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Abstract

The generalized method of moments (GMM) estimation technique is
discussed for count data models with endogenous regressors. Count data
models can be specified with additive or multiplicative errors. It is shown
that, in general, a set of instruments is not orthogonal to both error types.
Simultaneous equations with a dependent count variable often do not have
a reduced form which is a simple function of the instruments. However, a
simultaneous model with a count and a binary variable can only be logically
consistent when the system is recursive. The GMM estimator is used in the
estimation of a model explaining the number of visits to doctors, with as a
possible endogenous regressor a self-reported binary health index. Further,
a model is estimated, in stages, that includes latent health instead of the
binary health index.
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1. Introduction

In many economic applications the variable of interest is a count process, for
example the number of visits to the doctor, job applications or patent applications.
The modelling and estimation of such inherently nonlinear processes are well
established nowadays, with early references Gourieroux, Monfort and Trognon
(1984), Cameron and Trivedi (1986) and McCullagh and Nelder (1983, 1989).
Recent developments are surveyed by Gurmu and Trivedi (1994) and Winkelmann
and Zimmermann (1995).

In microeconomic applications, explanatory variables are often simultaneously
determined with the dependent variable, resulting in coefficient estimates that are
inconsistent when obtained by standard methods. Techniques for dealing with si-
multaneity in count data regression models are largely underdeveloped when com-
pared to the continuous data case. In a recent paper, Mullahy (1996) discusses
instrumental variables, or generalized method of moments, and two stage estima-
tion methods for Poisson regression models in a specification where unobserved
heterogeneity is correlated with the regressors. Testing for exogeneity has been
discussed earlier by Grogger (1990), who proposed use of the Hausman test after
estimation of the model by non-linear instrumental variables.

In this paper we discuss the generalized method of moments (GMM) estima-
tor for count data models with endogenous regressors, utilizing first-order mo-
ment conditions only. Given a set of exogenous instruments for the endogenous
variables, the GMM estimation method provides consistent estimates for the pa-
rameters.

Count data regression models can be specified with additive or multiplicative
errors. These specifications are in principle observationally equivalent when only
the first order conditional mean is specified. Differences arise, however, when the
choice of instruments in the two specifications under endogeneity is considered, as
the same set of instruments is, in general, not orthogonal to both type of errors.

For nonlinear models, the reduced form for endogenous regressors often has a
very complicated structure. This is also the case for the reduced form of simulta-
neous equation models that include a dependent count variable. A specification
we analyse and use for the modelling of demand for health care, is that of a bi-
nary variable which is simultaneously determined with the count variable. Such
a system is coherent in the sense of Blundell and Smith (1994), only when it is
recursive. For this model, an alternative to GMM estimation, which amounts
to instrumenting the binary variable, is the estimation in two stages of a model
which is specified in terms of a latent continuous variable. This latent variable
determines the binary outcome by means of a threshold transformation.

The model specifications and estimators are applied to a model for visits to



or by a doctor (general practitioner) in the last month before the interview, uti-
lizing data from the British Health and Lifestyle Survey 1991-1992. Models that
explain the number of visits to the doctor have also been analysed by Cameron
et al. (1988) and Pohlmeier and Ulrich (1995) for Australian and German data
respectively. Factors such as income and education are likely to have a direct
effect on demand for medical care, but are also important determinants of health,
which in turn affects demand. In order to estimate the direct effects of income and
education, a measure of health has to be included in the model. The measure we
consider is a self-reported health index that is likely to have measurement error
which is correlated with the number of visits to the doctor. We therefore instru-
ment the binary health index by estimated reduced form probabilities. Finally, a
model is estimated which includes underlying latent health instead of the binary
health index.

The outline of the paper is as follows. In section 2 the GMM estimation
technique is presented. Section 3 discusses simultaneous models and section 4
presents the estimation results for the demand for doctors. Section 5 concludes.

2. Generalized Method of Moments Estimation

Before discussing the estimation of count data models with endogenous regressors
by generalized method of moments, we first present the standard Poisson model
for count data.

Let y;, 2 = 1,..., N, denote the dependent count variable, which is indepen-
dently Poisson distributed, with the conditional mean specified as

B (yi|z:) = p = exp(z)0), (2.1)

where x; is a k-vector of explanatory variables and (3 is a k-vector of parameters.
The maximum likelihood estimator, denoted 3,1, solves the first-order condition
X' (y—p) = 0, where X is an N X k matrix, and y and p are N-vectors, and

VvIN (B ML — ﬂ) has a limiting normal distribution with mean zero and variance the

limit of (%X’MX)J, where M = diag (y;). In practice, the standard errors are
often biased due to the presence of over- or underdispersion. Correct standard
errors in these cases are computed from the estimated variance of the Poisson
pseudo-likelihood estimator 3py (= BML), (Gourieroux, Monfort and Trognon

(1984)):

Var (Bon) = (F1X) " (00— ) (X'71)

where M = diag (@;), and fi; = exp (a:;ﬁpL> = exp (x;ﬁML>
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The conditional mean specification (2.1) implicitly defines a regression model
Yi = pi +u; = exp(aif) + u;,

with E(u;|x;) = 0. The generalized method of moments (GMM) estimator (see
Hansen (1982), Ogaki (1993)), based on this moment condition only, minimizes

(y—p) XWX (y — ), (2.2)

where Wy is a weight matrix. As the minimum of (2.2) is obtained at X' (y — p) =
0, the GMM estimator for 3 will be the same as the Poisson maximum likelihood
estimator. The efficient GMM estimator is obtained for Wy = Var (X' (y — p)) =
X'QX. When the variance equals the mean, € is equal to M and the variance
of the GMM estimator is equal to the variance of the Poisson maximum likeli-
hood estimator. The variance of the GMM estimator is equivalent to the pseudo-
likelihood variance when (X’QX)fl is estimated by Y, (y; — ﬁl)Q XXl
When some elements of z; are endogenous, implying that

E (u;|x;) # 0, (2.3)

the Poisson ML estimator will be inconsistent. If there are instruments z; available
such that

then the consistent non-linear instrumental variables (NLIV) estimator (see Amemiya
(1985)) is given by minimisation of

(y—w)Z(Z2'2) 2"y — p), (2.4)

and is a one step GMM estimator.! The efficient two step GMM estimator, given
the instruments, is found by minimisation of

(y—p) 2(ZQ2) 1 7' (y — ),

where
N

207 =3 (y; — is) 2,
7=1

is an estimate of the (asymptotic) variance of Z'(y — p), with fi; = exp(z}3),
and g is the first round estimate of §. Denote the two step GMM estimator

IThe NLIV estimator clearly does not take into account the heteroscedasticity of u. A
‘Poisson’ type first round estimator is obtained by minimizing (y — )’ Z(Z'MZ) 1 Z'(y — p),
which should be iterated till convergence.



by BG ma2- Under standard regularity assumptions, the limiting distribution of
VN (B — 5) is normal with mean zero and variance the limit of

1 B -1
<N (X'MZ)(Z'07)" (Z’MX)>

Optimal instruments, which minimize the variance of the two step GMM es-
timator, are given by (see, for example, Davidson and MacKinnon (1993))

7 =E(Q'D|Z)

where D is the matrix of derivatives (y — p)/93, which is equal to —M X. The

optimal instruments therefore are
7 =B (Q'MX|Z).

When Z = X, i.e. there is no endogeneity, the optimal instruments for the Poisson
model are given by X. For Z # X, it is in general impossible to get consistent
estimates of Z*. A reasonable working hypothesis may be to specify Q = M,
which leads to the use of the instruments X = E (X|Z). A test for overidentifying
restrictions can be obtained by augmenting the instruments X by the elements
of 7 different from and not collinear with X , and using the standard test for
overidentifying restrictions for the GMM estimator that utilizes the augmented
instrument matrix.

2.1. Additive vs Multiplicative Errors

A multiplicative model is specified as

yi = exp (0 + 73) = exp (v;9) vi = pivi, (2.5)

which is motivated by treating the unobservables 7; and observables x; symmet-
rically. In principle, the multiplicative and additive models are observationally
equivalent when only the first order conditional mean is specified (see Wooldridge
(1992)). Diferences arise, however, when the choice of instruments in the two
specifications under endogeneity is considered.

Endogeneity occurs in (2.5) when F(v;|x;) # 1. Let z; be a set of instruments
which satisfy F(v;]z;) = 1, then an instrumental variable estimator can be based
on the residual v; — 1, which is equal to (y; — p;)/1ts = u;/p;. Under endogeneity
the same set of instruments can, in general, not be orthogonal to u; and w;/p; at
the same time, i.e. when F (u;|z;) = 0, it follows in general that F (%ﬂz& #0
due to the correlation between u; and p;.



Which transformation should be used in the GMM estimation when there is
endogeneity present is an empirical issue which can be tested by the standard test
for overidentifying restrictions in cases where there are more instruments than
endogenous variables. The two step GMM estimator in the multiplicative model
minimizes the objective function

(y—p) M 220 2) 2 My - p),
where 7'Q2*Z is the asymptotic variance of ZM !(y — p). When Z = X in the
Poisson model, with Q* = M !, this becomes
(y — ) MTIX(X'MTX) XM (y — p), (2.6)

which is equivalent to a heteroscedasticity corrected objective function. Clearly,
(2.6) will not yield Poisson ML estimates. However, the optimal instruments for
the multiplicative model are given by

7 =E(Q'WX|7),

where W = diag(y;/p;). When Z = X and Q* = M1, this reduces to Z7* = M X,
and the estimator minimizing (2.6) with M X as instruments is the same as the
Poisson ML estimator. Equivalently, if Z are valid instruments in the additive
model, then M7 are valid instruments in the multiplicative model, giving the
same estimation results for the two model specifications.

Mullahy (1996) proposed use of the transformed residual u;/; in a model with
unobserved heterogeneity which is correlated with (some of) the regressors. His
model is specified as

Yy = exp (1;08) i + £ = pani + <4, (2.7)
where 7; is the unobserved heterogeneity term and
Esilz) =0 5 E(milz) # 1.

Clearly, model (2.7) is observationally equivalent to the multiplicative model (2.5)
with endogeneity.

3. Simultaneous Equations

Specifying a simultaneous equations model where one dependent variable is a
count, and which has a reduced form with a simple structure, is virtually impos-
sible. Consider for example a two equation model with a count variable and a



continuous variable that are simultaneously determined. The system of equations
can be specified as

= explay, +210) +uy
Yo = YY1+ 2h8 + ug,

and the reduced form for ¥, has to be derived from
yo = yexp(ays + 210) + 256 + yur + s,

which does not reduce to a simple equation for .

A model specification we are particularly interested in, given the application
in the next section, is that of a simultaneous model with a count and a binary
variable as endogenous regressors. The possible model specifications are

vy = exp(ay; +240) + ui (3.1)

Ys = YY1+ H6 + us
Cov (uj,us) = X7,

and

1 = exp(ays + 21 0) +w (3.2)

Y = Wit wy6 +
Cov (ur,us) = X,

where in both cases ¢35 is and unobserved latent variable. The binary variable s
is related to y; by

v2 = 1 if y3>0
¥y = 0 otherwise.

As discussed above, for model (3.1) the reduced form of y; is a complicated
function of the exogenous variables. For model (3.2), where the binary variable
enters the mean function of the count variable directly, the logical consistency, or
coherency, is an issue. Following Maddala (1983, p.118) and Blundell and Smith
(1994) it is easily established that model (3.2) is only coherent when v = 0 or
a =0 as,

Plys = 1)+ P(y2=0)
F (yexp(a+zi) + a46) + (1 — F (yexp (24) + a,6))
= 1if y=0 or a=0.
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This result means that if a binary variable is included in the exponential mean
function of the count variable, and the two variables are simultaneously deter-
mined, this simultaneity arises via the correlation of u; and wus.

For model (3.1), which is specified in the latent variable only, the parameters
cannot be estimated by GMM as y; is not observed. The model may, however,
be estimated by substituting some reduced form of 4} into the mean function of
y1. For example, if v =0, (3.1) is written as

Y1 = exp (axyd + 21 3) exp (qus) + ug, (3.3)

and the parameters of this model can be estimated consistently if us is independent
of x5 and z1. One way to estimate 0, is to estimate the model in stages. The first
stage is to estimate /0, by logit or probit. The second stage is to substitute the
estimator for §/0,, into (3.3) and to estimate the model by, for example, Poisson
pseudo-likelihood. The standard errors of such an estimator have to be adjusted
to take account of the estimation in stages.

For model (3.2), however, estimation in stages does not give consistent esti-
mates of the parameters. If the conditional mean of ¥, is specified as

E (yo|in) = F (x356) ,
with F' a CDF, then estimation in stages of the equation

Y1 = exp (YF (20) + 2}, 8) exp (ywa) + uy

leads to biased results due to the fact that the moments of wy = yo — F' (z,3) are
dependent on Ty, as E (w3 |zs:) = F (z,6) (1 — F (2),6)), and so E (exp (wy)) is
a function of the parameters and regressors.

A consistent estimator for («, 3) in model (3.2) is the GMM estimator, and
a natural choice of instrument for yy is F (:17;25 , Where § is the logit or probit
estimator of 6.

4. Demand for Health Care

In this section we estimate models for the demand for health care in terms of
the number of visits to the doctor. A self-reported health index is included as a
regressor, which is likely to be endogenous.

The data are taken from the British Health and Lifestyle Survey 1991-1992
(HALS?2). This survey is a follow-up from a previous survey in 1984-1985. In the
first survey the people interviewed were 18 years and older, and so the minimum
age of the people interviewed in the second survey is 25. Of the original sample,



59% were interviewed in the follow-up. The drop out rates between the two
samples, due to death, refusal and non-tracing, affect the sampling distribution,
and the HALS2 survey cannot be considered to be a representative sample of the
adult population of 25 years and older (see HALS2 User Guide). For example,
a higher proportion of interviews was achieved in non-manual than in manual
groups. However, the age/sex distribution of the HALS2 and the 1991 census
data compare reasonably well. The total number of respondents is 5352, but due
to missing information in some of the variables, especially the income variable,
the sample size for the estimation of the models is reduced to 4814.

The dependent count variable is the number of visits to or by a doctor (general
practitioner) in the month before the interview. Variables that are included in
the demand equation are sex, age, marital status, education, employment status,
income, short term health status, and the self-reported general health index. The
binary health index, denoted H;, is defined as

H; = 1 if health is fair-poor
H; = 0 if health is excellent-good.

Descriptions and summary statistics of the variables are given in Table 2 in the
Appendix.

In column (1) of Table 1 we first present Poisson pseudo-likelihood (PL) results
for the model which includes the binary general health variable. The coefficient of
H; is 0.38 and is significant with a t-value of 5.78. As mentioned before, it is likely
that the self-reported health index has measurement error that is correlated with
the number of visits to the doctor, as people who have recently visited a doctor
may under-report their general health. In order to test whether the health index
is endogenous, we specify the model as

yi = exp(aH; +z;3) +u; (4.1)
HY = zi6+w; (4.2)
H, = 1if H>0; H;=0 otherwise.

The z; are the instruments, which are variables that explain health, but are
not likely to determine demand for doctors, other than via health. These variables
are alcohol consumption and smoking behaviour, socio-economic status, regional
variables, housing variables, work status and long term health indicators. A listing
of the instrumental variables is given in the Appendix. Further, z; also contains
Z;.

The equation for health, (4.2), is the reduced form for H}. As argued in section
3, the structural equation of H} cannot be a function of the number of visits to
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the doctor for the system to be coherent. This does not seem an unreasonable
specification for this particular application. H} can be interpreted as long term
health, whereas the number of visits to the doctor is in the last two weeks before
interview. If there are any positive idiosyncratic shocks to short term health this
will be reflected by a higher than average number of visits to the doctor in that
period. It may also lead to a perception of a person’s own long term health being
worse than they would normally have reported. This means that the idiosyncratic
shocks © and w in equations (4.1) and (4.2) are correlated, while the number of
visits to the doctor does not have a direct effect on long term health per se.

After logit estimation of the reduced form (4.2), a RESET-type test for mis-
specification and tests for heteroscedasticity did not indicate misspecification.
Further, powers (of the few non-dummy variables) and cross products that were
considered most likely to contribute to the explanation of health, were not jointly
significant. Therefore, the linear reduced form specification for H} does not seem
inappropriate.

INSERT TABLE 1 HERE

In column (2) of Table 1, the results of the GMM estimator are presented, using
as instruments ( F’ (zﬁ) , zé), with F' the logistic CDF. The value of the parameter
of the health index is now equal to 0.24, a smaller value than before which is
expected given the presumed positive correlation of H; with the number of visits
to the doctor. The difference, however, is not statistically significant as indicated
by the Hausman test for endogeneity, comparing the estimated coeflicient of H,
and its variance in column (2) with those in column (1). This result is due to the
large estimated standard error of the coefficient in the GMM model. When the
Hausman test is computed comparing all coefficients, the statistic is significant.
This result, however, seems to arise from the fact that some standard errors are
very close in both models. For example, when the constant is not considered in
the test, the Hausman test statistic is insignificant. Further, some standard errors
are smaller in the GMM model than in the PL model, giving an indefinite variance
matrix for the difference in the parameters. Following an idea in Browning and
Meghir (1991), we split the sample randomly into two equal subsamples and
compared the estimation results for the PL model based on one subsample with
the estimation results of the GMM model for the other subsample. The resulting
Hausman test statistics were not significant.

Although the GMM estimator does not give conclusive evidence of the endo-
geneity of the self-reported health index, due to its relative imprecision, a compar-
ison of the results of the additive specification to those of the multiplicative model
(of which the full set of results are not presented here) gives some indication of
endogeneity. First of all, we found that the test for overidentifying restrictions
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was rejected in the multiplicative model with a p-value of 0.00035, compared to a
p-value of 0.0607 in the additive model. From the results of section 2.1, this would
indicate that z and u are uncorrelated, but that z and u/u are correlated, which
could occur when u and p are correlated. Further, the pseudo-likelihood esti-
mated coefficient of H; in the multiplicative model was 0.4279, whereas the GMM
estimated coefficient was higher and equal to 0.4975. This result seems implau-
sible given the positive correlation between visits to the doctor and self reported
health. The two results together indicate that the z; seem proper instruments for
the additive model, whereas they are not for the multiplicative model.

Next, we proceed by estimating, in stages, the model that includes latent
health H} instead of H;, which is perhaps the most appropriate way of modelling
health. The estimation results are presented in column (3) of Table 1. The first-
stage parameter vector ¢ is estimated by the logit model, using the same reduced
form (4.2), and the second stage is estimated by Poisson pseudo-likelihood. The
coefficient of H* is equal to 0.11 and is significant. The results are quite similar to
those in columns (1) and (2), but overall, the latent health specification adjusts
the parameters more for the health effect. The results indicate that males visit the
doctor less often than females. Marital status does not have an effect, and the age
structure for demand is quadratic with a peak at around 57 years. This seems quite
a low age, but this result is primarily driven by the conditioning on short term
health (Hlimit), which is positively correlated with age. Higher educated people
visit the doctor less frequently than lower educated people, with the exception
of the highest educated. Being unemployed does increase the demand, but this
effect is not significant. The effect of income is slightly nonlinear, with the higher
and lowest income groups having lower demand. The short-term health indicators
are the most important in determining the demand for doctors in the last month
before the interview.

5. Conclusions

This paper has examined the estimation of count data models with endogenous re-
gressors, using the generalized method of moments (GMM) estimation technique.
It has been shown that for model specifications with an additive or a multiplica-
tive error term, the same set of instruments will not, in general, be orthogonal to
both error types.

The GMM estimation technique has been used to estimate a model for the
explanation of the number of visits to the doctor by individuals. In the model
specification, a self-reported health index was likely to be simultaneously deter-
mined. For nonlinear models it is often difficult to obtain the reduced form of
the endogenous regressor as a simple function of the instruments. However, a

11



simultaneous model of a count and a binary variable can only be logically consis-
tent when the system is recursive. In the demand for doctors model, the binary
health index was instrumented by the estimated probabilities of a reduced form
logit model, which resulted in a smaller estimated coefficient when compared to
the estimation by Poisson pseudo-likelihood. This difference was, however, not
significant.

The model was finally specified in terms of continuous latent health, instead of
the binary health index. This specification was estimated by a two stage estima-
tion procedure, using the same reduced form logit estimates to form predictions

of health.
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A. Formula for Adjusted Standard Errors in Two-Stage Es-
timation Procedure

Consider the model

yi = exp(aH; 4 2,8) +u;
Hf = 28,

where & is the logit estimator. The asymptotic variance of the Poisson ML es-
timator 6, with 0 = (a,3) follows from the asymptotic identity (see Maddala
(1983, p 243))

- Plog L\] ' [dlog L Olog L\ /-
9_9__lE<aeaef )] l 20 +E<aea& (6-9)|.

If we then let the variance of the count model be general, the asymptotic variance

of 0 is given by

(X*MX*) ' XYQX* + o* XYM Z(Z'PZ) " 2 MX*
—aXYMZ(Z'PZ) ' ZWX* —aX*"WZ(Z'PZ) ' ZMX*|(X*MX*)

where

X* =[26 X]
M = diag(p;) ; P =diag(F,(1 - F)))
Q = diag (E (i — m)Q) ;. W =diag (B (y; — p) (H; — 1)),

0, and by replacing €2 and W by diag F

and which is estimated by substituting the estimates @&, ﬁ and § for a, 3, and
respectively.

B. Summary Statistics and Instruments

Summary statistics of the dependent and explanatory variables are given in Table

2.

INSERT TABLE 2 HERE
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The instruments used in the GMM estimation are the explanatory variables
plus:

Workstatus - fulltime, parttime, permanently sick or disabled,
retired, full time education, home

Social Class - 7 classes

Accomodation - house, bungalow, other

Region - 11 regions

Alcohol - nondrinking, units taken last week (and squared)
of beer, wine and spirits

Smoking - ever smoked, smoke now

Long term health - long-standing illness, disability or infirmity

Other - using oral contraceptive

14
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Table 1. Estimation Results

(1) (2) (3)

Model PL GMM PL two stage
Var b se b se b se
Const -2.2752  0.5297 -2.5864  0.3298 -1.9693 0.5707
Male -0.2748  0.0590 -0.2583  0.0620 -0.2953 0.0628
Single -0.0104  0.1040 -0.0082 0.1064 -0.0388 0.1077
Age 0.0343 0.0124 0.0469 0.0125 0.0324 0.0129
Age? -0.0298  0.0114 -0.0418 0.0112 -0.0277 0.0118
Edu2 -0.2336  0.1518 -0.1984  0.1487 -0.1864 0.1564
Edu3 -0.2146  0.0853 -0.2206  0.0887 -0.1923 0.0883
Edu4 -0.2630  0.1200 -0.2974  0.1250 -0.2217  0.1228
Edub 0.1477  0.1008 0.0759 0.1056 0.1718 0.1057
Unem 0.1416  0.1596 0.0939 0.1685 0.1559 0.1587
Inc2 0.1089  0.0644 0.0859 0.0646 0.1254  0.0649
Inc3 -0.1894  0.1080 -0.2534  0.1148 -0.1470 0.1128
Inc4 -0.5484  0.1920 -0.6924 0.2137 -0.5112 0.1937
Tempsick 0.5898  0.1423 0.6363 0.1401 0.5565 0.1501
Pregnant 0.9187  0.2025 0.8793 0.2202 1.0346 0.2351
Hlimit2 0.8191  0.0700 0.8917 0.087 0.7629 0.0918
Hlimit3 1.1313  0.0895 1.2176  0.1232 1.0462 0.1281
Hlimit4 1.5032  0.1053 1.6230 0.1497 1.3621 0.1715
H 0.3832  0.0662 0.2448  0.2030

H* 0.1112 0.0412
R? 0.1910 0.1841

Test  DoF  p-value

Hausman endogeneity test  0.5195 1 0.4711

Overidentification test 47.61 34 0.0607
Notes to Table: The sample size is 4814. The dependent variable is “Visits”.

PL is the Poisson pseudo-likelihood estimator. GMM is iterated till convergence
and is based on the instrument set (F (zéé) ,z’), with F' the logistic CDF. The

%

R? measure is based on deviance residuals (see Cameron and Windmeijer (1995)).
The Hausman test for endogeneity is based on the coefficients of H;. The test for
overidentifying restrictions is the standard GMM y2-test. I} is predicted by zl’g,
with & the logit estimator. The standard errors for the two stage estimator are
corrected for the estimation in stages (see Appendix A).
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Table 2. Summary Statistics

Var Description Mean St dev Min Max
Visits # visits to/by a GP in 0.4026 0.8059 0 10
the month before interview

Male sex = male 0.4348 0.4958 0 1
Age Age 51.32 1587 25 96
Age? AgexAge/100 28.86 17.22 6.25 92.16
Single Single 0.0956 0.2940 0 1
Unem Unemployed 0.0270 0.1621 0 1
Education

Edul CSE Grades 1-5 0.1664 0.3724 0 1
Edu2 GCE ‘A’ level 0.0357 0.1856 0 1
Edu3 ONC/OND/HNC/HND 0.1388 0.3457 0 1
Edu4 Teacher /Nurse 0.0538 0.2256 0 1
Edub Professional /Degree 0.1248 0.3306 0 1
Edub6 Other 0.0372 0.1893 0 1
After tax weekly personal income (£)

Incl (.,100) 0.4508 0.4976 0 1
Inc2 [100,250) 0.3637 0.4811 0 1
Inc3 [250,400) 0.1359 0.3427 0 1
Inc4 [400,.) 0.0496 0.2172 0 1

Short term health

Pregnant Pregnant at time of interview 0.0058 0.0761 0 1
Tempsick Out of work as temporarily sick 0.0042 0.0643 0 1
Hlimit1 Activities in last month not 0.7154 0.4513 0 1
limited by health

Hlimit2 a little limited 0.1751 0.3801 0 1
Hlimit3 quite a lot 0.0669 0.2499 0 1
Hlimit4 a great deal 0.0426 0.2019 0 1
Long term health

H self-reported health fair/poor — 0.2528 0.4347 0 1
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