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North York, Ontario, M3J 1P3, Canada !

SUMMARY

The development of adequate models for binary time series data with covariate adjustment has
been an active research area in the last years. In the case, where interest is focused on marginal
and association parameters, generalized estimating equations (GEE) (see for example Lipsitz,
Laird and Harrington (1991) and Liang, Zeger and Qaqish (1992)) and likelihood (see for
example Fitzmaurice and Laird (1993) and Molenberghs and Lesaffre (1994)) based methods
have been proposed. The number of parameters required for the full specification of these
models grows exponentially with the length of the binary time series. Therefore, the analysis
is often focused on marginal and first order parameters. In this case, the multivariate probit
model (Ashford and Sowden (1970)) becomes an attractive alternative to the above models.
The application of the multivariate probit model has been hampered by the intractability of the
maximum likelihood estimator, when the length of the binary time series is large. This paper
shows that this difficulty can be overcome by the use of Markov Chain Monte Carlo methods.
This analysis also allows for valid point and interval estimates of the parameters in small
samples. In addition, the analysis is adopted to handle the case of missing at random responses.
The approach is illustrated on data involving binary responses measured at unequally spaced
time points. Finally, this data analysis is compared to a GEE analysis given in Fitzmaurice

and Lipsitz (1995).

Keywords: multivariate binary regression, multivariate probit model, tetrachoric correlation,
Bayesian analysis, Markov Chain Monte Carlo methods, missing data.

1 Introduction

Binary time series are often observed in biomedical studies. The six cities study (Ware et al.
(1984)) investigating the effects of indoor and outdoor air pollution on respiratory health and
the asthma studies (Korn and Whittmore (1979)) exploring the effects of air pollution on the
occurence of asthma attacks are two well known examples of longitudinal studies with binary
outcomes.

Often the basic sampling unit is the individual and measurements of response and covariates
are collected on each individual over time. Time constant covariates, such as sex and (initial)
age, and time varying covariates, such as daily pollution methods, can occur. In addition,
measurement times do not need to be equally spaced.
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Another commonly occurring problem in longitudinal studies is the problem of missing respon-
ses as arising from attrition or by design (Laird (1988)). Fitzmaurice and Lipsitz (1995) present
such data from a double blind clinical trial comparing auranofin and placebo therapy for the
treatment of rheumatoid arthritis (Bombardier et al. (1986)). In this study, patients self-assess
their condition as "poor” or "good” at most five unequally spaced time points during the course
of the study with a large proportion of missing responses. The primary question of interest in
this study was, whether auranofin increases the probability of a positive self-assessment, while
secondary questions concern whether the self-assessment depends on age and sex.

For this purpose, population averaged or marginal approaches are most appropriate in contrast
to transitional or cluster specific approaches (for a review see Ashby et al. (1991)). Following
a marginal approach, likelihood and non-likelihood based methods have been developed for
modelling multivariate regression data with binary or ordinal response. Non-likelihood based
methods as general estimation equations (GEE) have been extensively used in this context (see
for example Lipsitz, Laird, Harrington (1991), Liang, Zeger and Qaqish (1992), Carey, Zeger
and Diggle (1993), Fitzmaurice and Laird (1995) and Lipsitz et al. (1995)).

In general, likelihood based methods are often preferred (see for example the comments to Liang,
Zeger and Qaqish (1992)). In the context of handling missing data, likelihood based methods
are superior to methods based on GEFE’s, since they remain valid if observations are missing
at random (MAR), while for GEE methods missing values have to be missing completely at
random (MCAR). See Little and Rubin (1987) for an introduction to the concepts of MAR
and MCAR and for the result for likelihood based methods, and Liang and Zeger (1986) for
the corresponding result for GEE methods. However, in a recent paper by Robins et al. (1995)
a weighted GEE approach has been proposed to allow the missing responses to be MAR. In
the special case of a monotone missing data pattern both likelihood and GEE approaches have
been developed by Fitzmaurice, Molenberghs and Lipsitz (1995), while Baker (1995) models a
general missing data mechanism. His approach, however, is only feasible in binary time series
of length three or less.

Several likelihood based methods for handling regression data with discrete response have been
developed. Here methods, which allow the dependence between the responses and the marginals
to be independently modelled are only considered. This is in contrast to a model proposed by
Prentice (1988). The earliest likelihood based method is the multivariate probit model (Ashford
and Sowden (1970), Lesaffre and Molenberghs (1991)) for ordinal response, which models the
dependence between binary responses with the help of the well defined correlation structure
of underlying quantitative latent variables. This is approach is an extension of tetrachoric
correlation (Pearson (1990)) to multivariate regression with discrete outcomes.

More recently, two different likelihood based models have been proposed. Both use odds ratios
(see for example Dale (1986)) as measures of association between discrete variables. The one
model developed by Molenberghs and Lesaffre (1994) is based on marginal odds ratios using a
multivariate extension to the bivariate Plackett distribution (Plackett (1965)) for the construc-
tion of the joint likelihood. The other model put forward by Fitzmaurice and Laird (1993) for
binary time series is formulated in terms of conditional odds ratios assuming a quadratic expo-
nential model for the joint likelihood (Cox (1972), Zhao and Prentice (1990)). The extension
of this approach to the ordinal response has been considered by Heagerty and Zeger (1995) and
Heumann (1996). Fitzmaurice, Laird and Lipsitz (1994) use the above models in connection
with the EM algorithm for binary time series with missing at random responses.



Even though the interpretation of the association parameters are more straight forward in the
approaches based on odds ratios, the number of parameters required for the full specification
of the likelihood grows exponentially with the length of the binary time series and in practice
often only two way associations are assumed to be nonzero. In this case, the multivariate probit
model becomes again an attractive choice.

Cessie and Houwelingen (1994) compared the two approaches for modelling the association,
tetrachoric correlation and the odds ratio, for the simplest case of a bivariate binary response
and showed that they are approximately equivalent using a first order approximation. They also
considered the extension to binary time series of arbitrary length. A full maximum likelihood
analysis in this case often proves to be infeasible, since it involves maximizing over multivariate
normal probabilities (see also (2.2) in Chapter 2). Therefore, Cessie and Houwelingen (1994)
used a pseudo likelihood approach instead. Full likelihood analysis of the multivariate probit
model has been restricted to applications to response vectors of dimension at most three (for
example see Anderson and Pemberton (1985)).

With the development of Markov Chain Monte Carlo (MCMC) methods, computationally trac-
table Bayesian analysis for many complex models have become available. For example see Besag,
Green, Hidgon and Mengerson (1995) and the many references cited therein. The application
of MCMC methods has now become standard practice for a Bayesian analyst (see for example
Gelman et al. (1995) and Gelfand and Smith (1995)). An introduction to the Gibbs sampler
is given by Casella and George (1992), while the Metropolis-Hastings algorithm is explained in
Chib and Greenberg (1994). These analyses often remain feasible when maximum likelihood
becomes infeasible and interval estimators are available even in small samples. Recently, in
the context of repeated categorical responses a Bayesian analysis based on a cluster specific
approach using random effects has been given by Becker and Ten Have (1995).

The goal of this paper is twofold. First, we will provide a computationally tractable analysis of
the multivariate probit model for binary time series of arbitrary length and secondly, we adopt
the analysis to handle missing at random responses.

The paper is organized as follows. Section 2 introduces the multivariate probit model for binary
time series for the complete and missing response case. In Section 3, an algorithm to facilitate
inference drawn from the posterior distribution is developed, first for the complete data case
and then it is adopted to handle missing at random responses. The arthritis clinical trial will
be analysed in Section 4 showing that the missing responses can not be ignored.

2 Multivariate Probit Model for Binary Time Series

In this section, the multivariate probit model for binary time series will be formulated. First,
it will be assumed that the binary time series is completely observed. Secondly, the extension
to binary time series with missing values will be considered.

2.1 The Complete Data Case

To formulate a Bayesian approach, we need to specify the joint distribution of the binary re-
sponse vector. For this, let Y; = (y;1,- -+, y;r)" the binary response vector with binary response,



yie = 1 or 0, observed at time t and marginal probabilities 7;; = P(y;; = 1) for i = 1,---,n and
t=1,---,T. We assume, that the response vectors Y; are independently observed. For each
response component y;;, we have covariate information collected in the vector (zi,- -, Zitp)
available. Some of these covariates might be time stationary. For example, if the jth covariate
is time stationary, we have z;1; = - -+ = ;7;,. We consider now marginal models of the following
form

mie = ®(nie) where n;:(8) = Bot + Putin + -+ + Bptisp (2.1)

and ®(-) denotes the standard normal distribution function. This formulation is the most
general, since it allows for both time varying regression parameters 3;; as well as time varying
covariates. Time stationary regression parameters can be achieved by requiring 8,1 = -+ =
Bir = ;. For the arthritis data set, the model considered will include time varying covariates
but only time stationary regression parameters are used.

To give the complete specification of the joint distribution, we introduce independent latent
random vectors Z; = (Z;,- -+, Ziv) which are jointly normally distributed with mean vector
—ni(B8) = (—=na(B), -+, —nir(B))" and covariance matrix ¥; with unit diagonal entries. The
dependence structure between the binary outcomes y;; is modelled indirectly through the de-
pendence structure among the latent variables Z;;. For this, we assume that

yi = 1 <= Z; < 0.

It is easy to see that this equivalence is consistent with the marginal specification given in (2.1).
As in Cessie and Houwelingen (1994), joint probabilities can now be determined by the joint
distribution of Z;. For example

P(yﬂ:lv7y2T:1):P(Z21<077Z2T<0)

- /_Ooo o /_Ooo (%)T/lw eXP{—%(Zz’ + 0B ST (Zi + i B))YdZiy - - dZir. (2.2)

Other joint probabilities can be defined similarly. This represents the multivariate use of
tetrachoric correlation in the regression setting. It should be noted, that even though probit
margins are used in (2.1), the models for logistic margins or any other margins could have been
formulated, by using appropriate transformations of the linear predictor 7;:(3) (see Cessie and
Houwelingen (1994) for logistic margins).

The specification of the dependence structure ¥; allows for a wide range of association models.
We present now some possibilities:

e Covariate independence: ¥; = X

e Serial correlation pattern: Cor(Z;s, Zi) = pl»s_ﬂ

e Serial correlation pattern with covariate independence: Cor(Z;s, Zit) = p's_“.

The last pattern has been used by Fitzmaurice and Lipsitz (1995) for odds ratios. It is appro-
priate, when the binary responses are measured at unequally spaced time points.

Since the covariance matrix ¥; has unit diagonal entries, }; is the correlation matrix of the
latent vector Z;, therefore the (s,t)th element of ¥;, denoted by p;s, is restricted to the interval
[-1,1]. Tt is therefore easier to consider a transformation of p;s into the real line to incorporate
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covariate dependence of the correlation structure. Cessie and Houwelingen (1994) used the
following one-to-one transformation

1 ‘I’ Pist
1— Pist

).

Tist = log(

A regression model for 7;5; can now be assumed, for example
Tist = Qg0 + astlm/iv (23)

where W, is an appropriate covariate. Additional covariates can be incorporated in the same
way. Marginal parameters as defined in (2.1) will be denoted by 3, while the association
parameters defined in (2.3) will be denoted by a. Since the covariance matrices ¥; depend on
a, we will denote them with ¥;(«).

2.2 The Missing Response Case

Following the usual setup for missing data (see Little and Rubin (1987)), we denote by Y; the
ith complete binary response vector, which can be written as Y; = (Yiops, Yimiss) fori =1,--- n.
Here, Y;.;s denotes the vector of responses which have been observed, while Y;,,;ss denotes the
vector of missing responses. Similarly, we classity also the underlying latent variables Z; as
Zi = (Ziobsy Zimiss)- As likelihood methods, Bayesian methods which are based on the observed
data only remain valid under the assumption of missing responses, which are MAR (for example

see Gelman et. al (1995), Chapter 17).

Since we are interested in inference drawn from the posterior distribution based on a random
sample from the posterior, realizations of the latent variables are available. Therefore, the
problem of handling missing binary responses can be dealt with by solving the easier problem
of handling missing latent variables. This will be done by generating the missing latent values.
Since the distribution of the complete latent variables Z; is multivariate normal with mean
—n;(B) and covariance matrix ¥;(«), we have two ways of generating the missing latent variables

Zimiss-

First, we can simply generate a realization from the distribution of the complete latent variables
Z;, or secondly, we can impute the missing latent variables Z;,,;ss by the expected value of the
conditional distribution of Z;,,;ss given Z;,, which is given by

E(Zimiss|Ziobs) — _nzmzss(ﬂ) + Ziobsmiss(a)ziobs(a)_l(Ziobs + niobs(ﬂ))v (24)

where
niobs(ﬂ) ) ( Ziobs(a) Ziobsmiss (O[) )
i = and ¥;(a) = )
7 (ﬂ) (nzmzss(ﬂ) ( ) Ziobsmiss(a) Zimiss(a)
It should be noted, that these ways of generating realizations for the missing variables need to

be adopted to handle the conditioning on the observed binary responses Y,,s needed for the
application of the MCMC methods. This will be done in Section 3.2.



3 Bayesian Inference using Monte Carlo Markov Chain
Methods

3.1 The Complete Data Case

For the Bayesian analysis, we assume that the response Y, given the regression parameters # and
the association parameters a follow the multivariate probit model as specified in (2.1)-(2.3).
The prior information about (A, «) is summarized in a joint density of the form #(8,a) =
7(8) X (). Noninformative and multivariate normal priors can be used.

MCMC methods allow to draw a sample from the posterior distribution [, «, Z]Y], where
Z = (L1, Zy)t and Y = (Yh,---,Y,)" Here, [u|w] denotes the conditional distribution
of u given w. A Metropolis within Gibbs approach (Miiller (1994)) is now taken, since the
conditional distributions [Z;|Y;, B, a] and [B|a, Z, Y] are known, while [a|8, Z, Y] is known only
up to a normalizing constant, thus requiring a Metropolis-Hastings step.

In particular, [Z;]Y;, B, ] is a truncated multivariate normal distribution with mean vector
—n;(B) and covariance matrix ¥;(a) truncated to the rectangular area given by [log(l —
yi1), —log(yin )] x -+ x [log(1 — yir), —log(yir)]. Note, that n;(8) and ¥;(«) are determined
by B and «, respectively. For the generation of truncated multivariate random variables, we
used a successive generation scheme based on the conditional distribution of the remaining
components to be generated given the already generated components. The details of this gene-
ration scheme is provided in the Appendix. An alternative to this generation is the algorithm
proposed by Geweke (1991). This algorithm can be used when the length of the binary time
series is large. In this case, the successive generation scheme is too slow.

We derive now the conditional distribution [#|e, Z,Y]. The conditional distribution of the
latent vector 7 given the association parameter « is multivariate normal with mean vector
— X, where X is a block diagonal matrix with ith block given by

I ziq -+ Tilp
X; =

Ly - xirp

and block diagonal covariance matrix ¥(«) with ith block given by ¥;(a). In the case of a
multivariate normal prior for 8 with mean vector 3, and covariance matrix X,, it is straight
forward to determine that [$|Z, o] is again multivariate normal with mean vector

—(51+ XS (o) X) TN B 4+ X ()7 Z)

and covariance matrix

(51 + X'S(a)™' X)L

For a flat prior the terms involving the prior parameters 3, and ¥, vanish. Finally, we remark

that since Z determines Y, we have [8|a, Z,Y] = [B|a, Z].

For updating the association parameters «, we require a Metropolis-Hastings update. Here,
[a|B, Z,Y] is proportional to [Z]|a, 8] considered as function of . A normal proposal den-
sity with same mode as [a|B, Z,Y] and a user controlled covariance matrix is used for the
corresponding Metropolis-Hastings step.



Using the above conditionals, an approximate sample from the posterior can be drawn and
point and interval estimates of the parameters can be calculated using this sample. It should
be noted that the algorithm can also be used for data with varying cluster sizes. The likelihood
approaches based on marginal odds ratios possess also this property, while the ones based on
conditional odds ratios do not.

3.2 The Missing Response Case

In Bayesian inference based on MCMC methods missing values will be handled as additional
parameters (Gelman et al. (1995), Chapter 17). Therefore, as mentioned in Section 2.2 rea-
lizations of missing values will be generated. In the context of the multivariate probit model
with missing responses, it is enough to generate missing latent variables Z;,,;ss. Once they are
generated, a missing response Y;,,;ss will be generated as follows:

Yoo { 1if Zyias < 0

0 otherwise.

To generate missing latent variables, note that the distribution of the complete latent vector Z;
given the observed responses Y, and (3, @) is multivariate normal with mean vector —n;(3)

and covariance matrix ¥;(a) truncated to the rectangular area [ay, by] X - -+ X [ar, by| where
log(1 — yit) if yir is observed
ay = : ”
—0 otherwise.
and

otherwise.

b, — { —log(yit) if yir is observed
t - .

As already mentioned in Section 2.2, there are two different ways to sample the missing latent
variables Z;,.;ss. First, we can generate the missing latent variables Z;,,;;s together with the
observed latent variables Z;ys from [Z;|Yios, B, ] specified above, or we can estimate the latent
variables Z;,.iss by the expected value of [Ziss| Ziobs, Yiobs, B, @]. It is easy to see that this
expectation is the same as the expectation of [Z;,.iss| Ziobs, B, @] since no truncation is involved
at the components of Z;,,;ss. This last expectation was already specified in (2.4).

Once the missing latent variables are generated, the algorithm described in the previous section
proceeds in the same way for the case of updating the regression and association parameters.

Since the missing data mechanism is not specified and therefore ignored, this way of proceeding
implicitly requires the responses to be MAR. If the missing responses are MAR, a valid analysis
is also obtained by using the MCMC algorithm developed in Section 2.2 for the observed data
only. This is a third way to handle MAR responses. Here is important that the algorithm
can handle varying cluster sizes. Currently, the extension for missing responses with monotone
missing data pattern is studied.

4 Example

Fitzmaurice and Lipsitz (1995, p. 57) presented a subset of data on 51 subjects from an arthritis
clinical trial (Bombardier et al. 1986). Patient self-assess their condition as "poor” (coded as
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0) or "good” (coded as 1) at most five unequally spaced time points. Patients had a base
line self-assessment measurement (week 0) and follow-up measurements took place at weeks 1,
5, 9 and 13. Randomization to one of the two treatments, placebo and auranofin, occurred
following the second self-assessment. After randomization, patients remained on the assigned
treatment for the entire study. Time stationary covariates are sex and age in years at study
begin and time varying covariates are treatment and time (in weeks). In this data set 13 of the
51 subjects comprising 25.5 % of the data have some missing responses. The missing response
pattern is however not monotone. Following Fitzmaurice and Lipsitz (1995), we investigated a
multivariate probit model with margins specified as

O(n:i(B)) = Bo + Prsex; + Prage; + PBatreatment;; + Bat (4.1)

and the serial correlation pattern specified by

pise = pl*71.

Here is the association parameter a = 7 = log(}%ﬁ). Fitzmaurice and Lipsitz (1995) did not
find any significant interactions terms in this data set, therefore no interaction was specified in
(4.1). Noninformative priors for (3, 7) have been assumed. Results from four different Bayesian
analyses will be compared. The first analysis is the naive analysis (NAIVE), where each row
which contains at least one missing response is deleted from the analysis. The second one is
based on the observed data only (OBS), while the third one assumes the missing responses as
additional parameters to be estimated (MRE) and the fourth one imputes the missing responses
(MRI). Table 4.1 gives estimated posterior means and their standard errors in parentheses, while
Table 4.2 shows the estimated posterior quantiles . All results reported are based on a single
run of 1600 iterations for each analysis with the first 400 iterations deleted to account for the
burn-in effect.

Parameter NAIVE OBS MRE MRI
Intercept | .399 (.929) | .704 (.613) | .777 (.670) | .974 (.732)
Sex | .468 (.359) | .344 (.249) | .305 (.268) | .253 (.294)

Age | -.003 (.015) | -.009 (.011) | -.010 (.012) | -.012 (.013)
Treatment | 1.28 (.407) | .779 (.270) | .819 (.280) | .698 (.263)
Time | -.044 (.025) | -.021 (.022) | -.030 (.023) | -.037 (.021)

p| .853(.089) | .712 (.104) | .798 (.098) | .893 (.050)

7| 2.700 (.629) | 1.850 (.431) | 2.300 (.564) | 2.960 (.451)

Table 4.1: Estimated Posterior Means and Estimated Standard Errors in Parentheses for the
Arthritis Clinical Trial Data

The Splus library CODA by Best, Cowles and Vines (1995) has been used to assess the conver-
gence of the sampled Markov chains and to produce the output analysis given. Geweke’s (1992)
convergence diagnostics based on Z-scores, Raftery and Lewis (1992) diagnostic and bounds
for the accuracy of the estimated posterior quantiles and Heidelberger and Welsh’s (1983) te-
sting method for stationarity of the Markov chains have been used, demonstrating no evidence
against the convergence of the sampled chains. See Cowles and Carlin (1995) and Brooks and
Roberts (1996) for comparative reviews of MCMC diagnostics. A high autocorrelation between
the sampled p values was observed indicating that a longer simulation run is needed to reach



convergence. The OBS and MRI analyses produced lower first order autocorrelation among
successive p values (&~ .80) than the naive and the MRI analyses (& .90). Batching was used to
assess the precision of the posterior mean estimates. For all analyses, a run of 1200 cycles was
sufficient to achieve a simulation error of less than 2.8 % for the estimated posterior treatment
effect and less than 1.7 % for the estimated posterior correlation.

Parameter | Analysis Estimated Posterior Quantiles

O1% | 2.5% | 25% | 50% | 5% | 975% | 99 %
Intercept | NAIVE | -1.8 | -1.5 -2 A 1.0 2.2 2.5
OBS | -4 -49 31 1 1.1 1.9 2.2
MRE | -87 | -.58 .36 T 1.2 2.1 2.3
MRI | -.67 | -.45 51 .96 1.4 2.5 2.7
Sex | NAIVE | -38 | -.21 23 AT .70 1.2 1.3
OBS | -24| -15 18 34 .50 .82 93
MRE | -31 | -.23 13 .30 49 .84 92
MRI | -47| -.33 .06 25 A5 .84 91
Age | NAIVE | -.038 | -.033 | -.014 | -.003 | .008 | .027 | .031
OBS | -.035 | -.031 | -.017 | -.009 | -.003 | .012 | .016
MRE | -.037 | -.017 | -.015 | -.010 | -.002 | .015 | .019
MRI | -.042 | -.038 | -.020 | -.012 | -.004 | .014 | .019
Treatment | NAIVE 43 .54 1.0 1.3 1.5 2.2 2.3
OBS 16 23 .61 T .96 1.3 1.4
MRE 16 .26 .64 .82 1.0 1.4 1.5
MRI 14 .20 bl .68 .88 1.2 1.3
Time | NAIVE | -.10 | -.093 | -.062 | -.043 | -.027 | .001 | .011
OBS | -.072 | -.064 | -.035 | -.022 | -.007 | .027 | .032
MRE | -.081 | -.076 | -.044 | -.029 | -.015 | .018 | .026
MRI | -.082 | -.076 | -.050 | -.038 | -.024 | .006 | .016
p | NAIVE DT .64 .81 .88 92 .96 97
OBS Al 49 .66 72 78 .89 91
MRE 49 .58 T4 .81 .87 94 95
MRI T4 78 .87 .90 .93 95 .96
7 | NAIVE 1.3 1.5 2.3 2.7 3.2 3.9 4.1
OBS .87 1.1 1.6 1.8 2.1 2.8 3.0
MRE 1.1 1.3 1.9 2.3 2.7 3.5 3.7
MRI 1.9 2.1 2.7 3.0 3.3 3.8 3.9

Table 4.2: Estimated Posterior Quantiles for the Arthritis Clinical Trial Data

The results presented in Tables 4.1 and 4.2 show, that there is strong evidence for a nonzero
correlation parameter p from all four analyses. This shows that an analysis based on the inde-
pendence among the binary responses would be inappropriate for this data set. In particular,
only observations taken apart 13 weeks can be considered independent. Since p is restricted
to the interval [-1,1], it has to be expected, that the posterior distribution is skewed, as can
be seen from the density estimate of the posterior distribution for p for each analysis given in
Figure 4.1. Therefore, the posterior median or mode are more appropriate measures for central
tendency than the posterior mean. The estimated posterior modes for p corresponding to the



naive and MRI analysis are of the same magnitude, while there are lower for the OBS and
MRE analysis. Further, interval estimates should rather be based on posterior quantiles as
given above than on interval estimates derived from the asymptotic normal theory.

We observe, that age, sex and time do not influence the marginal probabilities regardless of
the analysis performed, while there is evidence for a treatment effect based on the posterior
quantile estimates. However, with regard to the size of the treatment effect, the analyses
clearly differ. For the naive analysis, the treatment effect is estimated about 1.6 times the
size as for the remaining analyses. An explanation for this significant difference is, that the
rows with missing responses contain information about the treatment effect, which is discarded
in the naive analysis. The information about the treatment effect contained in the rows with
the missing responses is conflicting the information about the treatment effect contained in the
remaining data as is evidenced by Table 4.3. This explains, why the naive analysis overestimates
the treatment effect. Figure 4.2 gives the corresponding posterior density estimates for the
treatment parameter. It shows that the analyses based on the complete data (OBS, MRE and
MRI) are similar and are more concentrated around the mean compared to the naive analysis,
where information is lost due to the removal of rows with missing responses.

Treatment | Row with miss- | Self-assess- | Base- | Week 1 | Week 5 | Week 9 | Week 13
ing Responses | ment line

Auranofin | yes good 15 14 18 16 17

poor 3 4 0 2 1

no good 4 6 6 2 0

poor ) 3 1 2 2

missing 0 0 2 5 7

Placebo yes good 14 12 9 13 13

poor 6 8 11 7 7

no good 4 2 2 2 2

poor 0 2 1 1 0

missing 0 0 1 1 2

Table 4.3: Arthritis Clinical Trial Data Cross-classified according to Treatment, Rows with
Missing and Nonmissing responses, Self-assessment and Time Period.

Comparing the performance of the Bayesian analyses which are based on all observed responses,
we see that there is not much difference with regard to estimated posterior means. With regard
to interval estimates for the regression parameters, the relative interval estimate lengths are
similar when adjusted for the magnitude of the posterior mean estimate. For the treatment
parameter, the observed relative lengths are about 140% of the estimated posterior mean. For
the correlation parameter, however, the MRI analysis produced the smallest relative interval
estimate length in this example.

Finally, we compare our results to those obtained by GEE methods in Fitzmaurice and Lipsitz
(1995) using a model based on odds. Using the heuristic (see Cessie and Houwelingen, 1994, p.
100) that the coefficients of a logistic model are about 1.7 times larger than the coefficients of
the corresponding probit model, we see that the GEE results for the regression parameters are
consistent with the Bayesian results based on all observed responses. This consistency indicates
that the required assumption of MCAR for the validity of the GEE analyses of Fitzmaurice
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and Lipsitz (1995) is tenable for this data set. In contrast, Kenward, Lesaffre and Molenberghs
(1994) report on a data set involving missing ordinal responses, where the assumption of MCAR
was not tenable and the GEE analysis would give incorrect estimates.

Finally, we compare results for the unrestricted association parameters, i.e. 7 from the Baye-
sian results and the log odds ratio log(«a) from the GEE results. We see that the estimated
relative interval length adjusted for the magnitude of the posterior mean estimate is shorter
for all Bayesian analyses compared to the GEFE analyses. In the case of the MRI analysis, this
estimated relative length is about half as long as for the conditional GEE analysis. This might
be an indication that the multivariate probit model provides a better fit in this example than
a model based on odds. For the treatment effect, the Bayesian and GEFE analyses have about
the same relative interval estimate lengths.

In summary, MCMC methods can be used to conduct a computationally feasible Bayesian
analysis of high dimensional correlated binary responses with time varying and time constant
covariates and complex correlation patterns. Missing responses which are MAR can be ac-
commodated. Three different ways to handle missing responses were investigated. In the data
example, we observed a slight preference (lower autocorrelations and shorter interval estimates
for the correlation parameter) for imputing the missing latent variables by their expected value
(MRI analysis). Extensions to multivariate ordinal response vectors are currently considered.
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Appendix

Theorem: Sequential Random Generation of a truncated multivariate Random Vector

Let N,(u,Y) denote a n-dimensional normal distribution with mean vector p = (p1,- -+, fin)
and covariance matrix ¥ with entries o;;.

1. Generate «¥ ~ Ny(ftn, 0py) truncated to [a,, by
2. Generate 2_; ~ X,_1|X, = 2} truncated to [a,—1, by_1]
n. Generate 27 ~ X1| Xy = 23,---, X,, = @ truncated to [aq, b1]
Then X* = (7,---,2%) is a realization from N, (u, X) truncated to [aq,b1] X -+ X [an, by].

Proof: For brevity, we consider only the case n = 2, the general case can be treated similarly.

Denote with (X7, X5) the random vector resulting from the above scheme and (X3, X3) a
random vector distributed as Ni(p, o) truncated to [a1,b1] X [ag,bs]. Further, denote with
F*()(f(+)) the marginal density of X5(X3) and F*(-|X;) (F(-|X2)) the conditional distribution
function of X7|X; = a3 (X1]|Xs = x2). The joint distribution of (X7, X3) is therefore given by

Pr(X7 € [ar, zo1], X3 € [ag, v02]) = / [F™ (@01 |22) — F7(ar|2)] [ (22)das
_ /“2 F(zo|rs) — Fai|rs)] f(x2) dey. (12)
F(bi|2z) — Flai|z2)] [F(b2) — F(az)]
On the other side, we have for (X7, X3) truncated to [ay, b1] X [as, b],

S 2 [F (zo]22) — Fai|vs)] f(a)da,
a2 [F (balarz) — F(ar|wa)] f(22)dzy
If F(b1]xz) — F(ai]zz) is independent of x5 it follows that (4.2)=(4.3), which is enough to
prove the theorem. Note that the distribution of Xi|X, = x, is normal with mean p,,)., =

w1+ 01201_11(:1;2 — p2) and variance oy, |0, = 011 — 0'%20'22 Since 0, |x, 18 independent of x,, it is
immediate that F'(b|x2) — F(a1|zs) is also independent of x4, which proves the theorem.

Pr(Xy € a1, z01], X2 € [ag, z02]) = (4.3)

14



Kernel density from NAIVE Kernel density from OBS

(1200 values) (1200 values)
0 To]
o P o o~ o
0 0.5 1 0 0.5 1
rho rho
Kernel density from MRE Kernel density from MRI
(1200 values) (1200 values)
[Te] [Te]
o 'y _ee A o . PY
0 0.5 1 0 0.5 1
rho rho

Figure 4.1: Posterior Density Estimates for the Correlation p of the Arthritis Clinical Trial
Data
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Figure 4.2: Posterior Density Estimates for the Treatment Parameter of the Arthritis Clinical
Trial Data

16



