estimate  V � Smoothing

parameters are selected by tuning degrees of freedom�

The global baseline e�ect ���t� in Figure � �a� has bath�tub shape� in

consistency with a simpler competing risks model in Andersen et al� ������

p������ It is modi
ed for �death from melanoma� by addition of the slightly

bell�shaped e�ect ���t�� The global e�ect of sex is not clearly signi
cant� but

nearly constant and almost the same in both groups� since ���t� is close to

zero in Figures � �c� and �d�� Thus� considering sex alone� a proportional

hazards assumption seems plausible� On the contrary the e�ect of ulceration

�
�t� is time�varying� violating a proportional hazards assumption� This

is again in accordance with Andersen et al� ������ p������ Thickness has

a nonlinear e�ect� increasing in logarithmic form up to about � mm� then

becoming slightly decreasing� and increasing again for more then �� mm�

Note however� that the right tail is inuenced by a small number of outlying

observations�

��
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Figure �� Estimated varying coe�cients for the melanoma model with point�

wise ���con
dence bands�
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���� Sleep�EEG Data

The following analysis illustrates the exibility in modellingmore complex

event history data� It is a preliminary attempt to explore sleep patterns and

its association with secretion of hormones with the proposed methods� and it

does not provide a �
nal� model but is only a 
rst step towards more re
ned

investigations in cooperation with clinical partners�

Since we are here mainly interested in the inuence of cortisol on REM

states� we consider only transitions between the three states AWAKE� REM

and NREM � without further di�erentiating between di�erent states of NREM

sleep� For a few patients� an additional state PAUSE is recorded� where mea�

surements are interrupted for some reason� If a patient is in state PAUSE for

some time� its risk indicator is set to zero� We distinguish four types of events�

h � � � transition from AWAKE to REM or NREM� �A� RN�

h � � � transition from REM to NREM� �R� N�

h � � � transition from NREM to REM� �N � R�

h � � � transition from REM or NREM to AWAKE� �RN � A�

There are several time scales that might be considered� e�g� real time� that is

time since beginning of recordings at ���� p�m�� time since onset of sleep� and

durations in sleep states� To simplify and to achieve some synchronisation�

we consider time t since onset of sleep as the basic time scale and introduce

duration in REM states in form of a time�dependent covariate di � �t�time

of last entry into a REM state�� For two patients� di is not well�de
ned

because recordings were interrupted by the state PAUSE� For simplicity�

di was taken as the time in REM since end of PAUSE� Concentration of

plasma cortisol was dichotomized in �high� and �low� by introducing the time�

dependent covariate zi�t� ���concentration of plasma cortisol in person i

at time t�	 ��� nmol�l�� Looking at individual sleep patterns� it seems

that the general tendency of changing states is higher for some persons than

for others and is varying during night� To separate such individual�speci
c

intensities� that cannot be explained by covariates from more systematic

��



e�ects� we introduce individual�speci
c e�ects �i�t� as a common baseline

into all predictors �hi � �hift� di� zi�ti�g� h � �� � � � � �� These considerations

led to the following model

��i � �i�ti� 	 ���ti� �A� RN��

��i � �i�ti� 	 I�di 	 �������di� 	 zi�ti����di� �R� N��

��i � �i�ti� 	 ���ti� 	 zi�ti��
�ti� �N � R��

��i � �i�ti� 	 ���ti�� �RN � A��

Thus� ���ti� is a �population�averaged� e�ect of falling asleep if one is awake

at time ti since onset of sleep� ���di� is the e�ect of duration in REM state for

a transition to NREM state� and ���di� is an additional e�ect for high levels

of cortisol at time ti� Interpretation of the e�ects ���ti�� �
�ti� and ���ti�

is quite analogous� for example �
�ti� is the additional e�ect for transitions

from NREM to REM in periods of high levels of cortisol� E�ects �� to �� are

all modelled by cubic splines� corresponding to the penalty ���� Individual�

speci
c e�ects �i are modelled by discrete 
rst order splines� corresponding

to the penalty ���� They are more appropriate for modelling e�ects that

remain more or less constant within longer periods of time� interrupted by

shorter periods of high transition rates� as for example in Figure �� For both

time scales� an equidistant grid of knots is used� with �� minute intervals

for time t and �� second intervals for duration d in REM state� The 
ner

grid for duration d makes the time�dependent covariate d predictable and

discrete�valued� so that the basic assumptions for time�dependent covariates

are ful
lled�

The following 
gures show relative risk functions or intensities� i�e� the

factors in the multiplictive models �hi � exp��hi�� for example the risk func�

tions �i�ti� � expf�i�ti�g and ���ti� � expf���ti�g in ��i�ti� � �i�ti����ti� �

expf��i�ti�g�

Figure � shows sleep patterns and associated individual�speci
c relative

sleep intensities �i�ti� � expf�i�ti�g for the same two individuals already

considered in Section �� For both individuals� smoothed relative intensi�

��
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(b)

Figure �� Individual�speci
c e�ects for two patients together with ���

con
dence bands� The lower line indicates the states WAKE� NREM and

REM�

ties reect quite well phases of more �restless� or more �quiet� sleep� For

example� the 
rst individual experiences many transitions between NREM

and AWAKE after one hour of sleep� and the peak in the relative intensi�

tiy clearly indicates this� For the second individual� the two peaks and the

smaller one towards the end of sleep reect individual phases of more restless

sleep� Figures � �a� and �b� show the relative intensities ���ti� and �
�ti�

corresponding to the main e�ect ���ti� for transitions from NREM to REM

and the additional e�ect �
�ti� for individuals with plasma concentration of

cortisol over ��� nmol�l� The intensity ���ti� supports well�known evidence�

The probability for REM phases increases with time since onset of sleep� and

�
�ti� clearly exhibits an additional e�ect in the early morning hours for in�

dividuals with higher level of cortisol concentration� thus providing evidence

of the hypothesized association between REM phases and the level of cortisol

concentration� The baseline intensity ���di� in Figure � �c� for transitions

from REM to NREM is almost constant for about �� minutes of REM sleep

and increases slightly for longer REM sleep durations� For individuals with

��



high concentration of cortisol� transition intensities ���di� to NREM sleep are

decreasing In Figure � �c�� A possible interpretation is that longer duration

in REM sleep becomes more likely for a patient who stays at a high cortisol

level during the REM phase� Baseline intensities ���ti� in Figure � �e� for

transitions from SLEEP� i�e� REM or NREM� to AWAKE decrease rapidly

at the beginning of sleep� remain at a constantly low level during most of the

night� and increase in the morning� as to be expected� Baseline intensities

���ti� for transitions from AWAKE to SLEEP� shown in Figure � �e�� exhi�

bit more variation during the night� The intensity for falling asleep has a

distinct low about one hour after onset of sleep� that means if individuals are

AWAKE at that time they have particular di�culty to fall asleep again� On

the other side� the intensity for falling asleep again has a distinct maximum

about the middle of the night� In the early morning hours� of course� there is

a natural decrease for transitions from AWAKE to SLEEP� or in other words�

it is di�cult to fall asleep again after awakening in the morning�

��
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 (c)   REM to NONREM
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 (e)    SLEEP to AWAKE
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 (b)    NONREM to REM    Cortisol high
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 (d)    REM to NONREM     Cortisol high
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 (f)    AWAKE to SLEEP

Figure �� Estimated population averaged e�ects for the sleep study model

together with ���con
dence bands�
��



	� Conclusions

As has been illustrated in the applications� the proposed multiplicativemodel

family provides exible tools for re
ned exploration and analysis of event

history data and may therefore supplement existing methods� Although we

focused here on continuous time� the appproach can also be transferred to

the situation of discrete�time or grouped duration data�

There are some issues that have not been addressed to this paper� Model

checking can be based on martingal residuals along the lines of Therneau�

Grambsch and Fleming ������� Computational e�ciency might be greatly

enhanced by special numerical techniques for inverting large sparse matrices�

instead of using a back
tting algorithm� This would also be of particular

value for data�driven choice of smoothing parameters� Also� reduced compu�

tation time will allow to conduct larger Monte Carlo studies to investigate


nite sample properties of estimators and to support results or conjectures

on asymptotic distributions�
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