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Abstract

Financial risk, commonly measured in terms of asset–price volatility, plays a fun-
damental role in investment decisions and financial–market regulation. In this paper,
we investigate a new modeling strategy in order to better understand the forces driving
market risk. We use componentwise gradient–boosting techniques to identify financial
and macroeconomic factors influencing volatility and to assess the specific nature of that
influence. Componentwise boosting is a sequential learning method, which is capable
of handling a large number of predictors and—in contrast to other machine learning
techniques—which gives rise to straightforwardly interpretable estimates.

Considering a range of potential risk drivers, we employ componentwise boosting to
derive monthly volatility predictions for stock, bond, commodity, and foreign exchange
indices. Comparisons with a common benchmark model show that the approach improves
out–of–sample volatility forecasts, especially for medium– and long–run horizons. We also
find that a number of risk drivers affect future volatility nonlinearly.
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1 Introduction

The importance of understanding and reliably modeling financial risk has, again, become
evident during the recent market turbulences. Accurate volatility predictions for asset–prices
are crucial when projecting risk measures, such as Value at Risk (VaR) or Expected Shortfall,
commonly used in risk assessment and the design of risk–mitigation strategies. Although there
has been a long tradition of attempting to predict asset prices (cf. Goyal and Welch, 2003,
Welch and Goyal, 2008, Cochrane and Piazzesi, 2005, Lustig et al., 2011), the intense interest
in volatility modeling took off only after the seminal works of Engle (1982) and Bollerslev
(1986), and has since been intensely researched in financial econometrics.

Despite this tremendous interest, the vast majority of studies on volatility prediction are
confined to using only past price or return histories as input.1 Only relatively few studies
have analyzed to what extent the information contained in other financial or macroeconomic
variables helps to improve volatility predictions. Employing autoregressive models, Schw-
ert (1989) analyzes the relation of stock volatility and macroeconomic factors, such as GDP
fluctuations, economic activity, and financial leverage. Engle et al. (2008) use inflation and
industrial production by combining a daily GARCH process with a mixed–data sampling poly-
nomial applied to monthly, quarterly, and bi-annual macroeconomic variables. Paye (2012)
and, especially, Christiansen et al. (2012) consider extended sets of macroeconomic factors
and a broader range of asset classes. Both use conventional linear models for log–transformed
realized volatility and include lagged volatility as well as financial and macroeconomic factors
as regressors. In view of the limited number of studies and their varying approaches, there is
little or no consensus concerning the usefulness of financial and macroeconomic variables for
volatility prediction.

The question of whether and how macro factors influence the volatility of asset prices is
the focus of this paper. To address this question and to gain deeper insight into the nature
of volatility processes, we employ so–called boosting techniques, a special machine learning
method. As will be shown, boosting techniques enable us not only to identify factors driving
market volatility but also to assess the specific nature of their impact. Employing a broad set of
potential macroeconomic and financial variables, we specify a flexible model, which is capable
of capturing the factor’s—linear and nonlinear—influences on volatility. Contrasting most of
the existing literature, which focuses on stock market volatility, we are in line with Christiansen
et al. (2012) and analyze four diverse asset classes, namely, stocks, bonds, commodities, and
foreign exchange.

Although boosting has been proven to be a useful approach in many empirical applications,
it has more or less been ignored in empirical economics and finance. Among the very few
exceptions are Bai and Ng (2009), who use it for predictor selection in factor-augmented
autoregressions, and Audrino and Bühlmann (2009), who apply it to model the daily volatility
of stock indices. Our model differs from Audrino and Bühlmann (2009) in several respects, two
of which we regard as particularly relevant. First, we go beyond the GARCH(1,1) specification
by allowing both longer histories and exogenous factors to enter the model. The latter,

1A comparison of alternative VaR forecasting strategies that follow this line is given in Kuester et al. (2006).
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as it turns out, clearly helps our understanding of volatility processes. Second, we employ
componentwise predictor selection instead of the componentwise knot selection in tensor–
spline estimation. This leads to genuinely different models and has the attractive feature that
certain subjective specification decisions can be avoided. Moreover, given our goal to better
understand the impact of macro factors on volatility, we conduct our analyses at a monthly
rather than daily frequency.

Altogether, the paper contributes to the existing literature on volatility modeling in several
ways. We analyze the volatility of a range of relevant asset classes; we consider a broad set of
possible macro drivers; and, by employing boosting techniques, gain deeper insight into the
nature of the forces driving asset price volatility.

This paper is organized as follows. Section 2 details and illustrates the specific boosting
algorithm we adopt. Section 3 describes the volatility measures and predictor variables used in
the analysis and the way multistep forecasting comparisons are conducted. Empirical results
for each of the four asset classes are presented in Section 4. Section 5 concludes.

2 Boosting Volatility

Boosting, as proposed in Freund and Schapire (1996), was originally designed to solve two–
class classification problems by maximizing the confidence of a binary classifier. To do so and
to achieve an arbitrarily high accuracy, it suffices that the classifier, also called base learner,
performs only slightly better than random guessing, (Kearns and Valiant, 1994, Schapire
et al., 1998). Friedman (2001) placed boosting into the regression framework, viewing it as a
functional gradient descent technique.

Boosting is especially suitable in applications where there is a large number of—possibly
“similar”—predictors, as it contains multicollinearity problems by shrinking their influence
towards zero. Volatility modeling via gradient boosting was first proposed by Audrino and
Bühlmann (2003), who adopted a GARCH-type framework, assuming a stationary return
process of the form yt = σtεt, εt

iid∼ N(0, 1) and a rather general dependence structure between
σt and past returns. Their approach is, however, mainly suited for prediction, as the resulting
model lacks interpretability. A similar model, with neural networks as base learners, was
proposed by Matías et al. (2010).

Below, we use so-called componentwise gradient boosting (see Bühlmann and Yu, 2003,
Bühlmann and Hothorn, 2007), which is designed to simultaneously select relevant factors
and to model the specific nature of their impact. In the following, we detail our volatility
boosting strategy by presenting the underlying model specification and the particular boosting
algorithm and, using a small simulation study, illustrating our approach.

2.1 Gradient Boosting

Our modeling framework corresponds to the exponential ARCH specification put forth in
Nelson (1991) but allows us, in a rather flexible way, to include a large number of risk drivers
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that potentially affect volatility. The total number of predictors can be very large and may
even exceed the sample size. The specific form of our model is as follows

yt = exp(ηt/2)εt

ηt = β0 + ftime(t) + fyr(nt) + fmonth(mt) +
s∑

j=1

fj(yt−j) +

q∑

k=1

p∑

j=1

fj,k(xt−j,k) =: η(zt),
(1)

where yt = log(Pt/Pt−1) are logarithmic returns, Pt denotes the asset prices at time t, and
εt

iid∼ N(0, 1). The r-dimensional vector zt = (1, t, nt,mt, yt−1, . . . , yt−s, xt−1,1, . . . , xt−p,1, . . . ,
xt−1,q, . . . , xt−p,q)>, with r = s+qp+4, contains the predictor realizations available at or prior
to time t− 1. Functions ftime(·), fyr(·) and fmonth(·) capture possible deterministic trend and
seasonal components in volatility; fj(yt−j), j = 1, . . . , s, capture the influence of past returns;
and fj,k(xt−j,k), j = 1, . . . , q, are functions of lagged predictors.

We specify all f·(·) functions in (1) as regression trees. Regression trees are a nonparametric
technique that can handle complex and abruptly varying forms of dependence by recursively
partitioning the predictor domain into groups with similar response values and assigning a
constant value to the response within each group.2 Specifically, we use conditional inference
trees (Hothorn et al., 2006). In general terms, the regression tree approach can be interpreted
as a regime-dependent volatility–response model, which partitions the predictor space accord-
ing to the magnitude with which conditional volatility responds. For partitioning decisions, we
use the permutation test developed in Strasser and Weber (1999), though other split criteria
might be conceivable. Both linear estimation and non-parametric smooth estimation of f.(·),
as well as a combination of the two, can be employed.3

We estimate (1) via componentwise gradient boosting, which derives the final model by
sequentially combining a series of individual predictor components. To avoid overfitting in
the first step, we control the bias–variance tradeoff by using a low-variance/high-bias model.
In subsequent steps, this bias will be iteratively reduced, with the variance increasing at a
slower rate (Bühlmann and Yu, 2003). Our estimation minimizes the expectation of some
(with respect to η differentiable) loss function, L, such that η̂ = arg minη EL(yt, η(zt)). To
obtain a solution in the data rather than function space, we parameterize η by

η̂ = arg min
η

1

T

T∑

t=1

L(yt, η(zt;β)). (2)

The solution to (2) is derived by reducing the empirical loss in successive steps. The final
β estimate is given by the sum of the estimates obtained in each step. By doing so, our
estimation strategy preserves interpretation—a property that does not necessarily hold for
other parallel learning techniques, such as bagging or random forests.

To estimate the desired characteristic of the conditional distribution the loss function, L,
needs to be appropriately specified. Under the assumption yt|zt ∼ N(0, eηt), the negative

2For a detailed discussion of the algorithms behind regression trees, see Breiman et al. (1984).
3See Hothorn et al. (2011) for a software implementation.
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conditional log-likelihood loss function and the the negative gradient, respectively, become

Lt =
1

2

[
ηt +

y2t
eηt

]
and gt = −∂Lt

∂ηt
=

1

2

[
y2t
eηt
− 1

]
. (3)

Boosting favors the direction given by the largest reduction in the empirical loss, i.e., the
negative gradient. This means that we seek the solution in the data space by fitting the co-
variates against the negative gradient. Instead of jointly fitting all covariates, they are fitted
individually against the gradient through base learners. This is typically, though not neces-
sarily, a well–known statistical model (such as a linear regression, generalized additive model,
or regression tree), which specifies the connection between the response and the covariates.
At each boosting step, only one covariate is included, namely the one which correlates most
strongly with the negative gradient, i.e., the steepest direction to the loss minimum.

We can think of the base learners as isolated “sub-solutions” to the original optimization
problem. Therefore, we fit the individual covariates against the negative gradient via r indi-
vidual models, for which we choose conditional inference regression trees (Hothorn et al., 2006)
with two nodes, also called “stumps.” Modeling the dependence between the response and the
covariate in terms of two constants assigned to disjoint groups is inflexible and does not fit
the complete signal in a single step. Further iterations will, however, reduce this bias.4 Fur-
thermore, we shrink the coefficient towards zero, as proposed by Friedman (2001). Shrinkage
helps to dampen the “greediness” of the gradient technique, which may otherwise be prone to
neglect correlated predictor candidates, and “cures” the typical instability of forward selection
methods (Breiman, 1996). The “right” amount of shrinkage is determined empirically and can
safely vary between 1% and 10%. The specific choice affects mainly the computational time.
Fitting the base learner will modify evaluation of the gradient in the next step, and, with each
step, the covariates and gradients become more and more orthogonal.

Without stopping, boosting with stumps will inevitably overfit and ultimately lead to a
perfect fit, making the model useless for prediction. Therefore, an appropriate stopping rule
is essential. The optimal number of boosting steps can be determined by bootstrapping,
where we sample (with replacement) from the data with probability 1/T as if they originated
from a multinomial distribution. As a consequence, each sample makes use of roughly 64%
of the original data for training, with the remaining, unselected data points being used for
evaluation. We repeat this twenty–five times for a large number of boosting steps and choose
the step number that produces the lowest average out–of–sample loss.

To summarize, the boosting algorithm we employ consists of the following steps:

1. Initialize function estimate η̂[0]t = log
(

1
T−1

∑T
t=1(yt − ȳ)2

)
, ȳ = 1

T

∑T
t=1 yt, t = 1, . . . , T .

2. Specify regression trees as base learners: fi(zt,i) =
∑J

j=1 γjIRj
(zt,i), ∀zt,i ∈ zt. We use

stumps, so for each tree J = 2. Denote the number of base learners by r and set m = 0.
4Note that we can choose any statistical model as base learner. In our applications, a specification via

stumps turned out to be a better choice than, for example, smooth P-splines or a simple linear model. This
seems largely due to the abrupt changes we observe in volatility levels.
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3. Increase m by one.

4. (a) Compute the negative gradient in (3) and evaluate η̂[m−1](zt), t = 1, . . . , T .

(b) Estimate the negative gradient, using the stumps specified in Step 2. This yields r
vectors, where each vector is an estimate of the gradient.

(c) Select the base learner, f̂ [m]
ŝm
, ŝm ∈ {1, 2, . . . , r}, that correlates most with the gra-

dient according to the residual–sum–of–squares criterion.

(d) Update the current estimate by setting η̂[m] = η̂[m−1] + νf̂
[m]
ŝm

, where ν is regarded
as a shrinkage parameter or as a step size.

5. Repeat Steps 3 and 4 until the stopping condition applies.

2.2 An Illustration

To illustrate our boosting approach, we run a small simulation with data generating process

yt = exp(ηt/2)εt

ηt = 0.1 + 2xt,1 + 2I[0.1,0.5](xt,2) · xt,2 − 0.6I[−0.5,−0.2](xt,3) + 0xt,4 + 0xt,5 + 0xt,6,
(4)

with εt
iid∼ N(0, 1), and xt,i being the t-th observation of Xi ∼ U [−0.5, 0.5], i = 1, . . . , 6,

t = 1, . . . , T , T = 400; and IA(·) denotes the indicator function, i.e., IA(x) = 1, if x ∈ A ⊂ R,
and IA(x) = 0, otherwise. Note that only the first three covariates affect the volatility—
the first linearly, the second linearly only for X2 ∈ [0.1, 0.5], the third in the form of a step
function. The last three covariates, X4 through X6, do not contribute, and are included to
check for robustness against false detection. We choose linear base learners for all but the
second and third predictors, which are fitted with a regression-tree base learner, so that we fit

yt = exp(ηt/2)εt

ηt = β0 + β1xt,1 +

J1∑

j=1

γ
(1)
j I

R
(1)
j

(xt,2) +

J2∑

j=1

γ
(2)
j I

R
(2)
j

(xt,3) + β4xt,4 + β5xt,5 + β6xt,6,
(5)

where R(1)
j and R(2)

j denote the estimated partitions in the domain of X2 and X3. Splitting
decisions are made by using the permutation test (Strasser and Weber, 1999), which reflects
the level of dependence between the gradient and the corresponding covariate. The test
statistic is maximized among all possible split positions (see also Hothorn et al., 2006).

Ideally, the algorithm will recover the β and γ(2) parameter values specified in (5). This
means that X4, X5 and X6 should not be selected at all, i.e., β4 = β5 = β6 = 0, and that the
domain of X3 should be partitioned with only interval X3 ∈ [−0.5,−0.2] affecting volatility.
Regarding X2, although having linear impact for X2 ∈ [0.1, 0.5] and none otherwise, we
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Figure 1: Partial return components (upper panel) simulated from (4), indicating how drivers
X1 through X6 affect returns, and estimated partial log-volatility (lower panel).

intentionally chose an “incorrect” base learner, namely a step function, to see whether the
influences can still be adequately approximated.

Figure 1 shows simulated, driver–specific return components (upper panel) and the esti-
mated partial impacts on volatility (lower panel, log scale). The influence of the underlying
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Figure 2: Partial conditional density estimates (upper panel) associated with X1 through X3

in (4). Dark line segments indicate estimated 95% interquantile ranges, the lighter ones show
the estimated tails. Simulated return components (lower panel, black lines) associated with
these partial conditional densities; the lighter lines represent 95% interquantile ranges.

volatility drivers appears to be captured reasonably well. The parameter estimate β̂1 = 1.463 is
low due to parameter regularization via early stopping. This is typical for shrinkage methods,
where the parameter estimates usually have smaller magnitudes than unregularized solutions
and the bias vanishes as the sample size increases. The advantage of early stopping is that
no redundant predictors are selected, i.e., β̂4 = β̂5 = β̂6 = 0. Furthermore, X3 has the
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largest jumps near the right boundary of the interval [−0.5,−0.2], and the linear structure of
X2 ∈ [0.2, 0.5] is also captured reasonably well, despite the moderate sample size chosen.

The results shown in Figure 1 are typical in the sense that the variations in several hundred
repetitions were small. Translating the log scale in Figure 1 back to standard deviations gives
the estimate of the conditional density. Figure 2 (upper panel) shows the estimated partial
densities forX1, X2 adX3, with the central 95% interquantile ranges represented by the darker
segments, and simulated return components associated with these conditional densities (lower
panel). Visual inspection reveals that variations in volatility are closely captured, a finding
that is supported by the fact that the estimates produce a coverage rate of 95.75% for the
95% interquantile range. The partial contribution of each covariate is readily obtained in an
interpretable way: an increase in X1 causes the variance to increase proportionally; X2 has
an increased impact on the variance for X2 ∈ [0.2, 0.5]; the variance contribution markedly
decreases for X3 ∈ [−0.5,−0.2]; and, with β̂4 = β̂5 = β̂6 = 0, the conditional density of yt
remains invariant with respect to X4, X5 or X6.

With more detailed and interpretable insights into the role of particular risk drivers, the
boosting strategy proposed here helps us to better understand the nature of volatility pro-
cesses. To what extent this translates into better risk predictions will be addressed next.

3 An Empirical Application to Four Asset Classes

We present an application of our boosting approach to volatility prediction, considering four
diverse asset classes. First, we briefly describe the data employed, i.e., the data for the assets
to be modeled as well as the financial and macroeconomic factors entertained as potential
volatility drivers. Then, we discuss the procedure used to evaluate the predictive performance.

3.1 The Data

We investigate the predictability of volatility of four asset types, namely, stocks, bonds, com-
modities, and foreign exchange, for each of which we select a representative index. The equity
market is represented by a S&P 500 futures contract traded on the Chicago Mercantile Ex-
change; for the bond market, we use 10-year treasury note futures contracts traded on the
Chicago Board of Trade; the commodity market is represented by Standard & Poor’s GSCI
commodity index; and we use a trade-weighted currency portfolio provided by the Federal Re-
serve Bank of St. Louis to proxy foreign currency investments. The latter is a weighted average
of the foreign exchange value of the U.S. dollar against a broad set of currencies that circulate
widely outside their countries of issue, including the Eurozone, Canada, Japan, the United
Kingdom, Switzerland, Australia, and Sweden. The data cover the period February 1983 to
September 2010, amounting to 332 months in total. Summary statistics for the four return
series and the logarithmic realized volatility series are given in Tables 1 and 2, respectively.

As potential volatility drivers we consider the 26 financial and macroeconomic factors
summarized in Table 3. They include the financial variables Welch and Goyal (2008) use to
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Table 1: Descriptive statistics of the return series.

Mean Std Dev Skewness Kurtosis AR1
Stock 0.0062 0.0457 -1.0116 5.8971 0.0661

Commodity 0.0057 0.0578 -0.6082 6.6808 0.1958
Bond 0.0016 0.0204 0.0504 3.8869 0.0501
FX -0.0015 0.0213 0.0734 3.5620 0.0743

Table 2: Descriptive statistics of the log realized volatility series.

Mean Std Dev Skewness Kurtosis AR1
Stock -6.3278 0.9254 0.8149 2.0479 0.6669

Commodity -6.1654 0.9327 0.3341 0.0438 0.7797
Bond -8.0330 0.7128 -0.0012 0.0987 0.5807
FX -8.0280 0.6943 0.0503 0.4122 0.5613

predict stock returns: book to market ratio, net equity expansion, term spread, relative T-Bill
rate, relative bond rate, long–term bond return, and default spread. In addition, we include
the three Fama–French factors, namely, the U.S. market excess returns, the size factor, and the
value factor. The set of financial predictors also contains the Pastor and Stambaugh (2003)
liquidity factor, the return on the MSCI world stock index, the TED spread (i.e., the difference
between the three-month LIBOR rate and the T-Bill rate), the Cochrane and Piazzesi (2005)
bond factor, the return on the CRB spot index, the carry trade factor, as in Lustig et al.
(2011), the return on dollar risk factor introduced by Lustig et al. (2011), and the FX average
bid–ask spread (Menkhoff et al., 2011). Finally, we also include the International Monetary
Fund’s Financial Stress Index (FSI) for the U.S. (Cardarelli et al., 2009). As macroeconomic
factors we include M1 growth, the purchasing manager index, housing starts, inflation, U.S.
industrial production growth, and new orders of consumer goods and materials.

3.2 Analyzing the Predictive Performance

Volatility is inherently unobservable, so that measuring volatility is a challenge. Here, we
follow French et al. (1987) and Schwert (1989) and use monthly realized volatility, calculated
from daily returns, as proxy for market volatility,5 defined by

RVi,t = log
Mt∑

τ=1

r2i,t,τ , t = 1, . . . , T, (6)

where ri,t,τ denotes the τth daily return of asset i in month t andMt the number of trading days
in month t. Figure 3 shows the realized–volatility series for the indices under investigation.

5For an in–depth review of the realized–volatility concept, we refer to Andersen et al. (2006).
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Figure 3: Time series of monthly realized volatility (in logarithms) as defined by (6).

The predictive performance is examined for period June 2002 to September 2010, using
a rolling–window forecasting scheme. Starting with a history of 230 months, we move the
fixed–length window forward month by month, re-estimate, and generate a sequence of one-
step-ahead forecasts for 100 months.6 Applying a direct forecasting approach,7 we also produce
multi–period forecasts for horizons of up to six months by adapting (1) accordingly, i.e.,

yt+h = exp(ηt+h/2)εt+h, h = 1, . . . , 6,

ηt+h = β0+ftime(t+h)+fyr(nt+h)+fmonth(mt+h) +
s−1∑

j=0

fj(yt−j) +

q∑

k=1

p−1∑

j=0

fk,j(xt−j,k).
(7)

We include the first and second lag of all 26 factors as predictors, so that, in (1), q =
26 and p = 2. In addition, we include lags one and two of realized volatility (s = 2),
to capture the state dependence and temporal dependence in volatility. Allowing also for
seasonal components, we have a total of r = 58 predictors.

As volatility is latent, it is common to use the squared returns y2t as a proxy. However,
as this estimator is very noisy, we follow another approach. We evaluate the forecasting
performance in terms of the mean squared error between the “true” (realized) volatility, as

6Two observations are “lost” due to lagging variables twice.
7For direct forecasting via boosting in a nonlinear time series context, see Robinzonov et al. (2012).
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defined in (6), and our forecasts for ηt+h.8 Then,

ERRi,t+h = (RVi,t+h − ηi,t+h)2 (8)

represents the h-step squared prediction error for asset i.

4 Empirical Results

In discussing the empirical results we focus on the questions which factors drive realized
volatility and, if so, in what way do they do so. Comparing the forecasting performance based
on linear base learners to that derived from (nonlinear) regression trees, we find that linear
base learners produce a lower forecasting accuracy, suggesting that driving factors exert a
nonlinear influence on volatility.

To assess the predictive performance, we compare multi–step, out–of–sample boosting
forecasts to those from a GARCH(1,1) benchmark model.9 Clearly, there are many potential
alternatives that could serve as benchmarks.10 However, in the spirit of Lunde and Hansen
(2005)—who ask “Does anything beat a GARCH(1,1)?”—the GARCH(1,1) model can be re-
garded as a natural and challenging benchmark in our context.

In the following subsections, we evaluate the predictive performance of our boosting ap-
proach and discuss, in some detail, the driving factors in each of the four market.

4.1 Predictive Performance

To evaluate the predictive performance, we compute Theil’s U and out–of–sample R2 statistics
for horizons ranging from one to six months. Theil’s U is defined as the ratio of the root mean
squared error (RMSE) of our model and to that of the GARCH benchmark model. A value
below unity indicates that our model outperforms the benchmark. The out–of–sample R2,
proposed by Campbell and Thompson (2008), has an interpretation that is similar to that of
Theil’s U. Letting in market i, ηMi,t+1 and ηBi,t+1 denote the forecasts from our model and those
of the benchmark, respectively, the out–of–sample R2 is defined by

R2
OOS = 1−

∑T−1
t=t0

(
RVi,t+1 − ηMi,t+1

)2
∑T−1

t=t0

(
RVi,t+1 − ηBi,t+1

)2 , (9)

where t0 reflects the initialization period. Positive (negative) values of R2
OOS indicate that

boosting provides a superior (inferior) forecasting accuracy relative to the benchmark.
8For a detailed discussion on alternative forecast–evaluation criteria for realized volatility see Patton (2011).
9The multi–step GARCH forecasts are made recursively. By fitting GARCH models for each frequency, h,

we also derived nonrecursive h–step forecasts, which were rather poor.
10Christiansen et al. (2012) use an autoregressive model for realized volatility as benchmark.
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Table 4: Out-of-sample forecast evaluation.

Theil’s U Out-of-sample R2

Horizon Stock Commod. Bond FX Stock Commod. Bond FX
1 0.99 1.07 1.04 1.03 0.00 -0.15 -0.09 -0.06
2 0.98 0.86 1.01 1.01 0.02 0.25 -0.03 -0.02
3 0.89 0.92 1.00 0.91 0.20 0.14 0.00 0.15
4 0.85 0.90 0.98 0.93 0.27 0.18 0.03 0.13
5 0.87 0.79 0.94 0.96 0.24 0.37 0.11 0.06
6 0.83 0.71 0.88 0.95 0.30 0.49 0.21 0.08

Table 5: Modified Diebold–Mariano test results.

Horizon Stock Commod. Bond FX
1 0.490 0.790 0.858 0.630
2 0.441 0.011 ** 0.633 0.555
3 0.104 0.114 0.501 0.215
4 0.052 * 0.071 * 0.357 0.288
5 0.050 ** 0.016 ** 0.154 0.370
6 0.011 ** 0.009 *** 0.030 ** 0.355

The prediction results are shown in Table 4. In case of the stock index, boosting outper-
forms the benchmark over all horizons. For the other markets, the benchmark produces better
one–step and in case of bonds and foreign exchange also better two–step predictions. In all
other cases, especially for predictions beyond two months, the boosting approach dominates.
For commodities and stocks, and to a lesser extend, for bonds, the medium-term performance
is considerably better, whereas for FX volatility the differences seem negligible.

We also apply the Diebold–Mariano test (Diebold and Mariano, 1995) in the modified
version of Harvey et al. (1997), to assess forecasting accuracy. The null hypothesis of the test
is that the benchmark forecasts are more accurate than those of the proposed model, so that
rejection of the null supports our approach. The p-values of the modified Diebold–Mariano
test, reported in Table 5, are in line with the Theil’s U and the out–of–sample R2 statistics.
Thus, inclusion of exogenous factors as well as the regime–dependent estimation in boosting
help to improve medium– and long–term volatility forecasting—especially for commodity and
stock indices.11

Overall, the forecasting comparisons suggest that, in the short–term, the forecasting per-
formance of boosting matches that of the GARCH(1,1), but is superior in the medium– and
long–term. An important observation is that the GARCH forecasts have wider MSE ranges,
as measured by their interquartile ranges (IQRs), as shown in the MSE–boxplots in Figure 4.
This suggests that boosting predictions are more robust relative to the GARCH benchmark.

Summarizing the results of the forecasting comparison for the stock index (upper panel
in Figure 4), we find that are in line with the forecasting statistics reported above. For the

11It should be noted that, when reverting the hypothesis (i.e., the null states boosting performs better than
the benchmark), we obtain insignificant results in all cases.
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Figure 4: Comparison of predictive MSEs from GARCH(1,1) and boosting.

one– and two–period ahead forecasts, the GARCH model produces a lower median MSE; for
horizons three to six, boosting produces lower median MSEs. However, for all horizons, the
GARCH forecasts have a higher dispersion, as is reflected in the boxplots by their IQRs.
Thus, not only does the boosting approach provide better medium– and long–term volatility
predictions for the S&P 500, its predictions are more robust for all horizons leading to less
extreme MSEs than the GARCH benchmark.

The boxplots for the commoditiy index (second from top in Figure 4) show that, on

14



average, boosting forecasts outperform those of the GARCH model for all horizons. The
Theil’s U statistics support this: for all horizons, except the first, Theil’s U is below 1. For
six-month-ahead forecasts, Theil’s U decreases to 0.714. This, as well as the modified Diebold
and Mariano (1995) tests indicate that the boosting strongly outperforms the GARCH model,
especially so for medium and long horizons.

With respect to the short–term prediction MSEs for the bond market (third panel in
Figure 4), we have a close race with boosting delivering, on average, better longer–term
predictions. This also follows from the Theil’s U statistics being below unity. However,
modified Diebold-Mariano tests indicates that only for the six-month horizon does boosting
significantly outperforms GARCH.

Finally, in line with the literature (e.g. Jorion, 1995, Nowak and Treepongkaruna, 2008),
we also find that it is difficult to derive superior model for predicting FX volatility—especially,
for lower than daily frequencies. Here, boosting and GARCH forecasts are about on the same
level (bottom panel in Figure 4). For horizons of three to six months, Theil’s U is below 1,
but none of the modified Diebold-Mariano tests are significant. However, for all six horizons,
the boosting produces lower 75% MSE–quantiles, suggesting also more robustness for for
FX–volatility predictions.

4.2 The Driving Factors

From both a theoretical as well as practical viewpoint it is of interest to identify the finan-
cial and macroeconomic factors that drive market risk and to assess the specific manner in
which they affect volatility. A better knowledge about the driving forces could, for example,
be used for designing early–warnings mechanisms for market instabilities and for developing
stabilization strategies. The insights the proposed boosting approach provides are particularly
advantageous when compared to the black–box nature of the GARCH framework.

In the following, we discuss the role of risk drivers for each of the indices on the basis of
the one–period–ahead model, defined in (1), and on the complete data set.

4.2.1 Stock Market

For the S&P 500, boosting via regression trees identifies six drivers: the U.S. financial stress
index (FSI), the relative bond rate (RBR), (lagged) volatility, S&P 500 returns, U.S. market
excess returns, and the CRB spot index. Our built–in variable (and lag) selection process
excluded all other available drivers. Figure 5 shows the impact of the first and second lags of
the three most relevant factors. As is to be expected, not all the lags of the relevant variables
do necessarily exert influence. For example, S&P 500 returns, the U.S. market excess return
and the CRB spot index enter only with their first lag, whereas the FSI and (lagged) realized
volatility display a longer–lived impact and enter also with their second lag.

The FSI aggregates variables that reflect market stress in banking, securities, and foreign
exchange. Its motivation and composition are discussed in Cardarelli et al. (2009). Figure 5
(upper panel) clearly shows regime-dependence of the FSI’s impact on volatility. FSI–values
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Figure 5: The three most relevant volatility drivers for the S&P 500. Each row shows the
estimated partial volatility components for the first and second lag of FSI, RV and S&P 500
returns, respectively.

above 7.5 increase next month’s stock market volatility by about 0.3 (in log scale), which
corresponds to an increase of about 16%. FSI-values below 7.5 do not affect next month’s
volatility. As for the second lag, we find that positive (negative) FSI–values moderately
increase (decrease) two–month–ahead volatility in a more or less symmetric fashion.

Another result is that (log) realized volatility depends nonlinearly on past realized volatil-
ity. As shown in Figure 5 (middle panel), small values of realized volatility, i.e., RV < −7 or
exp(RV) < 0.03, cause a decrease in next month’s volatility. From about RV > −6 onward,
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the influence becomes positive, i.e., the volatility tends to increase in a highly nonlinear fash-
ion. Also the two-month impact is also nonlinear: values of RV < −7 will reduce volatility by
about 10% and values of RV > −6.3 result in an increase of about 5%.

Furthermore, we find that positive changes in the S&P 500 index slightly decrease volatil-
ity, whereas small negative changes (between −10% and 0%) moderately increase volatility
(Figure 5, bottom panel). However, large negative returns (below −10%) increase volatility by
about 10%. Finally, the relative bond rate (RBR) entails a considerable increase in volatility
by about 28%, when it increases above 1%. Positive U.S. market excess returns have a mod-
erate calming effect on the stock market, whereas values below −2.5% increase the volatility
by 2%.

4.2.2 Commodity Market

Commodity–market volatility is influenced by past realized volatility itself, the net equity
expansion, the Cochrane–Piazessi factor, and the U.S. market excess returns. The Cochrane–
Piazessi factor impacts via both the first and the second lag, whereas the net equity expansion
influences only through the second lag.

Figure 6 (upper panel) reveals that realized volatility depends in a highly nonlinear fashion
on its first lag. Highly negative values of lagged realized volatility (below −6.5) dampen
volatility by roughly 0.2 (log scale), which roughly translates a 10%–drop in volatility; values
above −6.5 lead to an increase; and at −4 there is a jump, above which volatility increases by
about 60%. Net equity expansion (Figure 6, center panel) has an increasing effect on volatility,
if it is below −3%; otherwise it slightly decreases volatility. U.S. market excess returns above
−2% dampen volatility, values below that increase volatility (Figure 6, bottom panel). The
pattern is similar for the Cochrane–Piazessi factor, except that the threshold there is at 2%.

4.2.3 Bond Market

For the bond market, we find that volatility is driven by the default spread, the changes in
M1, net equity expansion, the changes in the purchasing manager index, the relative bond
rate, the change in consumer sentiment, and the book to market ratio.12

The influence of the default spread (Figure 7, top panel) exhibits two clearly distinct
regimes: a default spread above 1.1% tends to increase volatility by 7% in the following
month, and values below that threshold reduce volatility by roughly 4%. The relative bond
rate affects volatility only if it exceeds 1%, inducing an increase by 10%. A change in consumer
sentiment or the book to market ratio produces a similar pattern: below a certain threshold—
5% for consumer sentiment and 0.72 for the book to market ratio—they have no influence
on volatility; only if they exceed these thresholds volatility increases. Sizable increases in M1
(above 5%) let volatility grow by approximately 10%. Smaller expansions or reductions in M1
decrease volatility by 6.8% (Figure 7, center panel).

12Bond return volatility has not been extensively studied in the literature. Two exceptions are Huang et al.
(2011) and Viceira (2012).
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Figure 6: The three most highly relevant volatility drivers in the commodity market. Each
row shows the partial impact of the first and second lag of RV, net equity expansion, and U.S.
market excess returns, respectively.

4.2.4 Foreign Exchange Market

A large number of factors seem to drive FX volatility. These include the FSI, the default
spread, realized volatility, the TED spread, the U.S. market excess return, the long–term
rate of return, and changes in M1. Periods of high financial stress, with the FSI assuming
values above five, drive up volatility by 12%, whereas low financial stress reduces it, though,
by a much smaller amount, namely less than 1% (Figure 8, top panel). Similar to the other
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Figure 7: The three most relevant volatility drivers in the bond market. Each row shows the
partial impact of first and second lag of the default spread, changes of M1, and the net equity
expansion, respectively.

markets, once-lagged realized volatility below −7 (log scale), or σ̂2 < 3%, lowers volatility
marginally (Figure 8, center panel). Values above this cutoff boost volatility by 15%. U.S.
market returns seem to influence volatility only if they are below −10%, in which case they
increase the volatility.
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Figure 8: The three most relevant volatility drivers in the foreign exchange market. Each row
shows the partial impact of first and second lag of FSI, RV, and the TED spread, respectively.

5 Conclusions

Employing boosting techniques, we have analyzed the determinants of monthly volatility for
the four broad asset classes stocks, commodities, bonds, and foreign exchange, considering a
wide range of potential financial and macroeconomic drivers. Our boosting approach specifies
regression trees as base learners, allowing us to identify influential volatility drivers as well as
the functional form of their impact. Specifically, we used componentwise boosting, which is
tailor–made for sorting out irrelevant predictors.
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Our empirical results give insight into the “anatomy” of volatility by identifying groups of
relevant drivers for each market and by estimating driver–specific thresholds, which partition
their domains into areas with similar impact on volatility. By doing so, nonlinear dependencies
can be identified. We do, indeed, find highly nonlinear influences of financial drivers on
volatility. This contrasts the existing literature, which has almost exclusively concentrates on
linear volatility dynamics.

Out-of-sample forecasting using realized volatility as a proxy for unobserved volatility sug-
gests that our boosting approach performs very favorable for stocks and commodities relative
to the commonly–used GARCH(1,1) benchmark. The advantages are particularly convincing
for longer forecasting horizons. For the bond and foreign exchange markets, boosting produces
a comparable short–term and a marginally better medium– to long–term predictive accuracy
relative to the benchmark. However, in all cases does boosting lead to more robust, i.e., less
outlier–prone, prediction errors than the GARCH benchmark.

Our findings suggest that boosting is well suited for a unified framework to predictor
selection and estimation of volatility models in the presence of many potential (and possibly
highly dependent) risk drivers. An advantage of the approach is that it can cope with “wide”
data situations (Hastie et al., 2009), i.e., applications in which the number of predictors exceeds
the number of observations. Models obtained via boosting can be a promising starting point
for more detailed nonlinear model specifications.
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