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Abstract

A full likelihood approach for marginal regression modeling of corre�
lated multicategorical data is proposed� It is in fact an extension of the
approach of Fitzmaurice and Laird ������ for repeated binary response�
The association is directly modeled in terms of conditional odds ratio pa�
rameters resulting in the fact that the maximum likelihood estimates of
mean and association parameters are asymptotically independent� The
technical details are worked out and the approach is illustrated with data
previously analyzed by Miller	 Davis and Landis �������

Keywords� conditional log odds ratios	 correlated response	 discrete
data	 longitudinal data	 marginal model	 maximum likelihood	 ordinal
response	 repeated measures

� Introduction

Semiparametricmethods for marginal regression modeling of correlated response
have found wide acceptance in the literature since the stimulating paper by
Liang and Zeger ������� which proposed the use of Generalized Estimating
Equations �GEE� in such data situations	 In the recent decade many proposals
have been made for modeling the correlation� especially in the case of repeated
binary observations	 Prentice ������ extended the approach of Liang and Zeger
using a second score equation for estimating the association	 Lipsitz� Laird and
Harrington ������ and Liang� Zeger and Qaqish ����
� proposed odds ratios for
modeling the marginal association	 Fitzmaurice and Lipsitz ������ made use of
serial odds ratios	 Fahrmeir and Pritscher ������ proposed a GEE method for
ordinal response using global cross ratios	

More recently full likelihood methods have become available	 They are use�
ful if there are only few observations per sample unit	 In this cases likelihood
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approaches are a 
exible tool for modeling the marginal distributions and the
associations� simultaneously	 Limitations of a �xed parameter likelihood ap�
proach are caused by the rapidely growing number of parameters when the
number of repeated observations is high since the underlying distribution is the
multinomial	

First we give a short review of likelihood approaches for multicategorical
correlated response proposed in literature	

Molenberghs and Lesa�re ������ extended the model of Dale ������ for biva�
riate ordinal response using a multivariate Plackett�distribution	 The marginal
pairwise associations are parametrized with global cross�ratios� which reduce to
common odds ratios in the binary case	 A disadvantage of this approach is that
it cannot be used in the case of a repeated nominal response or mixed ordinal
and nominal response	

Liang� Zeger and Quaqish ����
� proposed another set of odds ratios for mo�
deling marginal pairwise associations of multicategorical response	 They give
only detailed description how to extend this approach to a full likelihood ap�
proach for binary response in which their approach coincides with the approach
of Molenberghs and Lesa�re	

Fitzmaurice and Laird ������ and Fitzmaurice� Laird and Rotnitzky ������
proposed a method based on the so�called loglinear representation of the joint
distribution	 They transformed the canonical parameters to describe the joint
distribution in terms of the mean parameters and the canonical association para�
meters	 The canonical association parameters can be interpreted as conditional
log odds ratios and contrasts of conditional log odds ratios� where conditioning
is done on those response variables not in the set which is conditioned	 Hence
this approach is in general limited to the case of a balanced number of observed
responses per unit	

Lang and Agresti ������ used a Lagrangian method for simultaneously esti�
mating the marginal and the joint distribution	 Balagtas� Becker and Lang
������ gave an application of this method to a cross�over design	 Their method
seems to be limited practically if also continuous covariates are present� which
is not the case for the other methods mentioned	

In this paper we extend the approach of Fitzmaurice and Laird ������� ba�
sed on conditional log odds ratios� to the case of correlated multicategorical
response	 As in the binary case we get the result to be expected� that the mean
and the odds ratio parameters are orthogonal in the sense� that the Fisher in�
formation matrix is blockdiagonal	 As a consequence the maximum likelihood
estimators are asymptotically independent	 This orthogonality property also
results from the fact that the proposed model is a special case of the family of
partly exponential models introduced by Zhao� Prentice and Self ����
�	

Section 
 describes the data situation and a possible model for marginal
modeling of ordinal response	 In Section � we give a compact description of
the loglinear representation of the joint distribution	 Section � addresses the
problem of computing the joint distribution from marginal and conditional log






odds ratio parameters and the problem of deriving maximum likelihood esti�
mates	 In Section � we apply the method on a dataset previously analyzed by
Miller� Davis and Landis ������ using weighted least squares �WLS� and the
GEE approach	 Finally we discuss the method in Section �	

� Modeling the marginal response

In the following we assume to have i � �� � � � � N subjects	 For each of these
subjects we observe T multicategorical response variables	 We assume further
that the response within subjects is correlated while the response between sub�
jects is independent	 Only for simplicity� not by the model to propose� assume
that we are in a longitudinal data situation where we have T repeated mea�
sures of a response variable Yit at T timepoints t � �� � � �T with R � r � �
categories	 As usual the response Y �

it is represented as a row vector of r dum�
mies �Yit�� � � � � Yitj� � � � � Yitr� with Yitj � � if Yit � j and Yitj � � if Yit �� j�
j � �� � � � � r	 Along with the response we observe a ��p vector x�it of covariates
for t � �� � � � � T 	 The response of subject i can then be arranged in the T � r
matrix Yi � �Yi�� � � � � YiT �� and the corresponding covariates can be arranged in
the T � p matrix Xi � �xi�� � � � � xiT ��	 To avoid complications we assume that
the covariates are nonstochastic� but are allowed to be time�varying	 If useful
for technical work we stack the rows of the T � r�matrix Yi in a Tr� � column
vector	

We restrict our attention to the cumulative logit model known as propor�
tional odds model� which is parsimonious for ordinal response	 The cumulative
logit model with r � p parameters

� � ����� � � � � �r�� ��� �

which are assumed to be constant over time� may be written as

P �Yit � jjxit� �� �
exp��j� � x�it

���

� � exp��j� � x�it
���
� ���

Let
�i��� � ��i������ �i������ � � � � �i�r���� � � � � �iTr����

�

denote the vector of marginal expectations with elements �itj��� � E�Yitjjxit� �
P �Yit � jjxit�	 From ��� we get

�it� �
exp���� � x�it

���

� � exp���� � x�it
���
� for j � � �
�

and

�itj��� �
exp��j� � x�it

���

� � exp��j� � x�it
���

�
exp���j���� � x�it

���

� � exp���j���� � x�it
���
� for j � 
� � � � � r �

���
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This and other useful models for multicategorical response are described in
detail e	g	 in Fahrmeir and Tutz ������ ch	 ��	 These models can be extended
to the case of time�varying parameters	 This becomes useful when covariates do
not change in time� which is the case� e	g	� for a treatment indicator covariate	
Note that� in principle� any other �su�ciently smooth� parametric link function
can be chosen in our approach	

� Loglinear modeling of the joint distribution

Let for any subject i

�i�j��j������jT � P �Yi� � j�� Yi� � j�� � � � � YiT � jT �

� � jt � R� t � �� � � � � T denote the probability of one of the RT possible
response pro�les and let �i denote the column vector containing all these pro�
babilities	 We use the usual order �last index is varying fastest�	 Then� because
of the restriction ���i � �� with �� � ��� � � � � �� a � � RT vector� a saturated
loglinear model for �i can be written in compact matrix notation as

�i �
exp�D��i �D��i�

�� exp�D��i �D��i�
� ���

where D� is a RT � Tr and D� is a RT � �RT � Tr � �� design matrix cor�
responding to the main e�ect parameters �i and association parameters �i�
respectively� and the denominator in ��� is a scalar �see e	g	 Agresti� ����� p	
����	 ForD� we adopt the dummy coding scheme where the highest category R
is the reference category	 The columns of D� are then the appropriate products
of two up to T columns of D�	 D�� D� and an interpretation of the parameters
�i and �i in the case of T � �� R � � are given in Appendix A	 Here we only
state that the parameters in �i are logits of conditional probabilities and the
parameters in �i are conditional log odds ratios and contrasts of conditional log
odds ratios	

Alternatively� model ��� can be written as

log��i� � D��i �D��i � Ai ���

with Ai � �ai� ai� � � � � ai�� a RT � � vector with elements

ai � log��� exp�D��i �D��i��� ���

Now let Wi be a vector containing all double� threefold and higher products
of the dummies of Yi in complete analogy to D� and let �i � E�Wi�	 Then�
as shown in Appendix A� we have the following formulas for the moments of Yi
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and Wi�

�i � E�Yi� � D���i � ���

�i � E�Wi� � D���i � ���

Cov�Yi� � D�� �diag��i�� �i�i
��D� � ���

Cov�Yi�Wi� � D�� �diag��i�� �i�i
��D� � ����

Cov�Wi� Yi� � Cov�Yi�Wi�
� � ����

Cov�Wi� � D�� �diag��i� � �i�
�
i�D

� � ��
�

As �i depends on �i and �i �formula ����� we may conclude from formula
��� that �i can be written as an explicit function of the canonical parameters
��i��i�	 Since we want to model the joint distribution in terms of �i��� and
the association parameters �i���� e	g	 �i��� � Zi�� where Zi is a design ma�
trix and � is a q � � vector of parameters� we adapt the idea of Fitzmaurice
and Laird ������ and proceed a transformation from the canonical parameters
��i��i� to ��i��i�	 As in the binary case the problem arises that the joint dis�
tribution cannot be represented explicitly in terms of ��i��i� which complicates
the derivation of the score equations for � and � and the task of maximum li�
kelihood estimation	 The problem of computing the joint distribution is shortly
addressed in the following section	 The derivation of the score equations is given
in Appendix B	 Since at least �i is modeled as a function of covariates we are
indeed modeling the conditional distribution of Yi given Xi with parameters
��� ��	

� Maximum likelihood estimation

For each individual i we observe one of the RT possible response pro�les	 To
compute the likelihood function� expression ��� and the covariance matrices
given in ��� to ��
�� we need the cell probabilities stacked in the vector �i	
For example� in the case R � �� T � �� the individual contribution to the
likelihood function of an individual i with observation yi � �yi�� yi�� yi�� �
�
� �� �� � or yi � ���� ��� ��� ��� ��� ��� in dummy coding � is �i��� � P �Yi� �

� Yi� � �� Yi� � ��	 As there is in general no explicit formula for computing
�i� i � �� � � � � N given ��� �� and therefore ��i��i�� one can use the Iterative
Proportional Fitting �IPF� algorithm to solve this problem	 The idea is to create
a start table of probabilities which have the desired conditional log odds ratios�
e	g	 by �i � exp�D��i� and then dividing each cell probability by ���i to ensure
the restriction ���i � �	 Then apply the IPF routine for table standardization
as described in Agresti ������ p	 ���� in order to get a table which has the
desired margins �i without having changed the odds ratios	

The task of deriving the score equations for ��� �� is solved by use of the
chain rule� as shown in Appendix B	 This results in the following likelihood
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equations in ��� ���

NX
i	�

�
	�i
	�

��

Cov�Yi�
�� �yi � �i� � � ����

NX
i	�

�
	�i

	�

�� �
wi � �i � Cov�Wi� Yi� Cov�Yi�

�� �yi � �i�
�
� �� ����

The equations are the same as in Fitzmaurice and Laird ������ for the binary
case	 If �i � Zi� the second score equation reduces to

NX
i	�

Z�
i

�
wi � �i � Cov�Wi� Yi� Cov�Yi�

�� �yi � �i�
�
� �� ����

Because� as shown in Appendix C� the expected information matrix has
block structure� the likelihood equations can be solved by iterating through the
following three steps until convergence�

�	 Update b� by the formula

b��s��� 
 b��s� �Cov�b���s�� NX
i��

�
��i

��

���s�

Cov�Yi�
���s�

�
yi � �

�s�
i

�	
����


	 Update b� by the formulab��s��� � b��s� � Cov�b�	�s� ��
NX
i��

�
�
i

��

���s� h
wi � �

�s�
i

� Cov�Wi� Yi	
�s�Cov�Yi	

���s�
�
yi � �

�s�
i

�i	
���	

�	 For i � �� � � � � N compute

�a� �
�s
��
i from b��s
�� as speci�ed by the marginal model	

�b� �
�s
��
i from b��s
��� e	g	 ��s
��

i � Zib��s
��	
�c� the vector of joint probabilities �

�s
��
i for each individual i from

��
�s
��
i ��

�s
��
i � using IPF	

�d� the updates �
�s
��
i � Cov�Yi�

�s
��� Cov�Wi� Yi�
�s
�� and

Cov�Wi�
�s
�� by use of formulas ��� to ��
� with �

�s
��
i from �c� as

current estimate	

The asymptotic covariance matrices of  � and  � are given by the inverse of
the expected �sher information matrix �Appendix C�	 Fitzmaurice� Laird and
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Rotnitzky ������ proposed a robust estimate for the covariance matrix of  � by
using the so�called sandwich formula

d
Cov� �� �  F��

�
 F�  F

��
� ����

with

 F� �
NX
i	�

d�	�i
	�

�� dCov�Yi���
d�	�i
	�

�

 F� �
NX
i	�

d�	�i
	�

�� dCov�Yi����yi �  �i��yi �  �i�
� dCov�Yi���

d�	�i
	�

�

where  F��
� is the estimated asymptotic covariance matrix of  � under the assu�

med model	

� Respiratory disorder example

We illustrate our approach by applying it on data described in Miller� Davis
and Landis ������� previously analyzed by Koch et al	 ������	 ��� patients
were randomly assigned to one of two treatments �active� placebo�	 A ��point
ordinal scale was originally used to classify the response measured at four time
points �terrible��� poor��� fair�
� good��� excellent���	 We use the ��point
ordinal data given in Table � in Miller et al	 The response is denoted as poor
������ good �
��� and excellent ���	 Note that only one treatment indicator
covariate is given in their table which can be included in the marginal model	


 of the possible �� � �� response pro�les were observed in the active group� 
�
in the placebo group	 Since the two separate response tables� one for the active
group and one for the placebo group� are sparse� we only considered models
involving second order interactions	 Additionally we assumed equal interactions
in both treatment groups	 The treatment indicator variable xit is e�ect coded
as � �active� and �� �placebo�	

In Table � we give parameter estimates with estimated model and robust
standard errors for the marginal model

log

�
P �Yit�j� � jjxit�

P �Yit�j� 
 jjxit�

�
� �j � �xit� j � �� 
! t � �� 
� �� �

with constant thresholds ��� �� and a constant treatment e�ect � 	
In Table 
 we give parameter estimates and estimated standard errors for

the marginal model

log

�
P �Yit�j� � jjxit�

P �Yit�j� 
 jjxit�

�
� �j � �txit� j � �� 
! t � �� 
� �� �

�



with constant thresholds ��� �� and visit�speci�c treatment e�ects �t	
Both models were combined with �ve models for the association structure	

Model I is the independence model	 Model II assumes an exchangeable associa�
tion structure� i	e	 �i � ������� �

��
��� � � � � �

��
��� �� � � � � �� with �tt

�

j�j�
� �j�j� � for all

t� t� � �� � � � � �� t 
 t�� j�� j� � �� 
	 Model III is model II supplementary assu�
ming that ���j�j� is zero	 In Model IV we assume that the conditional pairwise
associations depend on the distance between two visits	 Especially we assume
for j�� j� � �� 


���j�j� � ���j�j� � ���j�j� � ��j�j�

���j�j� � ���j�j� � ��j�j�

���j�j� � �

The last model is a linear by linear association model �Agresti� ����� p	 
��� for
the six pairwise conditional associations using equally spaced scores ��
 and �	
The latter might not be a sensible choice but is often used for ordinal variables to
re
ect the ordering and to get more parsimonious models but to avoid problems
which arise when scores are treated as additional parameters which have to be
estimated	 Only one parameter is needed for modeling the four log odds ratios
for each pair	 The conditional log odds ratios then can be written as

�t�t�j�j�
� �tt

�

��� j����� j�� t� t� � �� 
� �� �� t 
 t�! j�� j� � �� 
�

The model assumes equal conditional local odds ratios which are build from
adjacent rows and columns	 Note that our set of odds ratios di�ers from the set
of local odds ratios	 Only the odds ratios denoted by �tt

�

�� in our set are local	
The expression given above takes this into account appropriately	

From Table � model Ia� we see that the model estimates assuming indepen�
dence underestimate the standard errors for the threshold and the treatment
e�ect	 For IIa� IIIa� IVa and Va the estimated model standard errors were� for
practical purposes� equal to the robust estimates and equal to the robusti�ed
estimates of model Ia� calculated with the sandwich formula ����	 Noting that
a negative value of the treatment e�ect parameter says� that the treatment im�
proves the response� it is interesting that� despite the fact that the estimates of
the standard errors are equal� the estimated treatment e�ect is in absolute value
equal for Ia and IIa ���	��� but is lower for model IIIa� IVa and Va ���	���	 This
e�ect nearly disappears for the estimates of the marginal model in Table 
	 The
variation of the estimates is smaller there over all �ve models than that of the
weighted least square estimates and the estimates obtained by the GEE I cor�
relation method used by Miller et al	 The WLS estimates were given �without
standard errors� as  �� � ���
��  �� � ������  �� � ���� and  �� � ������ the esti�
mates of the GEE I correlation method were given as  �� � ������  �� � ������
 �� � ����� and  �� � ����� by the authors	

For models II� III� IV and V all association parameters were signi�cant on
the �"�level with the exception of ��� in model Va and Vb	 The association mo�
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dels seem to scatch the dependence #relevant$ for obtaining #correct$ estimates
for the standard errors of the marginal parameter estimates although they are
very restrictive and� as not shown here� are in fact no good models when we
compare the estimated cell probabilities with the observed ones e	g	 by standar�
dized residuals	 Due to zero cells in the marginal tables� some conditional odds
ratio parameters are only identi�ed because of the restrictions in the association
models� i	e	 we are confronted with the problem of sparse tables in this dataset	
More re�ned association models would also take into account the fact that �

of the ��� patients have no change in their response over the four time points	

Model Est	 mod	 SE rob	 SE Est	 mod	 SE

Ia �� ��	�� �	�� �	��

�� �	�� �	�� �	��

� ��	�� �	�� �	��

�� ��	�� �	�� �	�� ��� �	�� �	��

IIa �� �	�� �	�� �	�� ��� �	�� �	��

� ��	�� �	�� �	�� ��� �	�� �	��

��� �	�� �	��

�� ��	�� �	�� �	�� ��� �	�� �	��

IIIa �� �	�� �	�� �	�� ��� 
	�� �	��

� ��	�� �	�� �	�� ��� 
	�� �	��

��� �	�� �	��

�� ��	�� �	�� �	�� ���� �	�� �	
�

IVa �� �	�� �	�� �	�� ���� 
	�� �	��

� ��	�� �	�� �	�� ���� 
	�� �	��

���� �	�� �	
�

���� �	�
 �	��

���� 
	
� �	��

���� �	�� �	��

���� �	
� �	��

�� ��	�� �	�� �	�� ��� �	
� �	��

Va �� �	�� �	�� �	�� ��� �	�
 �	��

� ��	�� �	�� �	�� ��� �	�� �	��

��� �	�� �	�


��� �	
� �	��

��� �	�� �	��

Table �� Marginal model with constant treatment e�ect
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Model Est	 mod	 SE rob	 SE Est	 mod	 SE

�� ��	�� �	�� �	��
Ib �� �	�� �	�� �	��

�� ��	�� �	�� �	��
�� ��	�� �	�� �	��
�� ��	�� �	�� �	��
�� ��	�� �	�� �	��

�� ��	�� �	�� �	�� ��� �	�� �	��

IIb �� �	�� �	�� �	�� ��� �	�� �	��
�� ��	
� �	�� �	�� ��� �	�� �	��
�� ��	�� �	�� �	�� ��� �	�� �	��

�� ��	�� �	�� �	��
�� ��	�� �	�� �	��

�� ��	�� �	�� �	�� ��� �	�� �	��
IIIb �� �	�� �	�� �	�� ��� 
	�� �	��

�� ��	
� �	�� �	�� ��� 
	�� �	��

�� ��	�� �	�� �	�� ��� �	�
 �	��
�� ��	�� �	�� �	��
�� ��	�� �	�� �	��

�� ��	�� �	�� �	�� ���� �	�� �	
�

IVb �� �	�� �	�� �	�� ���� 
	�
 �	�

�� ��	
� �	�� �	�� ���� 
	

 �	��
�� ��	�� �	�� �	�� ���� �	�� �	��

�� ��	�� �	�� �	�� ���� �	�� �	��
�� ��	�� �	�� �	�� ���� 
	
� �	��

���� 
	�� �	��
���� �	
� �	�


�� ��	�� �	�� �	�� ��� �	�� �	��

Vb �� �	�� �	�� �	�� ��� �	�� �	��
�� ��	
� �	�� �	�� ��� �	�� �	��
�� ��	�� �	�� �	�� ��� �	

 �	��

�� ��	�� �	�� �	�� ��� �	�� �	��
�� ��	�� �	�� �	
� ��� �	�� �	�


Table 
� Marginal model with time�varying treatment e�ect

Finally we calculated likelihood ratio statistics for the hypothesis of a con�
stant treatment e�ect under the �ve di�erent assumptions on the association	
That means we compare Ia with Ib� IIa with IIb� etc	 The statistics are given
in Table �	 The hypothesis of a constant treatment e�ect is rejected in model
II� III� IV and V at the �"�level� but not rejected by model I	 The statistics un�
der II�V are comparable with the generalized Wald and score statistics given in

��



Table � �rows two to �ve� in Miller et al	 for the GEE I independence estimator
and the GEE I correlation method with a saturated correlation model using ��
correlation parameters	

I II III IV V df

�	�� ��	�� �
	�� �
	�� �
	�� �

Table �� Likelihood ratio statistics

� Discussion

We have shown that the approach of Fitzmaurice and Laird can be extended
to the case of a multicategorical response	 The theoretical results coincide with
those obtained by them for multivariate binary data � as expected � since in both
cases the underlying joint distribution is the multinomial	 Loosely speaking�
things are only more complicate	 This is because we have a double multivariate
situation� each response is multivariate and we have correlated multivariate
responses while in the binary case we have �only� correlated univariate responses	
For a detailed discussion of the advantages and disadvantages of this approach
we refer the reader to Fitzmaurice� Laird and Rotnitzky ������	 In the following
we want to mention some other points and look for further interesting research
points	

We have made explicit the connection between the loglinear expansion of the
multinomial distribution and marginal models	 The approach is not limited to
the longitudinal data situation where we observe repeated outcomes of one re�
sponse variable	 Consider e	g	 a crossectional study where a number of di�erent
variables is measured at each individual	 If it is sensible to treat some of them
as explanatory variables �discrete or continuous� and some of them as �nominal
and%or ordinal� response variables� our extended approach can be used for a full
likelihood marginal regression model after specifying appropriately the margi�
nal mean model	 For a repeated ordinal response our approach is competitive
to the approach of Molenberghs et al	 ������ but can handle also more general
data situations	 The application on a sparse data situation illustrated that GEE
methods have not always to be the �rst choice but maximum likelihood can be
a feasible alternative	 Although we saw little variability of the point estimates
for the marginal model in the application in Table 
� simulations should clearify
howmuch bias in the estimates of the marginal parameters is introduced in �nite
samples if we totally misspecify the association model	 The results should be
compared e	g	 with the GEE I correlation method	 Another consideration would
be if e�ciency in �nite samples can be improved � compared with the GEE I
independence estimator � even if the association is misspeci�ed� e	g	 because it
varies moderate%considerable between individuals and we are only assuming a

��



simple association model common for all individuals	 Another interesting point
would be to get pre�estimates of the #margin free$ conditional associations and
solving only the score equations for �	 The covariance matrix would then be
determined by the actual estimates for the mean and the pre�estimates of the
conditional association	

A Example and formulas ��	 to ���	

In the following we drop the subject index i	 D� and D� are constructed by the
dummy coding scheme	 In the case T � �� R � �� we have �� � 
� cell proba�
bilities� where one is redundant	 Then D� is the matrix� where each row corre�
sponds to a possible outcome of Yi	 For example� the row associated with ����� or
log������� is ��� �� �� �� ����� where we need two dummies for each time point	 In

an obvious notation we write D� � �D��Y�
� � D��Y�

� � D��Y�
� � D��Y�

� � D��Y�
� � D��Y�

� �

where D��Yt
j � j � �� 
� t � �� 
� � is the column representing the j�th dummy at

time point t	 D� is the matrix where the columns denote certain interactions
between time points	 Each row of D� corresponds to a realization wi of Wi�
which depends on the outcome yi	 Let� for example� D��Y�

� D��Y�
� denote a co�

lumn vector built by an element by element multiplication of these two columns
of D�	 Then we use an obvious ordering and build D� as

D� � �D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� �

D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� �

D��Y�
� D��Y�

� � D��Y�
� D��Y�

� � D��Y�
� D��Y�

� D��Y�
� � D��Y�

� D��Y�
� D��Y�

� �

D��Y�
� D��Y�

� D��Y�
� � D��Y�

� D��Y�
� D��Y�

� � D��Y�
� D��Y�

� D��Y�
� �

D��Y�
� D��Y�

� D��Y�
� � D��Y�

� D��Y�
� D��Y�

� � D��Y�
� D��Y�

� D��Y�
� �

� �D��Y�Y�
�� � � � � � D��Y�Y�Y�

��� �

For example with m��m��m� � �� 
� � and D��Y�
�l � D��Y�

�l � denoting the elements

in row l of the column vectors D��Y�
� � D��Y�

� � the rules

D��Y�
�l �



� if for the associated �m�m�m� holds� �m�m�m� � �m����m�

� else

D��Y�
�l �



� if for the associated �m�m�m� holds� �m�m�m� � �m��m���

� else

determine columns � and � of D�	 The tenth column of D� results from the
product of these two columns or from the rule

D��Y��Y�
��l �



� if for the associated �m�m�m� holds� �m�m�m� � �m�����

� else

��D� and D� are therefore given by

�
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Interpretation of the parameters

In analogy to the notation of the columns of D� ans D� we denote the parame�
ters by � � ��Y�

� ��Y�
� ��Y�

� ��Y�
� ��Y�

� ��Y�
� � and � � ��Y�Y��� � � � � � �Y�Y�Y���� �	 With

ai from ��� we get� e	g	�

log������ � �Y�
� � ai

log������ � �ai

Substracting the second equation from the �rst leeds to

log������ � log������ � �Y�
�

or

�Y�
� � log

�
����
����

�
� log

�
P �Y� � �� Y� � �� Y� � ��

P �Y� � �� Y� � �� Y� � ��

�
� log

�
P �Y� � �jY� � �� Y� � ��

P �Y� � �jY� � �� Y� � ��

�
The �Yt

j � j � �� 
� t � �� 
� � can be interpreted as logits of conditional
probabilities�

�Yt
j � log

�
P �Yt � jjY�	t � ��

P �Yt � �jY�	t � ��

�
Considering e	g	 the system of equations

log������ � �Y�
� � �Y�

� � �Y�Y��� � a
log������ � � a

log������ � �Y�
� � �Y�Y��� � a

log������ � �Y�
� � a

it follows� that

�Y�Y��� � log������ � log������� log������� log������

� log

�
��������
��������

�
� log

�
P �Y� � �� Y� � 
jY� � ��P �Y� � �� Y� � �jY� � ��

P �Y� � �� Y� � �jY� � ��P �Y� � �� Y� � 
jY� � ��

�
�Y�Y��� is one of the four conditional log odds ratios of Y�� Y� given Y� � ��

��



Y�

Y�

Y� � �

�




�
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�������
�������
�������
�������
�������
�������
��������
�������
�������
�������
�������
�

�����������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������

��������
�������
��������
��������
��������
��������
��������
��������
���������
����������������������������������������������������������������������������������������

��������
�������
�������
��������
�������
��������
�������
��������
�������
��������
�������
�������
�������
�������
����

We have in general �t �� t�! j� � �� 
! j� � �� 
�

�
YtYt�
j�j�

� log

�
P �Yt � j�� Yt� � j�jY�	t��	t� � ��P �Yt � �� Yt� � �jY�	t��	t� � ��

P �Yt � j�� Yt� � �jY�	t��	t� � ��P �Yt � �� Yt� � j�jY�	t��	t� � ��

�
From the system of equations

log������ � �Y�
� � �Y�

� � �Y�
� � �Y�Y��� � �Y�Y��� � �Y�Y��� � �Y�Y�Y���� � a

log������ � �Y�
� � a

log������ � �Y�
� � a

log������ � �Y�
� � a

log������ � �Y�
� � �Y�

� � �Y�Y��� � a

log������ � �Y�
� � �Y�

� � �Y�Y��� � a

log������ � �Y�
� � �Y�

� � �Y�Y��� � a
log������ � � a

follows further� that

�Y�Y�Y���� � log

�
����������������
����������������

�
� log

�
��������
��������

�
� log

�
��������
��������

�
� log

�
P �Y� � 
� Y� � 
jY� � 
�P �Y� � �� Y� � �jY� � 
�

P �Y� � 
� Y� � �jY� � 
�P �Y� � �� Y� � 
jY� � 
�

�
�

log

�
P �Y� � 
� Y� � 
jY� � ��P �Y� � �� Y� � �jY� � ��

P �Y� � 
� Y� � �jY� � ��P �Y� � �� Y� � 
jY� � ��

�
�Y�Y�Y���� is the contrast of two conditional log odds ratios	 It is clear that con�
ditioning can also be done on Y� or Y�� i	e	 it holds also

�Y�Y�Y���� � log

�
��������
��������

�
� log

�
��������
��������

�
� log

�
P �Y� � 
� Y� � 
jY� � 
�P �Y� � �� Y� � �jY� � 
�

P �Y� � 
� Y� � �jY� � 
�P �Y� � �� Y� � 
jY� � 
�

�
�

log

�
P �Y� � 
� Y� � 
jY� � ��P �Y� � �� Y� � �jY� � ��

P �Y� � 
� Y� � �jY� � ��P �Y� � �� Y� � 
jY� � ��

�

��



Formulas ��� to ����

Formula ���� In the following we linearize the multiindex into a single index�
e	g	 ���� is attached as ��	 The underlying distribution of each individual i
is multinomial M ��� �i� �but� as already noted� we drop the subject index i
in the following�	 Let U � �U�� � � � � URT	�
�

� be a vector of random indicator
variables� where fUl � �g denotes the event that the observation i falls in cell l
�l � �� � � � � 
��	 Then it holds for the indicator functions IfUl	�g� E IfUl	�g �
P �Ul � �� � EUl � �l l � �� � � � � 
� or� in vector notation� EU � �	 We
now look at the indicator functions IfYt�j�	�g� t � �� 
� �� j � �� 
	 Then� as the

events fUl � �g are disjoint�

IfY������g 
 IfU���g � IfU���g � IfU���g � IfU���g � IfU���g � IfU	��g

� IfU
��g � IfU���g � IfU���g

IfY������g 
 IfU�
��g � IfU����g � IfU����g � IfU����g � IfU����g � IfU����g

� IfU�	��g � IfU�
��g � IfU����g

��� 

���

IfY������g 
 IfU���g � IfU���g � IfU���g � IfU����g � IfU����g � IfU�
��g

� IfU�
��g � IfU����g � IfU�	��g

or� using D��

IfYt�j�	�g � �D��Yt
j ���IfU�	�g� � � � � IfU�
	�g�

��

Thus we have

E�Yt�j�� � P �Yt�j� � �� � E IfYt�j�	�g

� �D��Yt
j �� E�IfU�	�g� � � � � IfU�
	�g�

�

� �D��Yt
j ���E IfU�	�g� � � � �E IfU�
	�g�

�

� �D��Yt
j ������ � � � � ��
�

�

� �D��Yt
j ���

or� in matrix notation�
E�Y � � D

��� �

Formula ��� is the analogous version of formula ��� for the expectations of
the products in W of the dummies Yt�j�	 For example WY�Y�

�� � Y����Y���� and

WY�Y�Y�
��� � Y����Y����Y����	 For di�erent time points t� t� and for j�� j�� j� � �� 


we have

IfYt�j��	��Yt��j��	�g
� �D

��YtYt�
j�j�

���IfU�	�g� � � � � IfU�
	�g�
�

and
IfY��j��	��Y��j��	��Y��j��g � �D��Y�Y�Y�

j�j�j�
���IfU�	�g� � � � � IfU�
	�g�

��

��



For example we have IfY����	��Y����	�g � IfU�	�g � IfU�	�g � IfU�	�g and
IfY����	��Y����	��Y����	�g � IfU�	�g	 Taking expectations yields

E IfYt�j��	��Yt��j��	�g
� E�Yt�j��Yt��j��� � �D

��YtYt�
j�j�

���

and

E IfY��j��	��Y��j��	��Y��j��g � E�Y��j��Y��j��Y��j��� � �D��Y�Y�Y�
j�j�j�

����

For example E IfY����	��Y����	��Y����	�g � P �Y���� � �!Y���� � �!Y���� � �� �
E IfU�	�g � ����	 In matrix notation we can write

EW � D
����

Formula �	�� A standard result for the multinomial distribution is �see e	g	
Agresti� ����� p	�
�� Cov�U � � diag��� � ��� where #diag$ denotes a diagonal
matrix	 For t� t� � �� 
� � and j�� j� � �� 
 we can write

IfYt�j��	��Yt��j��	�g
� �D

��YtYt�
j�j�

���IfU�	�g� � � � � IfU�
	�g�
� �if t �� t�	

� �D��Yt
j�

�D
��Yt�
j�

���IfU�	�g� � � � � IfU�
	�g�
�

�also if t � t�	

� �D��Yt
j�

��diag�IfU�	�g� � � � � IfU�
	�g��D
��Yt�
j�

� �

Note that E�Yt�j��Yt��j��� � � for t � t�� j� �� j� which is also re
ected by the

fact that the element by element product of D��Yt
j�

and D��Yt
j�

is zero for j� �� j�	
We get

E�Yt�j��Yt��j��� � P �Yt�j�� � �!Yt��j�� � �� � E IfYt�j��	��Yt��j��	�g

� E�D��Yt
j�

�� diag�IfU�	�g� � � � � IfU�
	�g��D
��Yt�
j�

�

� �D��Yt
j�

�� diag����D
��Yt�
j�

��

and the result

Cov�Yt�j��Yt��j��� � E�Yt�j��Yt��j��� � E�Yt�j��� E�Yt��j���

� �D��Yt
j�

�� diag����D
��Yt�
j�

�� ��D��Yt
j�

������D
��Yt�
j�

����

� �D��Yt
j�

�� diag����D
��Yt�
j�

�� �D��Yt
j�

������D
��Yt�
j�

�

� �D��Yt
j�

���diag��� � �����D
��Yt�
j�

�

� �D��Yt
j�

��Cov�U ��D
��Yt�
j�

�

or� in matrix notation�

Cov�Y � � D
���diag���� ����D��

��



Formulas ��
�� ���� and ���� can be derived in a similar manner	 As

an example for applying formula ��
� let WY��Y�
�� � Y����Y���� and WY��Y�

�� �
Y����Y����	 Then

Cov�W Y��Y�
�� �WY��Y�

�� � � E�Y����Y
�
����Y������ E�Y����Y����� E�Y����Y�����

� ����� ���
�
��

� �D��Y�Y�
�� �D��Y�Y�

�� ��� � �D��Y�Y�
�� ����D��Y�Y�

�� ���

� �D��Y�Y�
�� ���diag��� � �����D��Y�Y�

�� �

B Derivation of the score equations

We give a detailed description of the way to get the score equations although
we could refer the reader to the Appendix of Fitzmaurice and Laird ������	
Alternatively� results in Zhao� Prentice and Self ����
� could be used by noting
that our model is a special case of their partly exponential model	 To see this
choose D��i for the shape function c��� in the partly exponential model	

We now calculate the derivation with respect to ��� �� of the contribution
li of an individual i to the loglikelihood	 let l denote the cell in which the
response Yi of individual i falls with probability �il� l � �� � � � � RT 	 Assume
that we observed a response Yi � yi and the observed index of the cell to which
the observation belongs is l	 Since the underlying distribution is multinomial�
the contribution of individual i to the loglikelihood is li�yi� � log��il�	 Consider
the parameter transformation from ��i��i� to ��i�&i� with �i � �i��i��i� �see
Section �� and &i � &i��i� � �i �the identity function�	

Treating the loglikelihood as a function of ��i��i�� li���i��i��i��&i��i���
we get by use of the chain rule

	l

	�s�

�
X
s�

	l

	�s�

	�s�
	�s�

�
X
s�

	l

	&s�

	&s�
	�s�

����

	l

	�s�

�
X
s�

	l

	�s�

	�s�
	�s�

�
X
s�

	l

	&s�

	&s�
	�s�

�
��

where we have dropped the subject index i and s�� s�� s�� s� represent vec�
tor indices running from � to the appropriate length of the parameter vec�
tors	 The partial derivatives �l

��s�
and �l

��s�
�lefthand side of ���� and �
���

can be computed directly from the loglinear representation of the joint distri�

bution �as shown in the next section�	 The partial derivatives
��s�
��s�

�
��s�
��s�

�
��s�
��s�

�
��s�
��s�

are elements from the Jacobian �matrix� of the applied parame�

ter transformation	 Let
��s�
��s�

be the element on row position s� and co�

lumn position s� of the matrix ��

�� 	 Use the analogous notation for the other

��



three derivatives	 Now turn back to matrix notation	 By use of the formulaP
a vectoramatrixab � �matrix�vector�b� ���� and �
�� can be written as�

	li
	�i

�
s�

�

��
	�i
	�i

���
	li
	�i

�	
s�

�

��
	&i
	�i

���
	li
	&i

�	
s�

�
��

�
	li
	�i

�
s�

�

��
	�i
	�i

���
	li
	�i

�	
s�

�

��
	&i
	�i

���
	li
	&i

�	
s�

�

�

or in matrix notation

�� �li
��i

�li
��i


A �

�BB�
�
��i
��i

�� �
��i

��i

��
�
��i
��i

�� �
��i

��i

��

CCA
�� �li

��i

�li
��i


A �
��

As shown below�
�
��i
��i

�
� Cov�Yi�� a symmetric matrix�

�
��i

��i

�
� ��

�
��i
��i

�
�

Cov�Yi�Wi�� the transposed of which is Cov�Wi� Yi��
�
��i

��i

�
� I� �li

��i
� yi � �i

and �li
��i

� wi � �i	 Substituting these expressions in �
�� yields�� yi � �i

wi � �i


A �

�� Cov�Yi� �

Cov�Wi� Yi� I


A�� �li
��i

�li
��i


A �
��

or� by multiplication with the inverse from the left�� �li
��i

�li
��i


A �

�� Cov�Yi� �

Cov�Wi� Yi� I


A���� yi � �i

wi � �i


A �
��

Using a formula for inverting partioned matrices �e	g	 Rao and Toutenburg
������� p	
��� we get�� �li

��i

�li
��i


A �

�� Cov�Yi�
�� �

�Cov�Wi� Yi� Cov�Yi�
�� I


A�� yi � �i

wi � �i


A �
��

Note that we have assumed that the inverse Cov�Yi�
�� exists	 Otherwise the

transformation can not be applied	 A su�cient but not necessary condition for
Cov�Yi� being positive de�nite is that all cell probabilities are greater than zero	

��



Applying the chain rule once more we get���li
��

�li
��


A �

�B�
�
��

��

��
�

�
�
��
��

��

CA
�� �li

��i

�li
��i


A

�

�B�
�
��

��

��
�

�
�
��
��

��

CA
�� Cov�Yi��� �

�Cov�Wi� Yi� Cov�Yi��� I


A��yi � �i

wi � �i


A�
��

Multiplying the righthand side yields the two separate equations for � and ��
���� and ����� in section �	

Derivation of the loglikelihood with respect to ��i��i�

We now derive the formulas

	li
	�i

� yi � E�Yi� � yi � �i �
��

	li
	�i

� wi � E�Wi� � wi � �i �
��

Proof of ���� and ��	� Let D�
l denote the l�th row of D� and D�

ls�
a

speci�c element in D� in row l and column s�	 Assume that the observation
of individual i� yi� falls in cell l	 With ��� and ���� the contribution to the
loglikelihood is

li � log��il� � D�
l �i �D�

l �i � ai

Following results in Agresti ������ p	 ���� we have for arbitrary elements �is�

and �is� of �i and �i

	�il
	�is�

� �ilD
�
ls�

� �il

RTX
k	�

D�
ks�

�ik

	�il
	�is�

� �ilD
�
ls�

� �il

RTX
k	�

D�
ks�

�ik

Now� 	li�	�is� � ����il��	�il�	�is�� and 	li�	�is� � ����il��	�il�	�is��	 It
follows that

	li
	�is�

� D�
ls�

�

RTX
k	�

D�
ks�

�ik

	li
	�is�

� D�
ls�

�

RTX
k	�

D�
ks�

�ik


�



Noting that by construction of D� and D�� y�i � D�
l and w�

i � D�
l this is

equivalent to

	li
	�is�

� yis� �
RTX
k	�

D�
ks�

�ik � yis� � �is�

	li
	�is�

� wis� �

RTX
k	�

D�
ks�

�ik � wis� � �is�

where we have identi�ed the two sums on the right side as the elementwise
versions of ��� and ���	 Applying matrix notation yields the postulated result	

Jacobian matrix of the transformation

Using the notation as in the subsection before and with s� and s� running both
from � to Tr� it holds

	�i�s�
	�i�s�

�
RTX
k	�

D�
ks�

�
	�ik
	�i�s�

�
�

RTX
k	�

D�
ks�

���ikD�
ks�

� �ik

RTX
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D�
ms�

�im


A
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R
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k	�

D�
ks�

D�
ks�

�ik �
R
TX

k	�

D�
ks�

�ik

R
TX

m	�

D�
ms�

�im

Converting to matrix notation and looking at the proof of formula ��� in Ap�

pendix A yields the result that
��i�s�
��i�s�

is the element in row s� and column s� of

the matrix D
�� �diag��i�� ����D� � Cov�Yi�	 The result ��i

��i
� Cov�Yi�Wi�

can be obtained in an analogous manner	 Finally� ��i

��i
� � and ��i

��i
� I follow

from the fact that &i��i� � �i does by construction not depend on �i but is
the identity function	

C Expected Fisher Information Matrix

It is
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E

��
	li
	�

��
	li
	�

��
�

� E

��
	&i
	�

�� �
�Wi � �i� � Cov�Wi� Yi� Cov�Yi�

�� �Yi � �i�
�
��

�Yi � �i�
�
Cov�Yi�

��

�
	�i
	�

���
�

�
	&i
	�

��

Cov�Wi� Yi� Cov�Yi�
��

�
	�i
	�

�
�

�

�
	&i
	�

��

Cov�Wi� Yi� Cov�Yi�
��

�
	�i
	�

�
� �

It follows that � und � are orthogonal parameters in the sense of the de�nition
of Cox and Reid ������ ����� and the expected Fisher information matrix is�BB�
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�
	 Further� the asym�

ptotic covariance matrix of �b�� b��� Cov�b�� b��� is block diagonal with upper left
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