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SUMMARY

A major issue in exploring and analyzing life history data with multiple states
and events is the development and availability of flexible methods that allow si-
multaneous incorporation and estimation of baseline hazards, detection and mo-
delling of nonlinear functional forms of covariates and time-varying effects, and
the possibility to include time-dependent covariates. In this paper we consider a
nonparametric multiplicative hazard model that takes into account these aspects.
Embedded in the counting process approach, estimation is based on penalized li-
kelihoods and splines. The methods are illustrated by two real data applications,
one to a more conventional survival data set with two absorbing states, and one
to more complex sleep-electroencephalography data with multiple recurrent states
of sleep.
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1. INTRODUCTION

Cox’s proportional hazard model is generally used as the standard tool for
survival data analysis in studies where the effect of risk factors or covariates
on the time until occurrence of a certain event is of prime interest. The

hazard rate is written in semiparametric multiplicative form

ot 21, 2) = aolt)exp (Broa + 4 By,

where the baseline hazard rate ag(t) is left unspecified and is estimated se-
parately if necessary. Through the choice of a parametric exponential risk
function for the second factor, covariates z, ..., z,, which may also be time-
dependent, act multiplicatively on the hazard rate.

In a number of applications there is a need for extending and further
developing this basic model with respect to several aspects, such as allowing
more flexible functional forms for covariates, inclusion of time-varying ef-
fects, thereby dropping the proportional hazards assumption, simultaneous
estimation of baseline hazards and covariate effects and incorporation of un-
observed heterogeneity. Increased flexibility becomes even more important in
applications to more complex event history data as considered in this paper.
To illustrate the methods by a simple example, we use a data set on survi-
val with malignant melanoma, presented and analyzed in Andersen, Borgan,
Gill and Keiding (1993). Patients were followed after operation, and survi-
val times were recorded distinguishing ‘death due to malignant melanoma’
and ‘death due to other causes’. Thus, transition rates a; and «y for these
absorbing states and the influence of covariates like sex, thickness of tumor

etc. are of interest.
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Figure 1: Transitions after operation for malignant melanoma

Our main application deals with sleep-electroencephalography (EEG) data,
recording various stages of sleep. The data are described in more detail in
Section 2. Here we consider only the three recurrent states rapid eye move-
ment (REM) sleep, non rapid eye movement (NREM) sleep and AWAKE,
following the diagram of Figure 2:

REM _ NREM
AWAKE

Figure 2: Transitions between sleep stages

Various extensions of the basic Cox model, mostly for survival data, have
been developed with regard to the aspects mentioned above. First, the simple
parametric form of the exponential risk function may not be suitable. Using
local or penalized partial likelihood approaches, Hastie and Tibshirani (1986,
1990) and O’Sullivan (1988) model and estimate the effect of continuous
covariates nonparametrically, replacing 3;z; by a smooth function f;(z;).
This approach is further extended in Hastie and Tibshirani (1993) to allow for

varying effects of the form f3;(x)z;, where 8;(x) is a smooth function of some



covariate x. Viewing time ¢ as a covariate, time-varying effects 3;(t)z;, e.g.,
with 3;(1) as the effect of a certain therapy z; varying over time, are obtained
as an important special case. A related multiplicative model for time-varying
effects is also studied in Zucker and Karr (1990). A nonparametric additive
model, incorporating time-varying effects, was introduced by Aalen (1980),
further developed in Aalen (1989, 1993) and is described in some detail in
Andersen et al. (1993, Ch. VIL.4.) A general nonparametric regression
model for survival data, without assuming additive or multiplicative hazards,
is considered in Mc Keague and Utikal (1990) and in Keiding (1990), but
dimensionality, i.e., the number of covariates included, becomes more critical
here, and, as general with nonparametric models for complex data structures,
more experience with applications is needed to gain insight into required
sample sizes.

Time-varying effects can also be nicely dealt with in the Bayesian nonpa-
rametric framework of state space or dynamic models and Kalman filtering,
see Gamerman (1991) for a dynamic version of the piecewise exponential
model and Fahrmeir (1994), Fahrmeir and Wagenpfeil (1995) for dynamic
discrete time survival and competing risk models. A related but somewhat
different approach is proposed in Arjas and Liu (1995), using MCMC tech-
niques like the Gibbs sampler for inference.

In this paper, we propose a nonparametric multiplicative model that takes
the aspects discussed above into account and allows simultaneous incorpo-
ration and flexible estimation of baseline hazards and covariate effects for
survival data and more complex event history data. Time ¢ is essentially
treated in the same way as other covariates or further time scales, including
it as exp{Bo(t)}, Bo(t) = log{ao(t)}, in the predictor of the exponential risk
function. The baseline effect, as well as continuous covariates and varying
effects, is modelled by continuous or discrete-time smoothing splines, and a
penalized likelihood approach is used to obtain smooth estimates. In certain
circumstances, e.g. in the presence of several time scales, individual unobser-

ved heterogeneity or frailty can be modelled by individual-specific effects, as



in the sleep data example. The degree of smoothness can be chosen subjec-
tively, but data driven methods for choice of smoothing parameters are also
discussed.

Section 2 describes the sleep study and the data set used in our main
application in more detail. Section 3 introduces the model and the resulting
penalized likelihood. Section 4 provides details on estimation. Section 5
contains analyses of the examples, in particular our main application to the

sleep study.

2. EXAMPLE: SLEEP-EEG DATA

Most sleep studies focus on sleep structure, characterized by recurrent
alternations of electroencephalographic (EEG) patterns, and its relation to
nocturnal hormonal secretion or to psychiatric diseases like depression. Sleep-
EEG data are recordings of nocturnal sleep rhythm, usually classified in
several stages such as awake, rapid eye movement (REM) and states of non-
rapid eye movement (NREM) sleep. The sleep-EEG data in our example are
part of a larger study at the Max-Planck-Institut fir Psychiatrie in Munich.
Sleep stages during one night, from 8 pm till 7 am next morning, are recorded
every 30 seconds for a homogeneous group of 30 patients. In addition to
REM stage and four NREM stages 1,2,3.4, indicating depth of sleep, the data
include the stages AWAKE and, only for some patients, PAUSE (no recording
during PAUSE). Figure 3 shows sleep-EEG data for two patients. In addition,
secretion of several hormones is measured every 10, 20 or 30 minutes. Figure
4 contains corresponding recordings of cortisol plasma concentration for the
same two patients. Figure 4 is typical for most patients of the study group:
There is a low during the first hours of sleep followed by a marked increase
in early morning. It is much more difficult for the human eye to detect
typical patterns in sleep-EEG recordings, and some kind of smoothing and

synchronization seems appropriate.
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Figure 3: Individual sleep processes for two patients.

Previous statistical analyses of possible interrelation between hormonal
secretion and sleep structure is mostly based on first constructing and extrac-
ting simpler characteristic variables from the original data and then applying
more conventional methods like correlation and variance analysis. In Section
5, we will apply a specific nonparametric multiplicative model for transition
intensities between sleep stages, providing some evidence on sleep structure

and the effect of cortisol on it.
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Figure 4: The two patients’ nocturnal hormone secretion.

3. MODELS AND LIKELIHOOD

We first discuss the special but important case of time-independent covaria-
tes. Consider n individuals and let Ny, h = 1,...,k, ¢ = 1,...,n, denote
the individual counting processes for events of type h, i.e. Ny;(t) indicates
the number of observed type h events experienced by the ith individual up to
time t. We assume that individual intensity processes Ap;(t) exist and have

multiplicative structure
Mi(t) = Yii(D)ani(ts zi), h=1,...,k

compare for example Andersen et al. (1993, Ch.VII) The predictable 0 — 1
processes Y;(1) indicate whether individual ¢ is at risk for experiencing a

type h event just before time ¢. The individual type h hazard or transition




rates ap;(t; z;) generally depend on time ¢ and type-specific covariates or

design vectors zy;, often constructed from basic covariates.

3.1. MoDELS

Hazard rates are related to predictor functions n,(¢; z;) with additive

structure by the exponential link
ani(t; zrs) = exp{nni(t; zni) }-

By the properties of the exponential function, hazard rates are nonnegative
and have multiplicative structure. Before describing a general and flexible
form for the predictors, we discuss some simpler examples. To simplify nota-
tion, we consider only two basic covariates @ and w, where x is a continuous
variable like tumor thickness and w is binary, indicating for example sex or

treatment group. The simplest model is

api(t; i, wy) = apolt) exp (Brizi + Braw;)
= exp{fno(t) + Brix; + Brawi},

le.
Nhi = Nhi(t; 2, w;) = Bro(t) + Brixs + Braw;.

The predictor n,; maintains the linear parametric form for the influence of
the covariates as for the Cox model. The effect may be type-specific or
common to some or all predictors, i.e. By = (1, Bre = [B2. If a covariate
is included only in one or some of the predictors,it becomes type-specific.
Baseline effects B40(%) are modelled nonparametrically by smoothing splines
or ‘smooth’ piecewise constant functions over a fine grid 0 < a9 < ... <
a—1 < ay < ... < ar = T of the observation period [0,7]. The gridpoints
or knots {a;} can be determined by observed event times, or can be cho-
sen subjectively, usually with small intervals (a;_1, a;] in periods with many
observations and larger intervals towards the end of the observation period,

where data become sparse. Estimation is carried out simultaneously with



estimation of covariate effects 351, B2, using a penalized likelihood approach
with penalty terms enforcing smoothness of the estimated baseline-effects,
see further below.

More flexibility is obtained by dropping the simple linear parametric as-
sumption for modelling covariate effects. If a certain functional form for the
influence of x,; cannot be specified in advance, (,12; can be replaced by a
smooth function fj1(x) evaluated at ;. Simultaneous estimation of (j0(t)
and fp1(x) is carried out in analogy to generalized additive models (Hastie
and Tibshirani, 1990).

Models with time-varying effects are obtained by assuming

Mhi = Pro(t) + Bui(t)xi + Bra(t)w;,

where, for example, B2() could be the effect of a certain therapy decreasing
over time. In the more restricted context of survival data such time-varying
coefficient models have recently gained much interest, and several proposals
have been made for modelling and estimation. Note that for fixed ¢, this
is a conventional linear predictor model. Nonparametric methods are ba-
sed on penalized likelihood estimation (Zucker and Karr, 1990, Hastie and
Tibshirani, 1993 , Klinger, 1993, on local likelihoods (Tutz, 1995) or on
smoothing of appropriate residual plots (Grambsch and Therneau, 1994).
Bayesian approaches are considered in Gamerman (1991), Fahrmeir (1994),
in a discrete-time setting, and Arjas and Liu (1995).

Asin Hastie and Tibshirani (1993), one may go a step further and consider

varying coefficient models of the form

Nhi = Bro(t) + Bra(as) + Bra(x)w; + Brs(t)w;.

Here the smooth function 2 may be viewed as an effect of w; varying over
the covariate x, or Buz(x;)w; is interpreted as an interaction term between
the continuous covariate x and the binary covariate w.

In some cases of event history data it is also possible to include individual-



specific effects, common to some or all type-specific predictors, i.e.
nin = 7i(t) + other terms.

We include such individual-specific effects in our model for analyzing the sleep
data to separate individual-specific sleep intensities, that cannot be explained
by covariates, from more systematic effects, e.g. the influence of cortisol.
Subsection 3.4 provides a more detailed discussion on the incorporation of
individual-specific effects.

A general form for all these models is

P pta
it 2ns) = % (1) + 3 20 Bi(1) + D 2w Bil;), (1)
Jj=1 J=p+1
where x1,...,x, are continuous covariates, and zp; = (zp;5,7 = 1,...,p + ¢q)

is a design vector, formed from basic covariates. By defining corresponding
0 — 1 dummies in zp;, the functions 3;(¢), f;(x;) can be made type-specific

or can be common to some or all predictors.

3.2. LIKELIHOOD AND PENALTY FUNCTION

Under appropriate assumptions on censoring or filtering mechanisms, e.g.

noninformative right censoring, the corresponding likelihood has the form

I(n) = é}é[/OTlog{ozm(t;zhi)}thi(t)— /()T%(t;zm)ym(t)dt] (2)
_ ZZ;; l /0 it 2 AN (1) — /0 " exp Lt zm)}ym(t)dt] ,

see Andersen et al. (1993, Ch. III and VII). To obtain computationally trac-
table expressions for the likelihood, the predictors n,;(t; z;) are considered —
or approximated — as piecewise constant functions over the intervals (a;—1, a,|
of the chosen time-grid. This means that the smooth time-varying effects

3;(t) are treated as piecewise constant functions over (a;_1,a.], with value
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B(a), regardless whether continuous-time smoothing splines or discrete spli-
nes are used for modelling 3;(t). For fixed zp;, let now npi(t) := npi(t; 2n:)
denote the value of n;; over (a;—1,a;]. Then the log-likelihood (2) becomes
T
() =5 [naeANwi(t) = Yy (1) exp{mi(t)} ],
i,h t=1
where AN; () indicates a type h event in (a;_1, ;] for individual i and

i = [ v

is the total amount of time of being at risk for a type h event in (a;—1,aq.
Defining the risk set Ry, = {¢: Y}, > 0}, one obtains
T k
) =330 3 [miHAN() = V() exp{m())] (3)
t=1 h=11i€Ryp,
More details of computational evaluation of {(n) are given in Section 4.

Smooth estimates of the functions 3; are obtained by maximizing a pe-
nalized log-likelihood

p+q

Ip(Bry- s Bprg) = Un) — Z_: NiJ(Bi) (4)

where J(3;) is a roughness penalty. The most popular smoother is a cubic

smoothing spline, obtained with the integrated squared curvature

J(3) = [18)(2))de (5)

as roughness penalty. Alternatively we use discrete versions, replacing deri-

vatives by differences. For example,

ﬂjws _6j$5—1 :
Z{ (2s) = Bj(wam) }

) (6)

s>2 Ts — Ts—1
O=ao< 11 <...<x5.1 < xg, corresponds to a discrete first order spline.
For the special covariate x = time ¢, the knots z; are given by the grid

points as of the time axis. Using second differences leads to discrete second
order splines. For equally spaced small intervals, the latter are more or less

indistinguishable from cubic smoothing splines.

11



3.3. TIME-DEPENDENT COVARIATES

So far, discussion was restricted to time-independent covariates. For-
mally, time-dependent covariates are included in hazard rates and predictors
by writing z4,(?) instead of z,,. For so-called defined time-dependent co-
variates (Kalbfleisch and Prentice, 1980, p.123) the (conditional) likelihood
remains the same, and inference is performed as if covariate paths had been
fixed in advance. For truly random processes z;(t), joint likelihoods for
{Npni(t), zni(t)} and censoring processes have to be considered, in principle.
Under appropriate assumptions, the log-likelihood I(n) can be looked at as
the relevant conditional log-likelihood. A thorough discussion of model spe-
cification in the presence of time-dependent covariates can be found in An-
dersen et al. (1993, Ch. III) and Arjas (1989). A fundamental assumption
is that the z4,(1) are predictable, i.e. the covariate value at time ¢ is already
known just before t. For a continuously observed time-dependent covariate,
not fixed in advance, its path has to be approximated by a discretized ver-
sion. In our application to sleep data, where duration in certain states and
cortisol concentration are included as covariates, these assumptions are fulfil-
led. To formulate the log-likelihood in analogy to the time-independent case,
it is convenient to consider individual covariate-specific counting processes
Nj.i, where z is an element of the discrete set F), of possible covariate values
zp(t). Then Nj.; (1) is the number of type h events up to time ¢ experienced
by individual 2 under the covariate value z. For time-independent covariates

Np.i(t) reduces to Np;(t). Assuming
Anzi{ts 2ri(1) = 2} = Yoo (1) explnnzi{t; zpi(1) = 2}]

for the individual covariate-specific intensity processes, defining V)%, (¢) as the
total amount of time in (a¢—1,a;] of individual ¢ at risk for a type h event

under covariate value z, one arrives at

(OEDIDISISIN IHOEFOES OO

n
t=1 h=1 =1 z€F},

12



To group over individuals ¢ with zp,(t) = 2z, we define
mne(t) = ety 2i(t) = 2}, YL () = Y _YiL(1)
=1

and the risk set Ry, = {¢: Y. (1) > 0}. As resulting log-likelihood we have

() =33 3 [m(AN() = Vit exp{m=(1)}] ,  (7)

t=1 h=1 2ERn.

in complete analogy to (3). Here, AN}.(t) counts the number of type h events
under covariate value z observed until time ¢, Y} (%) is the total amount of
time being at risk for a type h event during (a;—1, a;] for all individuals with

covariate value z3;(t) = z, and Ry, is the corresponding risk set.

3.4. INDIVIDUAL-SPECIFIC EFFECTS AND DIFFERENT TIME SCALES

Frailty concepts are incorporated into the framework of nonparametric multi-
plicative models by introducing individual-specific effects ~;(¢). To illustrate
this, let us consider a simple sleep-EEG model where we are mainly interested
in the effect of high hormone concentration on the duration of the first REM
phase. Besides duration of the first REM phase (d;) we also make use of time
since sleep onset (t) as second time scale. We suppose that characteristics
of individual sleep processes do also depend on unobserved covariates such
as personal habits. Because time since first entry in a sleep phase t is more
appropriate to describe individual sleep processes, it is used as basic time,
while d; is included as discretized time-dependent covariate. Let w;(t) = 1
if the hormone level is high at ¢ and w;(¢) = 0 elsewhere. A multiplicative

model with predictor

e = %i(t) + 1(d; > 0){Bo(d;) + Br(di)wi(t)} (8)

for the process counting terminations of the first REM phase describes the
patients individual sleep histories. By the smoothness restrictions impo-

sed and the different time scales used, identifiability usually is guaranteed

13



if fo(d;) is restricted to have mean 0, see the next section for details. In
model (8) individual intensities depend on multiplicative individual specific
components exp{7;(?)} characterizing the patients propensity to change sleep
states or frailty. The effect 5y(d;) can be interpreted as a baseline effect and
indicates whether an ‘ideal” patient has high or low propensity to terminate
the first REM phase after spending d; minutes in this state. The coefficient
of interest exp{(d;)}, can be seen as interaction of d; and z;(¢) and thus
explains relations between REM duration and high concentration of hormo-
nes. This concept is only based on exact description of individual histories
and no additional assumptions about frailty parameters are made.
Basically, individual-specific effects can be introduced when the model
assumption decomposes individual counting processes Nj; into two or more
type- or covariate-specific counting processes Nj.;. This decomposition can
be made by considering different or recurrent events, different time scales or
time-dependent covariates. The whole approach can be transferred to the
wide area of clinical studies, for example, by introducing a time scale ¢ as
the patients age and considering duration d; as time since disease onset or
operation. However, the basic time scale, age or calendar time, should be
chosen such that censoring processes and stochastic covariates are predictable

given the history in ¢.

4. ESTIMATION

In this section we first derive the backfitting algorithm for estimating the
functions §;(t) and 3;(x;). Introducing appropriate matrix notation, this can
be formulated in terms of familiar generalized linear or additive modelling
framework. Furthermore, we outline computation of confidence bands and
selection of smoothing parameters. Although discussion here focusses on
hazard models, extensions to other types of varying coefficient models are

immediate.
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4.1. THE ESTIMATION PROCEDURE

Suppose ny; distinct values z € E) of the covariate vector contributing to
transition h were observed during time interval (a;—1,a:]. Now let yn; be a
np X 1 vector containing the counts of type h events under each covariate
value z and define exp(n) as the corresponding vector of componentwise
exponential predictor evaluations. The experienced total time under risk for
this event, Y} (1), is stored in the same order in a diagonal matrix Qn =
diag{Y}.(t)}. Rewriting the penalized log-likelihood criteria of Section 3.2,
the vector of point evaluations 3; = {3;(x1),...,Bj(zs)}, 11 < ... < xg, for
each function 3;(¢), 8;(x;), is then estimated by maximizing

k T p+q

(B, Borg) = D > Athanne — 1, Qreexplne)} — > X J(8;),  (9)

h=1t=1 j=1
where 17, = (1,...,1)", and J(f3;) is one of the roughness penalties described
in Section 3.2. Note that the assumption of piecewise constant hazards may
reduce the length of the vectors drastically, since grouping can be done within
each time interval and for each transition type separately. Hence complex
models for large datasets are becoming computationally feasible within this
framework.

It is well-known that the roughness penalty derived from the integrated
squared curvature can be written as a quadratic form of the vector of point
evaluations, J(3;) = B;K;3;, and the uniquely minimizing functions are
natural cubic splines. See e.g. Green and Silverman (1994, Ch. 2) for details.
Clearly, discrete penalties can be written in the same form and the penalty
matrices K; have simple band structure. For example for the discrete first

order spline penalty (6) we have

$2ix1 x2—_1w1 ... 0
x2_—1x1 inxl —I_ 1’3i1’2 1’3_—11’2
K; = 0
0
0 -1 1

LTS—=TsS—1 LTS—=TsS—1
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Assuming the space of continuous functions with continuous derivatives in
intervals (x5-1,5), the first order penalty (6) is equivalent to a continuous

penalty

I8y =X [ 18w} du.

s=2 "/ Fs—1

The unique minimizer in this function space is a polygon with knots in

x1,...,¢s. Furthermore we introduce a transition specific response vector
as Y = (Why-- - Ypr). To write the design in matrix notation, suppose
during interval (a;_1, a¢] the pairs (z1,21),...,(2n,,, Tn,,) are the observed

values of covariates zj;; and x5;, where z); is a metrical variable. Let the

pairs be arranged in same order as yp;. Then we define design matrices

Zhj = {Z}’Lj(l), el Z;Lj(T)}’ with blocks given by

0 -+ 0 2z -0
Zni(t) =
0 -+ 0 z,, -~ 0
T

t-th column
for a time-varying effect f3;(t)z;, respectively

zr1-th column

!
0 -+ 2z 0 - 0

0 - - 0 z,,
T

&,,,-th column

for an effect 3;(x;)zy; with effect modifier x;. By the definition of the design
matrices it is easy to see that the column vectors of each Zj,; are orthogonal.
Since there is only one element in each row of Z;, the design matrix can

efficiently be stored in two vectors. Now we can write the transition specific

16



predictor g, = (9)ys - M) a8 N = Zpi B+ oo+ ZhptqBotq, Where Zp; is
a matrix of zeros if z; doesn’t contribute to a type h event.
Using the notations above and equating the derivatives of (9) to zero,

yields the p 4+ ¢ generalized score equations

ui(3) = 0lp(3)]98; = Z Z — A8 =0, (10)

where
s(n) = yn — Qnexp(nn)
is the log-likelihood score vector with Q) =diag(Qp1, - .., Qur)-

It follows from Whaba (1990, Ch. 1 and 10) and Whaba, Wang, Gu, Klein
and Klein (1994) that the solution of (10) exists and is unique in a broad
class of penalized likelihood schemes as soon as an embedded parametric
model, obeying J(f31) = ... = J(By4y) = 0, has a unique solution. For
first order penalties as in (6), this embedded parametric model is defined by
constant functions §; = 3;(t), 8;(x) = 3;, and for second order penalties
by linear functions of ¢ or x. If the sample provides no information about a
certain point evaluation f3;(x;), the unique maximizer of the penalized log-
likelihood is the linear or polynomial interpolant at this point. This happens
for example when all covariate values z,; for this effect are zero within one
time interval. Hence the dimension of the function space containing the
solution can be smaller than the number of point evaluations. Now consider
the solution for a model with predictor n, = £1(t) + Ba(x) + B3(t)w + fa(@)w
Since the embedded parametric model n, = 81 + B2 + (83 + B4)w contains
constant terms for the intercept and for the effect of w twice, the solution is
not unique. One way to overcome this phenomenon called concurvity (Buja,
Hastie and Tibshirani, 1989), i.e. collinearity in function spaces , is to choose

a reference value or reference interval oz and write the predictor as

nw = Pi(l) + (z & wr)fale) + Pa(t)w + (2 & wr)fa(z)w

Technically the rows corresponding to xp are omitted in the design matrices

and the point evaluations B2(xg) resp. B4(xg) are inter- or extrapolated. This

17



is similar to dummy coding of a covariate with possible categories x4,...,xg
and reduces the dimension of the function space by one. An alternative
solution to concurvity introduced by Buja, Hastie and Tibshirani (1989) is
discussed below.

System (10) is solved iteratively by a Fisher scoring procedure with in-
ner Gauss-Seidel loops or the equivalent local scoring procedure (Hastie and
Tibshirani, 1990, Ch. 6, 1993). With 8 = (3{,...,3,,,)’ the matrix of ne-
gative expected second derivatives of the penalized log-likelihoods is given

by

H(3)=—01p(B)/9p0p" =

Z Z;LlF(nh)Zhl + )\1[(1 T Z Z/{L7p-|—qF(T]]’L)Z]’L1
2 Zp F (i) Ziz :
> 2 F () Zn g X D F00) Znpeg + Apag Kt
(11)
where

F(nn) = —=81(n)/Onndn), = Qnexp(ny),  F(n) = diag{F(m),.... F(n)}

is the usual Fisher information matrix for n. With first derivative vector
u(B) = {ui(B),...,u,,,(3)}, Fisher scoring iterations have the common

form

where (%) denotes results from the previous loop whereas 5(?) is the actual

coefficient vector. Using working observations

g =+ P O)s(r9), () = (s, s}

for a current coefficient vector, the Fisher scoring algorithm can be transfor-

med to

H(3©)3 = Z'F () (12)
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Thus in each iteration normal equations for a penalized least squares problem

with design matrix

Zi o Ziprg

/SRR Zk,p+q
have to be solved. This iteratively penalized least squares estimation stops
at convergence of 3, i.e. B = ) ~ ). Due to the special structure of (11)
a backfitting algorithm of Gauss-Seidel type can efficiently solve the normal
equations. Working out each block row of the normal equations (12) results

in

{Z Zii ') 20 + N K } Z Zii'( {ﬂ(o) -2 thﬁz(n)}

I#j 13)
for each Gauss-Seidel iteration. Since Z}’LjF(n(o))Zhj are diagonal, only few
modifications to standard fast smoothing-spline algorithms have to be done
to solve (13), see Klinger (1993) and Fahrmeir, Gieger and Klinger (1995)

for details. Backfitting cycles the smoothing or projection operators

S_{Zzh] Zh]—|—)\[x} S ZLF(
h=1

fory=1,...,p+4q,1,....p+¢q,1,... on actual partial residuals

-3 Zhlﬂl(n)

I#5
until ﬂ{n), - ]()Z_)q only change within a small given range. Thus the algo-
rithm solves the system
ﬂ{n) =51 (3](0)— 0 —thﬂén) s Zh,p+qﬂz(9i)q)
ﬂz(?i)q = Sp+q (?j(o)_ Zhlﬂin) cee T Zh,p+q—lﬂz(9i)q—l _0)

which is equivalent to the normal equations (12). From Buja, Hastie and

Tibshirani (1989) and Hastie and Tibshirani (1993) it is known that for a
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certain class of projection operators, including those proposed here, backfit-
ting converges to any solution within the concurvity space, i.e. the space of
all functions minimizing the corresponding penalized least squares problem.

To obtain unique results, the authors propose to apply centered smoo-
thers where the average of 3; is substracted from (3, in each backfitting step.
Thus the effects §;(t) or §;(x;) are forced to have zero mean. When using
centered smoothers, linear terms have to be included into the predictor and

our concurvity example becomes

Mh =71+ Y2w + Bi(t) + Ba() + Ba(t)w + Ba(z)w.

Estimation of the ‘parametric’ effects 1,72 is incorporated into the back-
fitting algorithm by substituting S; with an appropriate projection matrix
(X'X)™'X, X = (1,w), familiar from linear models. Alternatively, by
centering only f3(t) and [4(x), the parameters v, and v are automatically
added to the ‘baseline’ effects 3;(¢) and fy(x). In our applications howe-
ver, we found it more convenient to deal with concurvity by introducing a
reference value as sketched above.

In presence of approximate concurvity backfitting tends to converge slowly
and solutions may get unstable. An analysis of the embedded parametric
model can help to detect this situation. Use of first order penalties instead
of cubic smoothing splines when the slope is not very distinct may help to

overcome instability due to approximate concurvity.

4.2. CONFIDENCE BANDS

Heuristic derivations of approximate confidence bands are usually based on
appropriate first order expansions. As outlined by Gray (1992) in the con-
text of survival data, more rigorous results may be obtained by assuming
that the number of time intervals and different covariate values is held fixed
as n increases. For a given vector A, of smoothing parameters, let 3(\,)
denote a maximizer of the expected log-likelihood or, in case of uniquen-

ess, equivalently a zero of the expected penalized score function u{3(A,)}.
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Along similar lines as in asymptotic theory of maximum likelihood estima-
tion in misspecified generalized linear models (e.g. Fahrmeir, 1990) it can be
shown that nl/z{Bn — B(A,)} is asymptotically normal with mean zero and

covariance matrix

V=limn  H™H{B(A) feov [u{ (A} H™H{B(A)}-

If the true model, characterized by [y say, coincides with the embedded
model, i.e. the penalty terms are zero for 3y, then S()\,) = fBo. Generally
however, 3(A,) # [, but convergence 3(A,) — [y can be obtained by ap-
propriate asymptotic rate of smoothing, e.g. assuming A, = O(n'/?). Then
it can be shown that n'/? {Bn — ﬂ()\n)} is asymptotically normal with mean

zero and covariance matrix lim nv, with the sandwich matrix
V= limn HBOWZ PR ZH B0} (14)

Pointwise confidence bands can be computed from the diagonal of V. In
practice, the quality of approximation will of course depend on the ratio of
sample size versus numbers of parameters involved and the actual degree of
smoothing. Yet we use (14) as a useful approximation.

Asymptotic analysis becomes much more complicated if the number of
parameters increases with n, as for cubic smoothing splines. Consistency and
convergence rate results for the Cox model are given in O’Sullivan (1993),
but rigorous asymptotic distribution theory is still not available.

Since H(B) is usually very big and unstructured, computation of v requi-
res still a lot of time and memory. In principle this can be done by applying
the backfitting algorithm to an appropriate set of vectors and solving the
linear system H(B)X = [I. However in our experience this is a very unstable
procedure and thus we use direct inversion methods.

Based on Bayesian arguments Gu (1992) and Whaba, Wang, Gu, Klein
and Klein (1994) give some evidence, that by imposing appropriate Gaussian
smoothness priors for posterior mode estimation, leading to our penalized

likelihood equations, the posterior distribution of B is approximate normal
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with covariance matrix H(3)™'. Hence pointwise confidence bands may also

be computed from the diagonal of this matrix.

4.3. SELECTION OF SMOOTHING PARAMETERS

A common way to select smoothing parameters is to consider the traces of
the matrices v; = tr (71,5, + ... + Zy;S;) as ‘effective number of parameters’
or ‘degrees of freedom’ of a smooth as proposed by Hastie and Tibshirani
(1990, Ch.2 and 6). Smoothing parameters Aq,..., A, 4, are then chosen ac-
cording to a given number of parameters. Applying the penalties proposed
in Section 3.2, A; tunes the degrees of freedom from 1, respectively 2, corre-
sponding to the number of parameters for the embedded parametric model,
up to the number of distinct time intervals or covariate values x; or, more
precisely, up to the dimension of the vector space spanned by the columns
of (Z1;,...,7;;). By using deviance statistics or looking at appropriate re-
sidual plots, one can decide whether more or less smoothing is adequate and
how much degrees of freedom to use.

Basically most criterions for automatic smoothing parameter selection,
such as generalized cross validation (GCV) or Akaikes information criterion
(AIC), require the trace v = tr {F_T/z(ﬁ)Z’H_l(B)ZF_l/z(ﬁ)} of the hat-
matrix. Since computation of H™'(j3) is very demanding and the criterion
has to be optimized over several parameters, smoothing parameter selection
by exact optimization of one of those quantities is still too time consuming
for practical use. One way to overcome this problem, is the proposal of
Girard (1991), who studies GCV where a Monte-Carlo simulation based on

the relation

e~ N(0,I)= E('Ac) = tr(A)

is used to approximate the required trace.
Alternatively one can use only the effective number of parameters v,
which is cheaply calculated, and construct fast iterative algorithms for smoo-

thing parameter selection. In principle, these procedures mimic a statistician
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watching goodness of fit criterions and tuning smoothing parameters. One
such algorithm designed for survival data and general varying coefficient mo-
dels is described in Klinger (1993) and Dannegger, Klinger and Ulm (1995).
There it was applied successfully to various data sets.

In more complex situations like the sleep EEG study, where individual-
specific effects are included, further considerations are necessary. Heuristi-
cally, the degree of smoothing for individual-specific effects should not depend
on the sample size whereas for other effects smoothness should decrease with
increasing n. To ensure that the number of smoothing parameters does not
increase with order O(n), grouping of the A; e.g. those belonging to indivi-
dual specific effects seems to be appropriate. However, still more experience

is needed for such complex models.

5. APPLICATIONS

5.1. SURVIVAL WITH MALIGNANT MELANOMA

We first illustrate the methods by an application to this survival data set
which is described in detail and used in a number of examples in Andersen,
Borgan, Gill and Keiding (1993). Survival time is measured in days after ope-
ration. There are 57 patients who died from melanoma within the observation
period and 14 patients who died from other causes. The remaining 134 are
censored. Covariates included are sex S (1 = male, 0 = female), tumor thick-
ness X in mm and ulceration U (1 = present, 0 = absent). Let a4(%;2) and
as(t; z) denote the hazard rates for death from malanoma and death from
other causes. We choose a multiplicative model a4(?; z1) = exp{m(t;z1)},
ay(t; z2) = exp{na(t; z2)} with

m(tz) = But) + Boll) + B3(1)S + Ba(t)S + Bs()U + I(X > 0.2)8s(X)
na(t;z2) = Pi(t) + Bs(1)S
Thus, for the hazard of dying from other causes, 3;(¢) is a global baseline

effect and f3(1) is the global possibly time-varying effect of sex. The baseline
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effect for dying from melanomais modelled additively by 31 (¢)+/32(t), and the
time-varying effect of sex as 3(¢) + B4(1). Identifiability is guaranteed, since
p1(t) and f5(t) appears in both predictors. The effect (5(¢) of ulceration is
also modelled as time-varying, and Fg(X) is the effect of tumor-thickness X.
Incorporation of the indicator function 7(X > 0.2) guarantuees uniqueness,
compare Section 4. While (%), B2(t), Bs(t), 35(t) and fg(t) are modelled by
cubic splines, the additional effect 34(%) of sex in 5y is modelled by a discrete
first order spline. The reason is that 4(¢) is near to zero for all ¢, causing
instable estimation when using cubic splines due to near-concurvity, compare
the remarks in Section 4. The effects are displayed in Figure 5, together
with confidence bands obtained from the sandwich estimate V. Smoothing
parameters are selected by tuning degrees of freedom.

The global baseline effect 5;(¢) in Figure 5 (a) has bath-tub shape, in
consistency with a simpler competing risks model in Andersen et al. (1994,
p.495). It is modified for ‘death from melanoma’ by addition of the slightly
bell-shaped effect 35(). The global effect of sex is not clearly significant, but
nearly constant and almost the same in both groups, since (4(t) is close to
zero in Figures 5 (¢) and (d). Thus, considering sex alone, a proportional
hazards assumption seems plausible. On the contrary the effect of ulceration
Bs(t) is time-varying, violating a proportional hazards assumption. This
is again in accordance with Andersen et al. (1994, p.550). Thickness has
a nonlinear effect, increasing in logarithmic form up to about 5 mm, then
becoming slightly decreasing, and increasing again for more then 10 mm.
Note however, that the right tail is influenced by a small number of outlying

observations.
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Figure 5: Estimated varying coefficients for the melanoma model with point-

wise lo—confidence bands.
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5.2. SLEEP-EEG DATA

The following analysis illustrates the flexibility in modelling more complex
event history data. It is a preliminary attempt to explore sleep patterns and
its association with secretion of hormones with the proposed methods, and it
does not provide a ‘final’ model but is only a first step towards more refined
investigations in cooperation with clinical partners.

Since we are here mainly interested in the influence of cortisol on REM
states, we consider only transitions between the three states AWAKE, REM
and NREM ; without further differentiating between different states of NREM
sleep. For a few patients, an additional state PAUSE is recorded, where mea-
surements are interrupted for some reason. If a patient is in state PAUSE for

some time, its risk indicator is set to zero. We distinguish four types of events:

h =1: transition from AWAKE to REM or NREM, (A— RN)
h =2: transition from REM to NREM, (R— N)
h =3 : transition from NREM to REM, (N — R)
h =4 : transition from REM or NREM to AWAKE. (RN — A)

There are several time scales that might be considered, e.g. real time, that is
time since beginning of recordings at 8.00 p.m., time since onset of sleep, and
durations in sleep states. To simplify and to achieve some synchronisation,
we consider time t since onset of sleep as the basic time scale and introduce
duration in REM states in form of a time-dependent covariate d; = (t—time
of last entry into a REM state). For two patients, d; is not well-defined
because recordings were interrupted by the state PAUSE. For simplicity,
d; was taken as the time in REM since end of PAUSE. Concentration of
plasma cortisol was dichotomized in ‘high’” and ‘low’ by introducing the time-
dependent covariate z;(t) =(‘concentration of plasma cortisol in person i
at time t"> 100 nmol/l). Looking at individual sleep patterns, it seems
that the general tendency of changing states is higher for some persons than
for others and is varying during night. To separate such individual-specific

intensities, that cannot be explained by covariates from more systematic
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effects, we introduce individual-specific effects ;(¢) as a common baseline
into all predictors ny; = nri{t;d;, z:(t:)}, h = 1,...,4. These considerations
led to the following model

i =yt + Bt (A — RN),
nai = 7i(li) + 1(di > 0.5)B2(d;) + zi(t:) Bs(di) (R — N),
mai = Yilli) + Ba(ti) + =zi(t:) Bs(Li) (N — R),
nai = i(ti) + Belts), (RN — A)

Thus, f1(t;) is a (population-averaged) effect of falling asleep if one is awake
at time ¢; since onset of sleep, 32(d;) is the effect of duration in REM state for
a transition to NREM state, and 33(d;) is an additional effect for high levels
of cortisol at time #;. Interpretation of the effects B4(%;), B5(t;) and Bs(t;)
is quite analogous, for example f35(¢;) is the additional effect for transitions
from NREM to REM in periods of high levels of cortisol. Effects 1 to Jg are
all modelled by cubic splines, corresponding to the penalty (6). Individual-
specific effects ~; are modelled by discrete first order splines, corresponding
to the penalty (7). They are more appropriate for modelling effects that
remain more or less constant within longer periods of time, interrupted by
shorter periods of high transition rates, as for example in Figure 5. For both
time scales, an equidistant grid of knots is used, with 10 minute intervals
for time ¢t and 30 second intervals for duration d in REM state. The finer
grid for duration d makes the time-dependent covariate d predictable and
discrete-valued, so that the basic assumptions for time-dependent covariates
are fulfilled.

The following figures show relative risk functions or intensities, i.e. the
factors in the multiplictive models ay; = exp(np;), for example the risk func-
tions a;(t;) = exp{~(t;)} and a1 (t;) = exp{S1(t:)} in awn(t;) = a;(ti)aa(t;) =
exp{nmi(ti)}.

Figure 6 shows sleep patterns and associated individual-specific relative
sleep intensities «;(t;) = exp{~i(t;)} for the same two individuals already

considered in Section 2. For both individuals, smoothed relative intensi-
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Figure 6: Individual-specific effects for two patients together with lo-
confidence bands. The lower line indicates the states WAKE, NREM and
REM.

ties reflect quite well phases of more ‘restless’ or more ‘quiet’ sleep. For
example, the first individual experiences many transitions between NREM
and AWAKE after one hour of sleep, and the peak in the relative intensi-
tiy clearly indicates this. For the second individual, the two peaks and the
smaller one towards the end of sleep reflect individual phases of more restless
sleep. Figures 7 (a) and (b) show the relative intensities ay(t;) and as(t;)
corresponding to the main effect 84(¢;) for transitions from NREM to REM
and the additional effect (5(¢;) for individuals with plasma concentration of
cortisol over 100 nmol/l. The intensity au(t;) supports well-known evidence:
The probability for REM phases increases with time since onset of sleep, and
as(t;) clearly exhibits an additional effect in the early morning hours for in-
dividuals with higher level of cortisol concentration, thus providing evidence
of the hypothesized association between REM phases and the level of cortisol
concentration. The baseline intensity as(d;) in Figure 7 (c¢) for transitions
from REM to NREM is almost constant for about 30 minutes of REM sleep
and increases slightly for longer REM sleep durations. For individuals with
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high concentration of cortisol, transition intensities as(d;) to NREM sleep are
decreasing In Figure 7 (¢). A possible interpretation is that longer duration
in REM sleep becomes more likely for a patient who stays at a high cortisol
level during the REM phase. Baseline intensities a4(¢;) in Figure 7 (e) for
transitions from SLEEP, i.e. REM or NREM, to AWAKE decrease rapidly
at the beginning of sleep, remain at a constantly low level during most of the
night, and increase in the morning, as to be expected. Baseline intensities
ag(t;) for transitions from AWAKE to SLEEP, shown in Figure 7 (e), exhi-
bit more variation during the night: The intensity for falling asleep has a
distinct low about one hour after onset of sleep, that means if individuals are
AWAKE at that time they have particular difficulty to fall asleep again. On
the other side, the intensity for falling asleep again has a distinct maximum
about the middle of the night. In the early morning hours, of course, there is
a natural decrease for transitions from AWAKE to SLEEP, or in other words,

it 1s difficult to fall asleep again after awakening in the morning.
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6. CONCLUSIONS

As has been illustrated in the applications, the proposed multiplicative model
family provides flexible tools for refined exploration and analysis of event
history data and may therefore supplement existing methods. Although we
focused here on continuous time, the appproach can also be transferred to
the situation of discrete-time or grouped duration data.

There are some issues that have not been addressed to this paper. Model
checking can be based on martingal residuals along the lines of Therneau,
Grambsch and Fleming (1990). Computational efficiency might be greatly
enhanced by special numerical techniques for inverting large sparse matrices,
instead of using a backfitting algorithm. This would also be of particular
value for data-driven choice of smoothing parameters. Also, reduced compu-
tation time will allow to conduct larger Monte Carlo studies to investigate
finite sample properties of estimators and to support results or conjectures

on asymptotic distributions.
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