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Abstract

If a linear regression is fit to log-transformed mortalities and the estimate is
back-transformed according to the formula Ee¥ = ental2 5 systematic bias
occurs unless the error distribution is normal and the scale estimate is gauged
to normal variance. This result is a consequence of the uniqueness theorem

for the Laplace transform.

We determine the systematic bias of minimum—ZL2 and minimum-1/7, esti-
mation with sample variance and interquartile range of the residuals as scale
estimates under a uniform and four contaminated normal error distributions.
Already under innocent looking contaminations the true mortalities may be
underestimated by 50% in the long run.

Moreover, the logarithmic transformation introduces an instability into the
model that results in a large discrepancy between rg_Huber estimates as the
tuning constant regulating the degree of robustness varies.

Contrary to the logarithm the square root stabilizes variance, diminishes
the influence of outliers, automatically copes with observed zeros, allows the
‘nonparametric’ back-transformation formula EY? = u? + ¢2, and in the
homoskedastic case avoids a systematic bias of minimum—/Lz estimation with
sample variance.

For the company-specific table 3 of [Loeb94], in the age range of 20-65
years, we fit a parabola to root mortalities by minimum—/2, minimum—7/1 ,
and robust rg_Huber regression estimates, and a cubic and exponential by
least squares. The fits thus obtained in the original model are excellent and
practically indistinguishable by a x? goodness-of-fit test.

Finally, dispensing with the transformation of observations, we employ

a Poisson generalized linear model and fit an exponential and a cubic by
maximum likelihood.

* Part of the work was done while the author was visiting the Statistics Department, University

of Munich.
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1 Introduction

The determination of true mortalities 7, at age x of a certain population on the
basis of the observed mortalities ¢, is a classical topic of insurance mathematics,
which may be treated either numerically or statistically.

Numerical Smoothing vs. Statistical Estimation

The numerical method, on the one hand, employs some spline smoothing (Reinsch,
Whittaker—Henderson), minimizing a combination of weighted least squares and a
roughness penalty. Without requiring any model assumptions it produces smooth
fits that may reflect several substructures.

The statistical method, on the other hand, needs to specify a suitable model
for the function m, and the error structure (the law of the deviations ¢, — 7y),
and then estimates the model parameters according to some statistical criteria.
Examples include a weighted least squares estimation of a Gompertz—Makeham
curve —7, &2 log(1l — 7)) = a+bc® to log(1l — q), by Knight and Hardy (1908/9),
and the weighted minimum x? fit of 7, = a+bc® to g by Cramér and Wold (1935),

. 2
ZLxM:min! (1.1)
- 4o

a,b,c

Here and subsequently, L, denotes the size of the population at age x.

As for these (rather old) references in particular, and standard textbook accounts
of the subject in general, we refer to [Wolff70] and [BePo82]. Judging from the more
recent article [Loeb94], the model-free numerical method seems to prevail in German
actuarial practice.

Company—Specific Small Populations

For small populations with scanty data and large variability one might expect the
numerical smoothing in trouble and to produce wiggly curves. This is of course not
necessarily the case since fit and smoothness can be determined by the choice of fit
criterion and roughness penalty and can be balanced by their weights. In fact, the
standard numerical fit employed in [Loeb94] turns out smooth for all three tables
considered there.

The attractiveness of the statistical method consists in the possibility of obtain-
ing a smooth and simply structured fit by specifying a suitable model and estimating
but a few parameters. In this sense, the statistical estimation of mortalities appears
particularly suited to small populations. Moreover, the graduation by reference to
a basis table—the subject of [BePo82], Chapter 15—is recommended in such situa-
tions, but also aggravates the dependence on the model assumptions (to be satisfied
by two populations) and adds the dependence on the basis table (whose structure
is inherited).

By this technique the ratios ms/ 722 of true mortalities are estimated using the ob-

bas

served ones, qz/qe° . One variant treated in [BePo82] employs LIDSTONE’s transformation
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g — log(1 — ¢) in the model

log(1 — g5 ) — log(1 — q};as) = f(x) + error (1.2)

bas

and fits a cubic f(z) by least squares with (squared) weights L, /7 =~ L./q,

Since the opening of the European market the problem seems to attract some
new attention as reinsurance companies may wish to calculate premiums for each
(smaller) life insurance company individually, taking into account the particular
mortality structure.

Log-Linear Regression

In [OIMi96] a linear regression bx + ¢ for the log-mortalities log g, (set constant
on an initial section) is proposed, the two regression parameters and scale are esti-
mated by weighted minimum-—7; and the (standardized) interquartile range of the
residuals, respectively. These estimates, to obtain an estimate ¢, of the original
mortality 7., have to be transformed back suitably.

For the estimation of graduation ratios 7/ 7% | the two mortality data sets are not
combined in one model by [OIMi96] but the log-linear regression is applied twice, once
to the company—specific table and separately for the DAV 1994 T basis table (already
numerically smoothed), and then m, /75 are estimated by §, /5>

Several issues are left unsettled by [OIMi96]: The exponential structure of the
mortality curves, hence of the graduation ratios, is based on mere belief and not
checked statistically. Observed zero mortalities ¢, = 0, for which logg, = —oco
would create difficulties, are arbitrarily modified. The problem of heteroskedasticity
1s ignored and homoskedasticity implicitly assumed. No distributional assumptions
are made.

Without proof the authors of [OIMi96] claim in their paper that their esti-
mation method be “robust” and yield “confirmed results” and, in the discussion

to [OlKo096], that it “save ca. 10% premiums”.

Safety Margins—a Separate Problem

One notable inconsistency in [OIMi96] concerns the treatment of safety margins.
This topic is only secondary since the declared aim in [OIMi96], Section 0, p 2, is the
estimation of raw mortalities, for which a basis table, however, seemed unavailable.
It was apparently not observed that the corresponding data without any additional
safety components can in fact be obtained from columns 2 and 3 of DAV 1994T
(tables 1 and 2 in [Loeb94]). Instead, the numerically smoothed mortalities ¢
from column 6 containing two additional safety components have been taken as a
basis for the subsequent statistical fitting.

The entire Section 4 of [OIMi96] is devoted to safety margins but only employs
a special variant—actually a coarsening—of the method of [Loeb94].

The first level o condition (4) of [Loeb94], Section?2, is adopted with the nota-
tional identification s§ = (¢ — 1)g, by [OIMi96] while the second level a* condition (2)
of [Loeb94] is omitted. Consequentially, uncontrolled subventions across different age
groups must be accepted.
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Figure 1: Raw mortalities ¢; /Ly (- —), numerical smooth ¢; (—), and the numerical
smooth ¢3* (---) containing one additional safety component, from table 3 of [Loeb94]

These statistical calculations concerning width and level of one-sided confidence
intervals in a well-known way determine a minimum sample size. In [OIMi96],
Section 0, p 2, this minimum sample size requirement is ascribed to the numerical
smoothing technique.

Also, in [OlK096], the column of numerically smoothed mortalities ¢% in the
company—specific table 3 of [Loeb94] was confounded with the following column
of ¢¥* containing one additional safety component. The ¢% are smooth but reflect
substructures like the accident and heart—attack bumps; confer Figure 1. Over
most of the range, the ¢4® follow the ¢ closely with a slight upward shift—except
for the bump of ¢%® at x = 30,31. This artifact is unrelated to the numerical
smoothing either.

In the said table of [Loeb94] we find ¢4 = 0.613-1072, ¢% = 0.579-107%  and that ¢**
drops from 0.977-1072 down to 0.388-10~%, which is less than ¢%, . This artifact is caused
by the alternating method I and IT in [Loeb94], Section 5, of calculating safety margins,
which at some instances (namely, for age groups with less than 5 deaths) switches between
company and basis table. Moreover, the one-sided grouping of = = 34,33,32 with =z = 31
seems doubtful. The method certainly needs to be improved.

Estimates Based on Root—Mortalities

Qur paper concentrates on the statistical estimation of raw mortalities. The de-
termination of additional safety components is considered a separate issue (to be
treated elsewhere).

The log-linear model may be criticized from the viewpoint of destabilization of
error variance, artificial generation of outliers, arbitrary treatment of zeros, a rather
restricted back-transformation formula, and inevitable estimator bias.

In the chosen descriptive framework of [OIMi96], stochastic reasoning suggests
the root transformation over the logarithm: The square root stabilizes error vari-
ance, diminishes the influence of outliers, automatically copes with observed ze-
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ros, allows a ‘nonparametric’ back-transformation formula, and at least in the ho-
moskedastic case avoids a systematic bias of least squares.

For the company—specific table 3 of [Loeb94], in the range of 20-65 years, we fit
a parabola to the root observed mortalities by classical and robust estimation meth-
ods: minimum-—7Ls (with sample variance), minimum-ZL, (with average absolute de-
viation), and by robust regression rg_Huber as implemented in ISP; confer [ISP95].
A cubic and exponential are fitted by least squares. Transformed back these esti-
mators give excellent fits in the original model that are practically indistinguishable
by a x? goodness-of-fit test.

Generalized Linear Models

Heteroskedasticity inevitably accounts for bumps in the back-transformed estimates
unless we fit rather complicated regression functions f(z) to the transformed ob-
servations logq, and /gy . Instead, it seems more natural to assume a smooth
functional form of the true mortalities 7, themselves and not to transform obser-
vations at all. Formulating a Poisson generalized linear model we fit a cubic and an
exponential by maximum likelihood.

2 Transformation—Based Robust Estimators

2.1 The Huber Family

In the following, the observed mortalities ¢, are transformed to g, (logarithm or
square root), and for the transformed observations g, some regression model is
assumed,

g = fo(x) + error (2.1)

The parameter 6 of the regression function has to be estimated using the trans-
formed observations g...

M Estimates As estimators we shall employ regression M estimates in the sense
of [Hubr81], but to account for heteroskedasticity we actually need weighted ver-
sions. Generalizing weighted least squares these estimators are defined by

> o(we 57 (9o — f5())) = min! (2.2)
D W(we 67 (go — f5(@))) wo dfs(a) = 0 (2.3)

where 1 = ¢ and df = 0f/J0, and & denotes a scale estimate (to be determined by
a further equation). The weights w, will be specified in Sections 3 and 6 depending
on the transformation.
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Huber Functions To obtain a representative class of such M estimators we em-
ploy the family of Huber functions ¢ = g and ¥ = ¢y,

or(u) = min{k|u|, v’} — 2 min{k* u’}, Yr(uw) = wmin{l, k/|u|} (2.4)

with clipping constant 0 < k < oo that determines the degree of robustness; the
smaller k& the more robust the estimator.

The choice k = oo defines the weighted minimum-—/Ls (least squares) estimator,
denoted by minL2, which is implemented in the ISP macro regress. The case k = 0
leads to the weighted minimum-L; estimator [in (2.2) and (2.3) divide ¢ = gx
and ¥ = 1Y, by k and let k — 0]. Tt is implemented in the ISP macro lifit and
denoted by minL1.

The ISP macro rg_Huber determines k adaptively as a constant kfac times the
median

k = kfac * MED{]|u|} (2.5)
of the absolute value of weighted residuals,

Scale Estimates With the regression estimates goes an estimate & of scale.
For 0 < kfac < oo essentially the sample variance & of the Winsorized resid-
uals ¢p(ug) is used by the ISP macro rg_Huber and suitably gauged to normal
variance; confer [Hubr81], Section 7.10, formulae (10.2), p 196, with correction
factor K =1.
For minL.2 (k£ = o) the ISP macro regress supplies the sample variance (VAR)
of the weighted residuals,

1 65
~2 2
7 T 46— dim ;:0 e 27)

where dim denotes the dimension of the parameter 6. The combined estimator
will be denoted by minL.2/VAR.

For minL1 (k£ = 0) the ISP macro l1fit supplies the average absolute deviation
(AAD) of weighted residuals, which may be gauged to normal variance by division

through +/2/3.14 ,

65
. 1
6=+V1.57T AAD,  AAD= ST w;o | (2.8)

The combined estimator will be denoted by minL.1/AAD.

Robustness Standard The Huber family defines some algorithmic robustness
standard: If the estimates differ for various values of the tuning constant there is a
robustness problem, if they practically agree there is none.

Backtransformation The estimates 0 based on g must be transformed back
according to suitable formulae given in Subsections 3.3 and 6.3, so as to yield
estimates ¢, for the theoretical mortalities m, referring to the original model.
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Population—Size Invariance The weights w, = +/Lo1; and w, = /L, spec-
ified below and the corresponding back-transformation formulae achieve that the
back-transformed minL.2/VAR and minL.1/AAD estimators stay the same if the
observed mortalities ¢, are kept while the population sizes L, are all rescaled by
a factor Lfac. General Huber estimates, for 0 < k& < oo, are not size-invariant in
this sense.

2.2 Standard Data Set

For all the plots in this paper, the set of observed raw mortalities ¢, will be taken
from the company—specific table 3 of [Loeb94]; namely, as the ratios ¢%/LY% of
columns 2 and 3 in that table. The age range will be @ = 20,...,65 years. The
total size of the population in that range 1s 659115.

At some instances (calculating goodness-of-fit, . .. ) this rather large population
will be scaled down by dividing each L% through the factor Lfac = 3,...,5 sup-
plying a population size comparable to the ones of DAV 1994T (200260 ), table 1
of [Loeb94], and [OIMi96] (120000).

2.3 Goodness-of-Fit

The goodness of the fit in the original model is measured by the following 2
criterion,

Z Ly Aq“” — )" (2.9)

=20 (1 = o)

If the model is correct and no parameters were estimated, S? were in fact approx-
imately central 3 with 46 degrees of freedom [deMoivre-Laplace]. It is (crude)
statistical practice, as d parameters are estimated, to simply subtract d degrees of

freedom.! The p-value v, is the corresponding x? tail-probability,

v, = Pr(S?%, 00) (2.10)

If the model is correct, v, is approximately uniformly distributed on (0,1). The
larger v, the better the fit.

Population—Size Dependence The goodness-of-fit statistic (2.9) obviously does
depend on the population size. The dependence of S? is straight proportionality
if the employed estimators are invariant under rescaling of L, by the factor Lfac.
Therefore, Figure 8 plots the p-value as a function of Lfac =3,...,5.

The larger the underlying population the less likely the acceptance of the model
(null hypothesis). More complex models ought to be fitted as the population size
increases.

1 The x? distribution may not be realized if parameter estimates other than minimum—x2 are
plugged in; confer Chernoff, H. and Lehmann, E.L. (1956), Ann. Math. Stat. 25 pp 579-586.
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Figure 2: Raw mortalities t%/L% from table 3 of [Loeb94] and their logarithms, with
log 0 treated as missing value

3 Log-Linear Mortalities

3.1 Transformation and Preliminary Model

Here g, = log g, . Without specifying the error structure, a linear regression
log ¢» = foo(x) + error (3.1)

is considered in [OIMi96] assuming a function f.(2) that is piecewise linear
foelx) = b+ c, & = max{31, 2} (3.2)

A constant initial section is supposed to model the accident-bump in the range of
20-30 years, while other substructures, for example the heart—attack bump in the
range of 45-50 years, are not taken into account.

Remark 3.1 Often the logarithmic transformation is recommended when the vari-
ability of the data seems to increase with the absolute value of observations; for
example, confer [SliSt95], p 18. In the present context, however, this phenomenon
can be explained without assuming a multiplicative structure. Ideally, the observed
mortalities are binomial: L.q, ~ Bin(Ly, ;) and Varq, = L7, (1 — 7). For
large @ the L, decrease and the w, < 0.5, hence Vargq,, increase. Y/

The Estimate minL1/IQR. of [O1Mi96]

In [OIMi96] the two parameter estimates b and ¢ are weighted minimum—7L; with
weights w,, = L,

65
Z Lw| log g, — fgyé(aj)| = Hblicnl (3.3)

r=20
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As scale estimate the interquartile range (IQR) of the unweighted minimum-7,
residuals log g, — f; .(x) (with two zeros omitted) is used, standardized by 1.35,

& =IQR/1.35 (3.4)

Their estimate will be denoted by minLL1/IQR; it is implemented in the ISP macros
I1fit and fivenum.

Back-Transformation These estimates based on logg, are in [OIMi96] trans-
formed back according to the formula

e = exp(f; 2) + 567) (35)

3.2 Heteroskedasticity

Variance Ideally, without further knowledge, the observed mortalities are truly
binomial, Lyq, ~ Bin(Ly, ;) and ¢, — 7y as Ly — oo (law of large numbers).
The Taylor expansion log ¢, = logmy + 75 (qe — 7)) + ... suggests that approxi-
mately E(loggy) =~ logm, and

Var(log q;) /2 mx(1 — Fw)/(Lwﬂ'i) /e 1/(Lxﬂ'x) (3.6)

The A-method, linking Taylor expansion and deMoivre-Laplace central limit the-
orem, even tells us that approximately, in distribution,

V'L (log gz — log m,.) &= N'(0, 771) (3.7)
Hence the variance o2 of logg, at age x is approximately
o~ 1/([/3371'33) (3.8)
and the errors are actually heteroskedastic.

Remark 3.2 In view of (3.8), as 7, is small (0.5-1073 < 7, < 1072 roughly),
the logarithmic transformation destabilizes variance. "

Implicit Homoskedasticity The fact that the scale estimate is not adjusted to x
in the back-transformation formula (3.5) implies the assumption of homoskedastic
errors in [OIMi96]. Thus, model equation (3.1) more precisely reads

log qx = foc(x) +0ep (3.9)

with errors g9, . . ., €65 stochastically independent, identically distributed according
to some law F' (i.i.d. ~ F') and o some unknown scale.
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3.3 Model Formulation
In view of (3.8), we replace model (3.9) by

o

VLgne

with &, ii.d. ~ F and o unknown. Following [BePo82], p 329, we have substi-

tuted the unknown 7, by some preliminary estimates 7, ; for example, 7, = ¢b®s

(estimated) or 1, = ¢>2 (observed) from some basis table. Corresponding weights

are
We = \/ LN (3.11)

Interpretation of f(x) In view of (3.10) the regression function f(z) = fi (%)
cannot simply be equated with log 7, . Since

log ¢» = foo(x) + Ex (3.10)

Ty = Epexp(log ¢z) = eXp(f(x)) /exp(ae/wx) F(de) (3.12)

in fact

f(x) = log 7, — log F(a/wy) (3.13)

where F denotes the Laplace-transform of F'. In this way regression and scale
parameters are related with the estimand 7, . On the one hand, (3.13) might reflect
an intricate dependence of mortalities and population sizes. On the other hand, if
the original mortalities 7, are assumed to have a certain functional form (e.g.,
polynomial, exponential), that of the function f(x) to be fitted in the transformed
model is then prescribed by (3.13).

Back-Transformation The back-transformed estimate is
Gz = eXp(féyé(x) + 6%/ (2w3)) (3.14)

According to (3.14), bumps of Ly, inevitably create bumps of the estimate §,.
Only under the assumption of homoskedasticity smoothness is preserved.

Special Case Homoskedasticity is the special case
L7, /s constant (3.15)

The values of L,q, for # = 20,...,65 of the table DAV 1994 T (males) in [Loeb94]
and the company—specific table in [OIMi96] range from 5.214 to 65.03 and from 0.4872
to 11.63, respectively. Hence the corresponding o, range from 0.1240 to 0.4379 (with a
median of 0.2993) and from 0.2932 to 1.433 (with a median of 0.4468), respectively. The
corresponding values of table 3 in [Loeb94] with Lfac = 5 are 0.1386 and 1.502 (with
a median of 0.2900). Thus, the value of ¢ in the homoskedastic case may be assumed
between 1/4 and 1/2, but the value o = 1 is also plausible.
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Figure 3: Back-transformed Huber estimates based on log ¢, (zeros modified) for tuning
constant kfac =0,1,2,5,8,12,

3.4 Discrepancy of Huber Estimates

For the company—specific table 3 of [Loeb94] we evaluate a few representative mem-
bers of the Huber family of robust estimators introduced in Section 2 with weights
wy = /Lyns where 1, = ¢ denote the numerically smoothed mortalities from
column 4 of the basis table DAV 1994 T (males), table 1 in [Loeb94]. In the com-
putation of these estimates, observed numbers of deaths equal to zero have been
replaced by the value 107%.

Figure 3 reveals a large discrepancy between the back-transformed Huber es-
timates if the tuning constant, which regulates the degree of robustness, varies.
The same estimates based on root mortalities, with weights w, = /L, and back-
transformed, practically coincide; confer Figure 7. This phenomenon indicates an
instability of the model introduced by the logarithmic transformation.

4 Implicit Log-Normality

Nonparametric? Robust? The omission of any distributional assumption in
[OIMi96] suggests a method which is ‘nonparametric’, its performance being the
same for all error distributions. Also, the minimum—/7Z; criterion and interquartile
range in the place of minimum—7Z, and sample variance, respectively, are supposed
to guarantee estimates which are “robust”, not requiring any strict distributional
assumption (e.g., that of exact normality). The following argument, however, shows
that the special form of formula (3.5) for the back-transformation entails exactly
normal mean zero errors in the log-transformed model of [OIMi96], provided only
the estimates are consistent for the true mortalities.
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4.1 Asymptotic Setup
Model According to (3.9) this model is

log g = f(z) + 0es (4.1)
with ¢, 1.1.d. ~ F'. The error distribution F' may be arbitrary and the regression

function f(x) possibly more general than f; .(x) defined by (3.2).

Estimand Of interest are the true mortalities 7, . Being probabilities they are
the expection of the corresponding empirical frequencies,

To = Bpo = Bpexp(fla) + 05,) =exp(f(@) [ €7 F(de)  (42)

Product—Model Now suppose that &k similar populations may be observed or
that k years have passed (note that in [OIMi96] k& = 4 by the time of this writing).
Then not only one observed mortality per age = but k values g, 1,...,¢s 1 are
available. This situation is described by the product model,

loggs: = f(x) +oeu; (4.3)
with &,; 1id. ~ F for ¢ =1,...,k and x =20,...,65.

Remark 4.1 Although the product—model (4.3) is possibly not realized exactly, it
is a reasonable framework in which results on the distribution (bias) of estimators
can be derived to see what principally happens in the long run. Y/

4.2 Consistent Estimability

As k grows larger, more and more information becomes available and it will be
possible to find estimates f; and & using all the observations log ¢, ; that esti-
mate f(x) and o consistently, in the sense that for each « and all o,

felw) — f(x), G —osp (4.4)

in probability or even almost surely, as k — oo. A factor sp # 1 means that the
scale estimate is not gauged to the given F'. In fact, requirement (4.4) of consistent
estimability is the only restriction we impose on the regression function f(x) and
the error distribution F'. Verification amounts to proving a suitable law of large
numbers.

Consistency of minL2 and minL1 for f; ()

Condition (4.4) for fi o(x) given by (3.2) can be verified using minL.2/VAR provided

the error distribution satisfies

/eF(de) —0, /62 Fds) < oo (4.5)
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and then sp =1 holds.
Using minL1/AAD it suffices to assume an error distribution with unique median
such that

MED(F) =0, /|e| F(de) < o0 (4.6)

For minL1/IQR in addition the two quartiles Q 25(F") and Q 75(F") must be unique;
confer [BaKo78] and [BISt83]. The division of AAD and IQR by /2/3.14 and 1.35,

respectively, achieves that sp = 1 for normal F'.
Consistency of Huber estimates with 0 < kfac < co holds if the equation

/d)k(e —m)F(de) =0 (4.7)
has the unique solution m = 0. We omit the details of the proof.

Consistent Back-Transformation In general, the estimates fk(x) and &5 are
transformed back according to formula (3.5) to yield the following estimate of m,;,

Gr(@) = exp(fi(e) + 357 (48)
By continuity, consistency (4.4) carries over so that, on the one hand,
Gul) — exp(f(@) + %52 (4.9)

On the other hand, we want to insist that the estimates ¢i(x) aim at the right
target value; that is,
qu(x) — 7 = Epqp (4.10)

4.3 Unique Laplace Transform
Equation (4.2) and the convergences (4.9) and (4.10) imply that

eXp(f(x)) /e”g F(de) = exp(f(x) + %0%?) (4.11)

and, upon cancellation of the term exp f, the following identity,
/e”g F(de) = exp($0°sE) (4.12)

On the RHS, we recognize the Laplace transform of the A(0,s%) distribution,
on the LHS that of F'. Identity (4.12) is valid for all ¢ which may appear in
model equation (4.1). We assume that the set of such o-values includes some
nondegenerate interval (0,6).

Then the uniqueness theorem for the Laplace transform is in force and tells us
that necessarily

F=N(0,s%) (4.13)
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4.4 Normality or Systematic Bias

In other words, if F' is not exactly normal mean zero or the scale estimate is not
gauged to normal variance the consistency (4.10) is violated,

that is, the estimates §i(x) have a systematic bias relative to the mortalities ;.

Remark 4.2 This result should be distinguished from the discussion of bias in
[OIMi96]. With reference to [Millr84] these authors only mention the fact that
in the case F' = A(0,1) the back-transformed estimates ¢, given by (3.5) may
have expectation unequal to m,. This is the case since the (theoretical) back-
transformation formula holding for normal Y ~ N (u, 0?),

EeY = erto?? (4.15)
does no longer obtain if mean u and variance o? are substituted by estimates.
After all, even in the normal case only consistency (4.9) can be achieved. Exact
unbiasedness would require a more sophisticated back-transformation formula, as
in [Hoyl75] and [Vera91].

Our argument on the contrary shows that, as soon as (4.13) is violated—in
particular, if F' is not normal—the estimates §i(«) do not approach the true mor-
talities 7. This systematic bias goes unnoticed in [OIMi96]. /i

Even under ideal conditions, (4.13) is not fulfilled exactly because of the unbounded
support of nondegenerate normals and logg, < 0.

5 Systematic Bias

Huber’s Neighborhood In robust statistics—confer [Hubr81]—the following
full neighborhood of the standard normal is considered: the set of all probabili-
ties F' of the form

F=({1-rN(@O,1)+rM (5.1)

where r € (0,1) denotes some fixed radius and the contamination M may be
an arbitrary probability measure. This neighborhood models the situation that
(1 —7)100% of the observations are generated by the standard normal and r100%
by an arbitrary probability, or that 100% observations may come from a slightly
and arbitrarily deformed normal law. Condition (4.13) restricts this neighborhood
rather severely, namely to the subset of normals

F=N(07), 1<r<(1-r)" (5.2)

But pure normal distributions do not model outliers. The log-linear approach
of [OIMi96], therefore, cannot claim the label “robust” unless systematic bias due
to nonnormality, or only approximate normality, is taken into account.
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Estimators Bias will be evaluated for the estimate minL1/IQR of [OIMi96] and,
for comparison, minl.2/VAR as defined in Subsections 2.1 and 3.1.

5.1 Relative Bias—Symmetric Case

For the investigation of systematic bias we relate quantity (4.9), which is actually
estimated, to the target value m,. Thus, under consistent estimability (4.4) the
relative bias yp(o) is

1 2.2

vr(o) = ;' exp(f(z) + 20%s%) = exp(50°sp)

= oot P (5.3)

which turns out the same for all x.

Symmetric F

As alternatives to the standard normal, we first consider error distributions of
form (5.1) with contaminating M symmetric Dirac (generating outliers +z) or M
symmetric normal (with larger variance z?),

(DS) M =3(5_.+6.), (NS) M =N(0,2?) (5.4)

with z > 1 such that the variance of M is greater than 1. For approximate

normality the contamination radius is chosen r = 10%. As a nonnormal F', the
uniform on the interval (—z,z)

(U) F=U(-=z2) (5.5)

is considered, with z > /3 such that the variance of M is greater than 1.

The expression (5.3) may be evaluated analytically in more detail and then
numerically. Via sg it only depends on the scale estimate. The true scale matters:
The larger o the larger the bias. For o = 0.375 and o = 1 we have plotted yr(o)
as a function of z < 6. Only this range is relevant since the true log m, are roughly
between log0.5-1073 ~ —7.6 and log 1072 = —4.6, and log ¢, < 0 always.

Relative Bias—Asymmetric Case

Outliers may also occur in asymmetric ways. In [OIMi96], p 5, on the one hand,
only outliers to the left, for which ¢, is small or even 0, are mentioned at all; these
are the observations with large |logq,|. Actually, it is the logarithmic transform
itself that generates such outliers.

Remark 5.1 The logarithm introduces a skewness to the left: Relative distances
| log pmry, — log m,:| = |log p| to the right are decreased, since |logp| < |p — 1] for
p > 1, whereas to the left, since |logp| > |p— 1| for p < 1, they are increased.
For example, let us consider an age group of size L, = 2000 and mortality
7 = 0.6 - 1072, such that ¢, ~ 0.3. Then a fluctuation of the observed about



16 H. RIEDER

120 120
IQRIDS
IQRIDS
100 100 ==
080 080
© ©
£ £
£060 £060
© ©
o o
040 040 sigma=3/8
020 020
0.00 \ , , 0.00 \ , \ \ ,
100 200 300 4.00 5.00 6.00 100 200 300 4.00 5.00 6.00
z z
200
IQRIU VAR
180 /
sigma=1 IRU
/
//'
160
M /
£
£ ;
H Y,
o J
J
140
0 sigma=3/8
VAR
100 T ‘
150 300 450 6.00

Figure 4: Systematic bias of min.2/VAR and minL1/IQR, for ¢ = 0.375 and o = 1
under symmetric error distributions DS, NS, and the uniform U(—z,z) (3rd plot)
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the expected number (12) of deaths by +6 (£8, £11, +12) translates into a
fluctuation of log g, about logm, = —5.1 by log2 = 0.70 (1.1, 2.5, ) to the
left and to the right by only log1.5 =0.40 (0.51, 0.65, 0.70, respectively). Thus,

the logarithmic transform generates outliers to the left that are not in the data.

On the other hand it may be argued that, starting from a certain background
mortality, outliers mostly occur to the right (accidental crashs of full carloads, ... ),
and so the real distribution would actually be asymmetric to the right. Both effects
may result in a symmetric contamination, but should of course be formulated and
investigated separately.

Asymmetric F

Therefore, we secondly consider error distributions F = (1 — r)A(0,1) + rM of
radius r = 10% and with the contaminating M asymmetric Dirac and shifted
normal, respectively, both generating outliers z (exactly or on the average),

(DA) M=6., (NA) M =N(z1) (5.6)

Relative Bias—General Case

To determine the systematic bias under asymmetry, we assume the regression func-
tion fpo(x) of type (3.2) and rewrite model equation (4.1) in the following form,

log qz = fb,c+om(x) + U(€x - m) (57)

Depending on the estimate of the regression coefficients—minl.l or minL.2—the
constant m denotes the mean and median of F', respectively, and the zero m of
J ¥r(e—m) F(de) = 0 for general Huber estimates. Then the consistency conditions
(4.5) and (4.6) are fulfilled. Consequentially, (4.2) and (4.9) are replaced by

Gi(x) — exp( fo,crom(@) + 207sE) (5.8)
and
e = exp( fo,crom(x)) / e 7= F(de) (5.9)
As the exp f term cancels again, the systematic bias is
exp(om+ %025%)
= 1
wete) = S (5.10)

where m expresses the influence of the regression estimate under asymmetry.

6 Root-Transformation

The following stochastic reasoning suggests the square root transformation instead
of the logarithm.
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6.1 Variance Considerations

Heteroskedasticity Without further knowledge, the observed mortalities are bi-
nomial, Lyqy ~ Bin(Ly, 7)), and ¢, — 7, as Ly, — oo (law of large numbers).

The Taylor expansion /¢z = /7y + (2 /7z )_1(q$ — 7z) + ... suggests that ap-
proximately E(\/¢z ) = /7 and

Var(y/gz ) =~ m(1 — 71'90)/(4[/907790) i~ 1/(4L$) (6.1)

The A-method, linking Taylor expansion and deMoivre-Laplace central limit the-
orem, even tells us that approximately, in distribution,

V8o (Ve =) ~ N(0,3) (6.2)

Therefore, the variance o2 of \/g; at age x is approximately

o2m1/(4Ly) (6.3)

Stabilization In comparison with (3.8), the square root has stabilized the vari-
ance by removing the dependence on 7, .

Homoskedasticity Homoskedasticity amounts to the condition that

L, =~ constant (6.4)

The values of L, for  =20,...,65 in DAV 1994 T (males), in the special company table
of [OIMi96], and in table 3 of [Loeb94] scaled down by Lfac = 6 have a median of 4405,
3095, and 1430, respectively. Hence the corresponding o, -values have medians in the
range from 0.75-1072, 0.9 -1072, to 1.32-1072. Thus, in the homoskedastic case, the
value of o = 1072 is plausible and corresponds to age groups of size L, =2 2500.

6.2 Model Formulation

Thus, we consider the following model for the observed root-mortalities,

Ve = f(x) + % co (6.5)

with the errors ¢, 1.i.d. ~ F' and the scale o unknown. Corresponding weights are
Wr =V Le (66)

Regression Function As regression function f(z) we employ a parabola and a
cubic,

f(x) = a+bx + ca? (+da?) (6.7)
and an exponential with additive constant,
f(@) = c+exp(a+ bx) (6.8)

The regression functions f(z) may be set constant for @ = 20,...,31 by simply
inserting & = max{31,z} for z.
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Interpretation of f(x) Again, one cannot simply equate f(x) with /7 .
From (6.5) and Ep ¢, = 7, we obtain

T = (f(x)—i—aw;lm)z—i—azw;z Varp ¢ (6.9)

where m = Ep ¢, and hence actually

f(x):\/ﬁx—azwngarFe —ow,'Epe (6.10)

In this way regression and scale parameters are related with the estimand #,. On
the one hand, this indicates an intricate dependence of mortalities and population
sizes, which undoubtedly exists for an entire population. On the other hand, if the
original mortalities 7, are assumed to obey a certain functional form, the f(z) to
be fitted in the transformed model is necessarily prescribed by (6.10).

6.3 Back-Transformation
The (theoretical) back-transformation formula is
EY?=p?+o? (6.11)

which is valid for any random variabe Y with mean u and variance o?. In this
sense, and contrary to (4.15), formula (6.11) is in fact ‘nonparametric’.

Remark 6.1 Without setting 1 — m;, &~ 1, the variance-stabilizing transformation
would be arcsin /g, . The corresponding back-transformation formula is

E(sinY)? = 5 — 3(¢7 (2) + ¢7 (-2) (6.12)

and involves the Fourier transform Y of Y. Thus, instead of mean and variance,
the Fourier transform at £2 would have to be estimated. Y74

The back-transformation formula for estimates 6 of the unknown parameter 6 of
the regression function f(x) = fo(x) that are based on /gy is

Go = f(2)* + 6% Ly (6.13)

where f = f3. Bumps of L. inevitably create bumps of the estimate ¢,. Only in
the homoskedastic case this problem does not appear.

6.4 The Huber Family

Estimates 0 of the regression parameter 6 that are based on /g, may be defined
according to (2.2)—(2.8) employing the weights w, = /L, . In particular, the
Huber family of estimators minL.2/VAR, minL.1/AAD, and rg_Huber with tuning
constant kfac is available.
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6.5 Least Squares Unbiased

In the homoskedastic case, model (6.5) attains the form

Vs = f(a) +oew (6.14)

with €5 1.1.d. ~ F and o unknown, and the back-transformation is given by
Go = f(x)* + 67 (6.15)

Consistency of minL.2/VAR  Assuming an error distribution of finite variance
Varpe < oo and setting m = Epe, we rewrite the homoskedastic model (6.14) in
the following form,

Ve = f@) +om+o(ce —m) (6.16)
In the product—model, the minl.2/VAR estimate can be proved to be consistent,

Ju(x) — f(@) + om, 672 — 0? Varpe (6.17)
Thus,
Gr(x) :fk(x)z—i—&i — (f(x)+am)2+02 Varpe (6.18)

where the limiting value is in fact the target since, in view of (6.16) with m = Ep e,
e = Bp gs = (f(x)+am)2+02 Varp ¢ (6.19)

In this sense, minl.2/VAR is always unbiased. The existence of such an estimator
speaks in favor of the model.

6.6 Outliers

The problem of robustness will not be as severe as with the logarithm since the
root-transform does not generate outliers. In particular, as /O = 0, observed
mortalities g, = 0 do not need an extra treatment.

Remark 6.2 In the numerical example given in Remark 5.1 the roots /g, fluc-
tuate about /@y = 7.75%, with o, ~ 1.12%, attaining the following values (ob-
served number of deaths in brackets) 0% (0), 3.16% (1), 4.48% (4), 5.48% (6),
7.75% (12), 9.48% (18), 10% (20), 10.7% (23), and 10.95% (24).

Relative distances towards both sides |1/p7T33 — 1/71'90| = |\/ﬁ — 1|\/7z , since
|vp — 1| <|p—1] for p<1 and p > 1, are decreased. /i

6.7 Nonnegativity

Without an explicit nonnegativity condition, the fits to /g, have turned out so
good for the data considered that f (z) > 0 automatically.
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7 Estimates Based on Root-Mortalities

7.1 Estimates and Functions in Comparison
Comparison of Huber Estimates

First, a parabola f(#) with constant initial section is fitted to /g, of our standard
data set from table 3 of [Loeb94]. The different estimates of the Huber family
(minL2/VAR, minL1/AAD, rg_Huber) are evaluated for ,/q. , transformed back,
and compared.

Contrary to log g, based estimation—recall Figure 3—the different estimates
plotted in Figure 7 practically agree?, which indicates stability of the model. Thus,
one may stay with min.2/VAR.

Comparison of Parabola, Cubic, and Exponential

Second, the fit by different regression functions is compared. By minL2/VAR we
determine the /g, based fit of parabola, cubic, and exponential given by (6.7)
and (6.8) with constant initial section; confer the left-hand plot of Figure 8.
Third, the right-hand plot of Figure 8 shows the goodness-of-fit measured by the
p-value as a function of the population rescaling factor Lfac; confer Subsection 2.3.
The three estimates and corresponding p-values achieved are practically indis-
tinguishable. Thus one may stay with the parabola.

2 We have also tried the Hampel-Krasker family (computed by iterative weights) and obtained
similar results.
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Figure 8: ,/g; based minL.2/VAR fit of a parabola (---), cubic (---), and exponential
(—), with corresponding p-values as a function of the population rescaling factor Lfac;
the fourth curve (- —) belongs to the log ¢, based minL1/IQR fit (3.3)—(3.5).

Numerical, minL.2/VAR Parabola, and Log-Linear minL1/IQR Fit

As a reference curve, we appeal to the numerical fit ¢% taken from column 4 of
table 3 in [Loeb94]. Also, the log ¢, based minL1/IQR estimate "¢"°" defined by
(3.3)=(3.5) and its p-value are determined. These estimates, the parabola B,
and the observed mortalities are plotted on the left-hand of Figure 9 and tabulated
in Table 1.

The right-hand plot of Figure 9 shows the differences between the various fits
and the numerical smooth (reference curve).

7.2 Unresolved Problems

Not only bias but also variance of estimators should be treated.

Based on an analysis of likelihoods of the transformed model, the asymptotic
distribution of regression estimators centered at the regression parameters may be
derived. Likewise, robustness of Huber and other estimates has been defined and
proved in terms of bias and variance, in the context of estimating the regression
parameters of the transformed model.

How do these properties carry over to the estimation of .7
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Figure 9: back-transformed /g, based minL2/VAR fit of a parabola ( - - - ), the numerical
smooth (—), and log g, based minL1/IQR fit (3.3)—(3.5) (— —), on the left-hand plot;

on the right-hand plot, differences between the various fits and the numerical smooth

8 MLE in a Poisson Generalized Linear Model

8.1 Poisson GLM

Probability Model The number of deaths T, observed in the group of age x
may instead of binomial well be supposed Poisson,

Pr(Twztw):e—Mj—z, ty =0,1,... (8.1)
with expected number of deaths
Ap = Lgmy (8.2)
Assuming stochastic independence the log-likelihood function is
65
log Pr( Ty =t #=20,...,65) = > (—Ap+1s log Ay —log(ts!))  (8.3)
=20

Regression Functions We model the function of true mortalities 7, by an ex-
ponential and a cubic in & = max{31,z},
Ty = exp (a + bi‘) (8.4)

respectively,
7y = a+ b& + ci? + di3 (8.5)



ESTIMATION OF MORTALITIES 25

8.2 Maximum Likelihood Estimate (MLE)
The log-likelihood (8.3) with either choice (8.4) or (8.5) is differentiable with respect
to the parameters and yields the maximum likelihood equations by setting the
derivative equal to zero.
Likelihood Equations
In case (8.4) the likelihood equations to be solved for @ and b are
S ELge® S, W Sty
— = , e = —/————
> w L€t Yonte > L€t
In case (8.5) the likelihood equations to be solved for a, lA), ¢, and d are
65 65 .
Ly X = - e — X 8.7
P D P MW &)

where XT = (1,%,3% #3).

Iterative Solutions These equations are numerically well-behaved and can be
solved by a dozen iterations of the Newton—Raphson algorithm. (As starting values
for the cubic we took the first derivatives from the exponential fit at * = 40, for
the exponential fit we chose the initial value bg =0.)

8.3 Exponential and Cubic

The first plot of Figure 10 shows the exponential and cubic fits together with the
numerical smooth and raw mortalities from the standard data set (confer Subsec-
tion 2.2). Second, the p-values are plotted as a function of the population rescaling
factor Lfac (confer Subsection 2.3). The third plot shows the differences between
these fits and the numerical smooth.

The numerical values &P and §U" are tabulated in the last two columns

of Table 1.

8.4 Further Developments

Asymptotics and Robustness

As model (8.1)—(8.5) is smoothly parametrized, it should be possible to bring mod-
ern asymptotic statistics and infinitesimal robustness to bear on the (non-i.i.d.) es-
timation problem. Thus, optimally robust alternatives to the MLE may eventually

be derived—confer [Ridr94] and [Slatr94].

Dynamic Aspects

As mortalities may change over time a dynamic modelling seems to be required.
The models of [FaTu94], Section 8.2, may turn out useful.
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r _roh

spar

~eXpP

~cub

R s Ly  ty/Ly 7z A 5 i o

20 0 2011 0.000 0.709 0.468 1.060 0.412 0.660
21 3 2350 1.277 0.752 0.468 0.989 0.412 0.660
22 1 2836 0.353 0.786 0.468 0.916 0.412 0.660
23 3 3287 0.913 0.808 0.468 0.868 0.412 0.660
24 4 3583 1.116 0.816 0.468 0.843 0.412 0.660
25 2 4184 0.478 0.808 0.468 0.804 0.412 0.660
26 5 4602 1.086 0.785 0.468 0.782 0.412 0.660
27 3 4852 0.618 0.750 0.468 0.771 0.412 0.660
28 4 5025 0.796 0.706 0.468 0.764 0.412 0.660
29 3 5300 0.566 0.658 0.468 0.754 0.412 0.660
30 5 5410 0.924 0.613 0.468 0.750 0.412 0.660
31 6 6092 0.985 0.579 0.468 0.729 0.412 0.660
32 0 6549 0.000 0.564 0.512 0.723 0.453 0.670
33 1 6935 0.144 0.576 0.560 0.726 0.498 0.681
34 2 7858 0.255 0.612 0.612 0.728 0.548 0.694
35 12 10428 1.151 0.666 0.669 0.722 0.603 0.712
36 8 10926 0.732 0.723 0.732 0.750 0.663 0.735
37 10 14121 0.708 0.775 0.801 0.770 0.729 0.765
38 9 14433 0.624 0.816 0.876 0.818 0.802 0.803
39 24 16988 1.413 0.845 0.958 0.866 0.882 0.851
40 15 21000 0.714 0.869 1.048 0.924 0.970 0.911
41 32 24955 1.282 0.906 1.146 0.996 1.067 0.984
42 19 28066 0.677 0.979 1.254 1.084 1.174 1.071
43 34 35233 0.965 1.110 1.371 1.182 1.291 1.173
44 37 30860 1.199 1.305 1.500 1.306 1.419 1.294
45 41 34627 1.184 1.546 1.641 1.439 1.561 1.432
46 52 32944 1.578 1.799 1.795 1.594 1.717 1.592
47 112 37359 2.998 2.013 1.963 1.763 1.888 1.773
48 70 33997 2.059 2.157 2.147 1.960 2.077 1.977
49 &7 33374 2.607 2.245 2.348 2.177 2.284 2.206
50 73 31602 2.310 2.329 2.569 2.419 2.512 2.461
51 80 32373 2.471 2.480 2.810 2.686 2.763 2.744
52 42 31366 1.339 2.757 3.073 2.984 3.038 3.056
53 85 31737 2.678 3.183 3.361 3.311 3.342 3.399
54 83 17127 4.846 3.706 3.677 3.699 3.675 3.773
55 96 13225 7.259 4.246 4.022 4.114 4.042 4.182
56 39 9517 4.098 4.747 4.399 4.579 4.445 4.625
57 45 9303 4.837 5.216 4.811 5.058 4.889 5.105
58 39 5915 6.593 5.688 5.263 5.640 5.377 5.624
59 34 7091 4.795 6.211 5.756 6.181 5.914 6.181
60 23 4147 5.546 6.835 6.296 6.898 6.504 6.780
61 28 5118 5.471 7.586 6.887 7.524 7.153 7.421
62 37 4412 8.386 8.462 7.533 8.283 7.867 8.106
63 41 2970 13.805 9.434 8.239 9.180 8.652 8.837
64 27 2627 10.278 10.465 9.012 10.074 9.515 9.614
65 4 400 10.000 11.526 9.857 13.097 10.465 10.440

27

Table 1: Number of deaths t%, size LY of group at age z, raw mortality q» = t%/L%
and numerical smooth ¢y taken from table 3 of [Loeb94]; the log g, based minL1/IQR
fit T¢i® computed according to (3.3)—(3.5) and =z based minL2/VAR fit
parabola; 5P denotes the exponential and ¢5*° the cubic MLE fit in the Poisson GLM.
The unit of probabilities is 1072 .
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Zusammenfassung

Bei der Schatzung von Sterblichkeiten mittels log-linearer Regression und Riick-
transformation gemaf der Formel Ee¥ = e"+°/2 antsteht ein systematischer
Bias, es sei denn, die Fehlerverteilung ist exakt normal und der Skalenschatzer
schatzt die Varianz. Dies folgt aus dem Eindeutigkeitssatz fir die Laplace—
Transformierte.

Unter uniformer Fehlerverteilung und vier kontaminierten Normalverteilun-
gen bestimmen wir den Bias fur Minimum—/L2 und — 7L, Schatzungen mit Stich-
probenvarianz und Quartilsabstand der Residuen als Skalenschatzer. Schon bei
unscheinbarer Kontamination konnen die wahren Sterblichkeiten im statistischen
Mittel systematisch um 50% unterschatzt werden.

Uberdies fithrt die logarithmische Transformation zu einer Instabilitat des
Modells, welche sich in einer grofien Diskrepanz der Schatzer vom Typ rg_Huber
bei sich andernder tuning—Konstante, die den Grad der Robustheit steuert, auflert.

Im Unterschied zum Logarithmus stabilisiert die Wurzel-Transformation die
Varianz, sie dampft den Einflu von Ausreiflern, beobachtete Null-Haufigkeiten
verursachen keine Probleme, sie fiuhrt auf die ‘nichtparametrische’ Ricktrans-
formationsformel EY? = u2 +02 und verhindert im homoskedastischen Fall einen
systematischen Bias der Minimum—/2 Schatzung mit Stichprobenvarianz.

Fir die unternehmensspezifische Tafel 3 in [Loeb94] passen wir im Altersbe-
reich 2065 Jahre eine Parabel an die Wurzeln der Sterblichkeiten an und zwar
mittels Minimum—ZLs, — .1 und robusten rg Huber Schatzungen, sowie ein ku-
bisches Polynom und eine Exponentialfunktion mittels Kleinste-Quadrate. Die
damit im Originalmodell erzielten Anpassungen sind hervorragend und praktisch
mit einem x° —Anpassungstest nicht zu unterscheiden.

Schliefilich verwenden wir ein Poissonsches generalisiertes lineares Modell und
schatzen eine Exponentialfunktion und ein kubisches Polynom nach der Maximum-—
Likelihood Methode ohne jegliche Transformation von Beobachtungen.
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