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Abstract

If a linear regression is �t to log	transformed mortalities and the estimate is

back	transformed according to the formula E eY 
 e���
��� a systematic bias

occurs unless the error distribution is normal and the scale estimate is gauged
to normal variance� This result is a consequence of the uniqueness theorem
for the Laplace transform�

We determine the systematic bias of minimum�L� and minimum�L� esti	
mation with sample variance and interquartile range of the residuals as scale
estimates under a uniform and four contaminated normal error distributions�
Already under innocent looking contaminations the true mortalities may be
underestimated by �� in the long run�

Moreover� the logarithmic transformation introduces an instability into the
model that results in a large discrepancy between rg Huber estimates as the
tuning constant regulating the degree of robustness varies�

Contrary to the logarithm the square root stabilizes variance� diminishes
the in�uence of outliers� automatically copes with observed zeros� allows the
�nonparametric� back	transformation formula E Y � 
 �� � �� � and in the
homoskedastic case avoids a systematic bias of minimum�L� estimation with
sample variance�

For the company�speci�c table � of �Loeb���� in the age range of ����
years� we �t a parabola to root mortalities by minimum�L� � minimum�L� �
and robust rg Huber regression estimates� and a cubic and exponential by
least squares� The �ts thus obtained in the original model are excellent and
practically indistinguishable by a �� goodness	of	�t test�

Finally� dispensing with the transformation of observations� we employ
a Poisson generalized linear model and �t an exponential and a cubic by
maximum likelihood�

� Part of the work was done while the author was visiting the Statistics Department� University
of Munich�

�
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� Introduction

The determination of true mortalities �x at age x of a certain population on the
basis of the observed mortalities qx is a classical topic of insurance mathematics�
which may be treated either numerically or statistically�

Numerical Smoothing vs� Statistical Estimation

The numerical method� on the one hand� employs some spline smoothing �Reinsch�
Whittaker�Henderson�� minimizing a combination of weighted least squares and a
roughness penalty� Without requiring any model assumptions it produces smooth
	ts that may re
ect several substructures�

The statistical method� on the other hand� needs to specify a suitable model
for the function �x and the error structure �the law of the deviations qx � �x ��
and then estimates the model parameters according to some statistical criteria�
Examples include a weighted least squares estimation of a Gompertz�Makeham
curve ��x � log��� �x� � a� bcx to log��� qx� � by Knight and Hardy �������
and the weighted minimum �� 	t of �x � a�bcx to qx by Cram�er andWold ������

X
x

Lx
�qx � �x��

qx
� min

a�b�c
� �����

Here and subsequently� Lx denotes the size of the population at age x �
As for these �rather old� references in particular� and standard textbook accounts

of the subject in general� we refer to �Wol���� and �BePo���� Judging from the more
recent article �Loeb��� the model�free numerical method seems to prevail in German
actuarial practice�

Company�Speci�c Small Populations

For small populations with scanty data and large variability one might expect the
numerical smoothing in trouble and to produce wiggly curves� This is of course not
necessarily the case since 	t and smoothness can be determined by the choice of 	t
criterion and roughness penalty and can be balanced by their weights� In fact� the
standard numerical 	t employed in �Loeb�� turns out smooth for all three tables
considered there�

The attractiveness of the statistical method consists in the possibility of obtain�
ing a smooth and simply structured 	t by specifying a suitable model and estimating
but a few parameters� In this sense� the statistical estimation of mortalities appears
particularly suited to small populations� Moreover� the graduation by reference to
a basis table�the subject of �BePo���� Chapter ���is recommended in such situa�
tions� but also aggravates the dependence on the model assumptions �to be satis	ed
by two populations� and adds the dependence on the basis table �whose structure
is inherited��

By this technique the ratios �x��
bas
x of true mortalities are estimated using the ob	

served ones� qx�q
bas
x � One variant treated in �BePo��� employs Lidstone�s transformation
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q �� log��� q� in the model

log��� qx�� log��� qbasx � 
 f�x� � error �����

and �ts a cubic f�x� by least squares with �squared� weights Lx��x � Lx�q
bas
x �

Since the opening of the European market the problem seems to attract some
new attention as reinsurance companies may wish to calculate premiums for each
�smaller� life insurance company individually� taking into account the particular
mortality structure�

Log�Linear Regression

In �OlMi�� a linear regression bx � c for the log�mortalities log qx �set constant
on an initial section� is proposed� the two regression parameters and scale are esti�
mated by weighted minimum�L� and the �standardized� interquartile range of the
residuals� respectively� These estimates� to obtain an estimate �qx of the original
mortality �x � have to be transformed back suitably�

For the estimation of graduation ratios �x��
bas
x � the two mortality data sets are not

combined in one model by �OlMi��� but the log	linear regression is applied twice� once
to the company�speci�c table and separately for the DAV ���� T basis table �already
numerically smoothed�� and then �x��

bas
x are estimated by �qx��qbasx �

Several issues are left unsettled by �OlMi��� The exponential structure of the
mortality curves� hence of the graduation ratios� is based on mere belief and not
checked statistically� Observed zero mortalities qx � � � for which log qx � ��
would create di�culties� are arbitrarily modi	ed� The problem of heteroskedasticity
is ignored and homoskedasticity implicitly assumed� No distributional assumptions
are made�

Without proof the authors of �OlMi�� claim in their paper that their esti�
mation method be  robust! and yield  con	rmed results! and� in the discussion
to �OlKo��� that it  save ca� ��" premiums!�

Safety Margins�a Separate Problem

One notable inconsistency in �OlMi�� concerns the treatment of safety margins�
This topic is only secondary since the declared aim in �OlMi��� Section �� p �� is the
estimation of raw mortalities� for which a basis table� however� seemed unavailable�
It was apparently not observed that the corresponding data without any additional
safety components can in fact be obtained from columns � and � of DAV��T
�tables � and � in �Loeb���� Instead� the numerically smoothed mortalities #q�x
from column � containing two additional safety components have been taken as a
basis for the subsequent statistical 	tting�

The entire Section � of �OlMi�� is devoted to safety margins but only employs
a special variant�actually a coarsening�of the method of �Loeb���

The �rst level � condition ��� of �Loeb���� Section �� is adopted with the nota	

tional identi�cation s�x 
 �c� ��qx by �OlMi��� while the second level �� condition ���

of �Loeb��� is omitted� Consequentially� uncontrolled subventions across di�erent age

groups must be accepted�
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Figure �� Raw mortalities tux�L
u
x �� ��� numerical smooth qux ���� and the numerical

smooth qu�x � � � � � containing one additional safety component� from table � of �Loeb���

These statistical calculations concerning width and level of one�sided con	dence
intervals in a well�known way determine a minimum sample size� In �OlMi���
Section �� p �� this minimum sample size requirement is ascribed to the numerical
smoothing technique�

Also� in �OlKo��� the column of numerically smoothed mortalities qux in the
company�speci	c table � of �Loeb�� was confounded with the following column
of qu�x containing one additional safety component� The qux are smooth but re
ect
substructures like the accident and heart�attack bumps$ confer Figure �� Over
most of the range� the qu�x follow the qux closely with a slight upward shift�except
for the bump of qu�x at x � ��� �� � This artifact is unrelated to the numerical
smoothing either�

In the said table of �Loeb��� we �nd qu�� 
 ���������� � qu�� 
 ��������� � and that qu�x
drops from ���������� down to ���������� � which is less than qu�� � This artifact is caused

by the alternating method I and II in �Loeb���� Section � of calculating safety margins�

which at some instances �namely� for age groups with less than  deaths� switches between

company and basis table� Moreover� the one	sided grouping of x 
 ��	 ��	 �� with x 
 ��

seems doubtful� The method certainly needs to be improved�

Estimates Based on Root�Mortalities

Our paper concentrates on the statistical estimation of raw mortalities� The de�
termination of additional safety components is considered a separate issue �to be
treated elsewhere��

The log�linear model may be criticized from the viewpoint of destabilization of
error variance� arti	cial generation of outliers� arbitrary treatment of zeros� a rather
restricted back�transformation formula� and inevitable estimator bias�

In the chosen descriptive framework of �OlMi��� stochastic reasoning suggests
the root transformation over the logarithm� The square root stabilizes error vari�
ance� diminishes the in
uence of outliers� automatically copes with observed ze�



ESTIMATION OF MORTALITIES �

ros� allows a %nonparametric& back�transformation formula� and at least in the ho�
moskedastic case avoids a systematic bias of least squares�

For the company�speci	c table � of �Loeb��� in the range of ����� years� we 	t
a parabola to the root observed mortalities by classical and robust estimation meth�
ods� minimum�L� �with sample variance�� minimum�L� �with average absolute de�
viation�� and by robust regression rg Huber as implemented in ISP$ confer �ISP���
A cubic and exponential are 	tted by least squares� Transformed back these esti�
mators give excellent 	ts in the original model that are practically indistinguishable
by a �� goodness�of�	t test�

Generalized Linear Models

Heteroskedasticity inevitably accounts for bumps in the back�transformed estimates
unless we 	t rather complicated regression functions f�x� to the transformed ob�
servations log qx and

p
qx � Instead� it seems more natural to assume a smooth

functional form of the true mortalities �x themselves and not to transform obser�
vations at all� Formulating a Poisson generalized linear model we 	t a cubic and an
exponential by maximum likelihood�

� Transformation�Based Robust Estimators

��� The Huber Family

In the following� the observed mortalities qx are transformed to gx �logarithm or
square root�� and for the transformed observations gx some regression model is
assumed�

gx � f��x� � error �����

The parameter � of the regression function has to be estimated using the trans�
formed observations gx �

M Estimates As estimators we shall employ regression M estimates in the sense
of �Hubr���� but to account for heteroskedasticity we actually need weighted ver�
sions� Generalizing weighted least squares these estimators are de	ned by

��X
x���

�
�
wx ��

��� gx � f���x��
�
� min

�
� �����

or
��X

x���

�
�
wx ��

��� gx � f���x��
�
wx df���x� � � �����

where � � '� and df � 	f
	� � and �� denotes a scale estimate �to be determined by
a further equation�� The weights wx will be speci	ed in Sections � and � depending
on the transformation�
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Huber Functions To obtain a representative class of such M estimators we em�
ploy the family of Huber functions � � �k and � � �k �

�k�u� � minfkjuj� u�g � �
� minfk�� u�g � �k�u� � u minf�� k
jujg �����

with clipping constant � � k � � that determines the degree of robustness$ the
smaller k the more robust the estimator�

The choice k �� de	nes the weighted minimum�L� �least squares� estimator�
denoted by minL�� which is implemented in the ISP macro regress� The case k � �
leads to the weighted minimum�L� estimator � in ����� and ����� divide � � �k
and � � �k by k and let k � � �� It is implemented in the ISP macro l��t and
denoted by minL��

The ISP macro rg Huber determines k adaptively as a constant kfac times the
median

k � kfac �MEDfjuxjg �����

of the absolute value of weighted residuals�

ux � wx

�
gx � f���x�

�
�����

Scale Estimates With the regression estimates goes an estimate �� of scale�
For � � kfac � � essentially the sample variance �� of the Winsorized resid�

uals �k�ux� is used by the ISP macro rg Huber and suitably gauged to normal
variance$ confer �Hubr���� Section ����� formulae ������� p ��� with correction
factor K � � �

For minL� �k �� � the ISP macro regress supplies the sample variance �VAR�
of the weighted residuals�

��� �
�

��� dim

��X
x���

u�x �����

where dim denotes the dimension of the parameter � � The combined estimator
will be denoted by minL��VAR�

For minL� �k � �� the ISP macro l��t supplies the average absolute deviation
�AAD� of weighted residuals� which may be gauged to normal variance by division
through

p
�
���� �

�� �
p
���� AAD � AAD �

�

��� dim

��X
x���

juxj �����

The combined estimator will be denoted by minL��AAD�

Robustness Standard The Huber family de	nes some algorithmic robustness
standard� If the estimates di�er for various values of the tuning constant there is a
robustness problem� if they practically agree there is none�

Backtransformation The estimates �� based on gx must be transformed back
according to suitable formulae given in Subsections ��� and ���� so as to yield
estimates �qx for the theoretical mortalities �x referring to the original model�
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Population�Size Invariance The weights wx �
p
Lx�x and wx �

p
Lx spec�

i	ed below and the corresponding back�transformation formulae achieve that the
back�transformed minL��VAR and minL��AAD estimators stay the same if the
observed mortalities qx are kept while the population sizes Lx are all rescaled by
a factor Lfac � General Huber estimates� for � � k � � � are not size�invariant in
this sense�

��� Standard Data Set

For all the plots in this paper� the set of observed raw mortalities qx will be taken
from the company�speci	c table � of �Loeb��$ namely� as the ratios tux
L

u
x of

columns � and � in that table� The age range will be x � ��� � � � � �� years� The
total size of the population in that range is ����� �

At some instances �calculating goodness�of�	t� � � � � this rather large population
will be scaled down by dividing each Lu

x through the factor Lfac � �� � � � � � sup�
plying a population size comparable to the ones of DAV ��T ������� �� table �
of �Loeb��� and �OlMi�� � ������ ��

��� Goodness�of�Fit

The goodness of the 	t in the original model is measured by the following ��

criterion�

S� �
��X

x���

Lx
�qx � �qx��

�qx�� � �qx�
����

If the model is correct and no parameters were estimated� S� were in fact approx�
imately central ���� with �� degrees of freedom �deMoivre�Laplace �� It is �crude�
statistical practice� as d parameters are estimated� to simply subtract d degrees of
freedom� � The p �value vp is the corresponding �� tail�probability�

vp � Pr�S���� ������

If the model is correct� vp is approximately uniformly distributed on ��� �� � The
larger vp the better the 	t�

Population�Size Dependence The goodness�of�	t statistic ���� obviously does
depend on the population size� The dependence of S� is straight proportionality
if the employed estimators are invariant under rescaling of Lx by the factor Lfac �
Therefore� Figure � plots the p �value as a function of Lfac � �� � � � � � �

The larger the underlying population the less likely the acceptance of the model
�null hypothesis�� More complex models ought to be 	tted as the population size
increases�

� The �� distribution may not be realized if parameter estimates other than minimum��� are
plugged in� confer Cherno�� H� and Lehmann� E�L� ��	
��� Ann� Math� Stat� �� pp 
	�
���
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Figure �� Raw mortalities tux�L
u
x from table � of �Loeb��� and their logarithms� with

log � treated as missing value

� Log�Linear Mortalities

��� Transformation and Preliminary Model

Here gx � log qx � Without specifying the error structure� a linear regression

log qx � fb�c�x� � error �����

is considered in �OlMi�� assuming a function fb�c�x� that is piecewise linear

fb�c�x� � b(x� c � (x � maxf��� xg �����

A constant initial section is supposed to model the accident�bump in the range of
����� years� while other substructures� for example the heart�attack bump in the
range of ����� years� are not taken into account�

Remark ��� Often the logarithmic transformation is recommended when the vari�
ability of the data seems to increase with the absolute value of observations$ for
example� confer �SliSt��� p ��� In the present context� however� this phenomenon
can be explained without assuming a multiplicative structure� Ideally� the observed
mortalities are binomial� Lxqx � Bin�Lx� �x� and Var qx � L��x �x�� � �x� � For
large x the Lx decrease and the �x � ��� � hence Var qx � increase� 				

The Estimate minL�	IQR of 
OlMi��

In �OlMi�� the two parameter estimates �b and �c are weighted minimum�L� with
weights wx � Lx �

��X
x���

Lx

�� log qx � f�b��c�x�
�� � min

b�c
� �����
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As scale estimate the interquartile range �IQR� of the unweighted minimum�L�

residuals log qx � f�b��c�x� �with two zeros omitted� is used� standardized by ���� �

�� � IQR
���� �����

Their estimate will be denoted by minL��IQR$ it is implemented in the ISP macros
l��t and �venum�

Back�Transformation These estimates based on log qx are in �OlMi�� trans�
formed back according to the formula

�qx � exp
�
f�b��c�x� �

�
� ��

�
�

�����

��� Heteroskedasticity

Variance Ideally� without further knowledge� the observed mortalities are truly
binomial� Lxqx � Bin�Lx� �x� and qx � �x as Lx � � �law of large numbers��
The Taylor expansion log qx � log�x � ���x �qx � �x� � � � � suggests that approxi�
mately E� log qx� � log�x and

Var� log qx� � �x��� �x�
�
�Lx�

�
x� � �

�
�Lx�x� �����

The )�method� linking Taylor expansion and deMoivre�Laplace central limit the�
orem� even tells us that approximately� in distribution�p

Lx � log qx � log�x� � N ��� ���x � �����

Hence the variance ��x of log qx at age x is approximately

��x � �
�
�Lx�x� �����

and the errors are actually heteroskedastic�

Remark ��� In view of ������ as �x is small � ��� � ���
 � �x � ���� roughly��
the logarithmic transformation destabilizes variance� 				

Implicit Homoskedasticity The fact that the scale estimate is not adjusted to x
in the back�transformation formula ����� implies the assumption of homoskedastic
errors in �OlMi��� Thus� model equation ����� more precisely reads

log qx � fb�c�x� � � x ����

with errors ��� � � � � �� stochastically independent� identically distributed according
to some law F � i�i�d� � F � and � some unknown scale�
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��� Model Formulation

In view of ������ we replace model ���� by

log qx � fb�c�x� �
�p
Lx�x

x ������

with x i�i�d� � F and � unknown� Following �BePo���� p ��� we have substi�
tuted the unknown �x by some preliminary estimates �x $ for example� �x � �qbasx

�estimated� or �x � qbasx �observed� from some basis table� Corresponding weights
are

wx �
p
Lx�x ������

Interpretation of f �x� In view of ������ the regression function f�x� � fb�c�x�
cannot simply be equated with log�x � Since

�x � EF exp�log qx� � exp
�
f�x�

� Z
exp��
wx�F �d� ������

in fact

f�x� � log�x � log eF ��
wx� ������

where eF denotes the Laplace�transform of F � In this way regression and scale
parameters are related with the estimand �x � On the one hand� ������ might re
ect
an intricate dependence of mortalities and population sizes� On the other hand� if
the original mortalities �x are assumed to have a certain functional form �e�g��
polynomial� exponential�� that of the function f�x� to be 	tted in the transformed
model is then prescribed by �������

Back�Transformation The back�transformed estimate is

�qx � exp
�
f�b��c�x� � ���
��w�

x�
�

������

According to ������� bumps of Lx�x inevitably create bumps of the estimate �qx �
Only under the assumption of homoskedasticity smoothness is preserved�

Special Case Homoskedasticity is the special case

Lx�x � constant ������

The values of Lxqx for x 
 ��	 � � � 	 � of the table DAV ���� T �males� in �Loeb���

and the company�speci�c table in �OlMi��� range from ���� to ���� and from ������

to ����� � respectively� Hence the corresponding �x range from ������ to ������ �with a

median of ������ � and from ������ to ����� �with a median of ������ �� respectively� The

corresponding values of table � in �Loeb��� with Lfac 
  are ������ and ���� �with

a median of ������ �� Thus� the value of � in the homoskedastic case may be assumed

between ��� and ��� � but the value � 
 � is also plausible�
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Figure �� Back	transformed Huber estimates based on log qx �zeros modi�ed� for tuning
constant kfac 
 �	 �	 �	 	 �	 ��	�

��� Discrepancy of Huber Estimates

For the company�speci	c table � of �Loeb�� we evaluate a few representative mem�
bers of the Huber family of robust estimators introduced in Section � with weights
wx �

p
Lx�x where �x � �qbasx denote the numerically smoothed mortalities from

column � of the basis table DAV��T �males�� table � in �Loeb��� In the com�
putation of these estimates� observed numbers of deaths equal to zero have been
replaced by the value ���� �

Figure � reveals a large discrepancy between the back�transformed Huber es�
timates if the tuning constant� which regulates the degree of robustness� varies�
The same estimates based on root mortalities� with weights wx �

p
Lx and back�

transformed� practically coincide$ confer Figure �� This phenomenon indicates an
instability of the model introduced by the logarithmic transformation�

� Implicit Log�Normality

Nonparametric� Robust� The omission of any distributional assumption in
�OlMi�� suggests a method which is %nonparametric&� its performance being the
same for all error distributions� Also� the minimum�L� criterion and interquartile
range in the place of minimum�L� and sample variance� respectively� are supposed
to guarantee estimates which are  robust!� not requiring any strict distributional
assumption �e�g�� that of exact normality�� The following argument� however� shows
that the special form of formula ����� for the back�transformation entails exactly
normal mean zero errors in the log�transformed model of �OlMi��� provided only
the estimates are consistent for the true mortalities�
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��� Asymptotic Setup

Model According to ���� this model is

log qx � f�x� � � x �����

with x i�i�d� � F � The error distribution F may be arbitrary and the regression
function f�x� possibly more general than fb�c�x� de	ned by ������

Estimand Of interest are the true mortalities �x � Being probabilities they are
the expection of the corresponding empirical frequencies�

�x � EF qx � EF exp
�
f�x� � � x

�
� exp

�
f�x�

� Z
e �� F �d� �����

Product�Model Now suppose that k similar populations may be observed or
that k years have passed �note that in �OlMi�� k � � by the time of this writing��
Then not only one observed mortality per age x but k values qx��� � � � � qx�k are
available� This situation is described by the product model�

log qx�i � f�x� � � x�i �����

with x�i i�i�d� � F for i � �� � � � � k and x � ��� � � � � �� �

Remark ��� Although the product�model ����� is possibly not realized exactly� it
is a reasonable framework in which results on the distribution �bias� of estimators
can be derived to see what principally happens in the long run� 				

��� Consistent Estimability

As k grows larger� more and more information becomes available and it will be
possible to 	nd estimates �fk and ��k using all the observations log qx�i that esti�
mate f�x� and � consistently� in the sense that for each x and all � �

�fk�x� �� f�x� � ��k �� � sF �����

in probability or even almost surely� as k � � � A factor sF 	� � means that the
scale estimate is not gauged to the given F � In fact� requirement ����� of consistent
estimability is the only restriction we impose on the regression function f�x� and
the error distribution F � Veri	cation amounts to proving a suitable law of large
numbers�

Consistency of minL� and minL� for fb�c�x�

Condition ����� for fb�c�x� given by ����� can be veri	ed using minL��VAR provided
the error distribution satis	esZ

 F �d� � � �

Z
� F �d� �� �����
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and then sF � � holds�
Using minL��AAD it su�ces to assume an error distribution with unique median

such that

MED�F � � � �

Z
jjF �d� �� �����

For minL��IQR in addition the two quartiles Q����F � and Q����F � must be unique$
confer �BaKo��� and �BlSt���� The division of AAD and IQR by

p
�
���� and ���� �

respectively� achieves that sF � � for normal F �
Consistency of Huber estimates with � � kfac �� holds if the equationZ

�k��m�F �d� � � �����

has the unique solution m � � � We omit the details of the proof�

Consistent Back�Transformation In general� the estimates �fk�x� and ��k are
transformed back according to formula ����� to yield the following estimate of �x �

�qk�x� � exp
�
�fk�x� �

�
� ��

�
k

�
�����

By continuity� consistency ����� carries over so that� on the one hand�

�qk�x� �� exp
�
f�x� � �

��
�s�F

�
����

On the other hand� we want to insist that the estimates �qk�x� aim at the right
target value$ that is�

�qk�x� �� �x � EF qx ������

��� Unique Laplace Transform

Equation ����� and the convergences ���� and ������ imply that

exp
�
f�x�

� Z
e �� F �d� � exp

�
f�x� � �

��
�s�F

�
������

and� upon cancellation of the term exp f � the following identity�Z
e �� F �d� � exp����

�s�F � ������

On the RHS� we recognize the Laplace transform of the N ��� s�F � distribution�
on the LHS that of F � Identity ������ is valid for all � which may appear in
model equation ������ We assume that the set of such � �values includes some
nondegenerate interval ��� �� �

Then the uniqueness theorem for the Laplace transform is in force and tells us
that necessarily

F � N ��� s�F � ������
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��� Normality or Systematic Bias

In other words� if F is not exactly normal mean zero or the scale estimate is not
gauged to normal variance the consistency ������ is violated�

�qk�x� ��� �x ������

that is� the estimates �qk�x� have a systematic bias relative to the mortalities �x �

Remark ��� This result should be distinguished from the discussion of bias in
�OlMi��� With reference to �Millr��� these authors only mention the fact that
in the case F � N ��� �� the back�transformed estimates �qx given by ����� may
have expectation unequal to �x � This is the case since the �theoretical� back�
transformation formula holding for normal Y � N ��� ��� �

E eY � e���
�	� ������

does no longer obtain if mean � and variance �� are substituted by estimates�
After all� even in the normal case only consistency ���� can be achieved� Exact
unbiasedness would require a more sophisticated back�transformation formula� as
in �Hoyl��� and �Vera���

Our argument on the contrary shows that� as soon as ������ is violated�in
particular� if F is not normal�the estimates �qk�x� do not approach the true mor�
talities �x � This systematic bias goes unnoticed in �OlMi��� 				

Even under ideal conditions� ������ is not ful	lled exactly because of the unbounded
support of nondegenerate normals and log qx � � �

� Systematic Bias

Huber�s Neighborhood In robust statistics�confer �Hubr����the following
full neighborhood of the standard normal is considered� the set of all probabili�
ties F of the form

F � ��� r�N ��� �� � rM �����

where r 
 ��� �� denotes some 	xed radius and the contamination M may be
an arbitrary probability measure� This neighborhood models the situation that
��� r����" of the observations are generated by the standard normal and r���"
by an arbitrary probability� or that ���" observations may come from a slightly
and arbitrarily deformed normal law� Condition ������ restricts this neighborhood
rather severely� namely to the subset of normals

F � N ��� ��� � � � � � �� � r��� �����

But pure normal distributions do not model outliers� The log�linear approach
of �OlMi��� therefore� cannot claim the label  robust! unless systematic bias due
to nonnormality� or only approximate normality� is taken into account�
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Estimators Bias will be evaluated for the estimate minL��IQR of �OlMi�� and�
for comparison� minL��VAR as de	ned in Subsections ��� and ����

��� Relative Bias�Symmetric Case

For the investigation of systematic bias we relate quantity ����� which is actually
estimated� to the target value �x � Thus� under consistent estimability ����� the
relative bias �F ��� is

�F ��� � ���x exp
�
f�x� � �

��
�s�F

�
�

exp����
�s�F �R

e �� F �d�
�����

which turns out the same for all x �

Symmetric F

As alternatives to the standard normal� we 	rst consider error distributions of
form ����� with contaminating M symmetric Dirac �generating outliers �z � or M
symmetric normal �with larger variance z� ��

�DS� M � �
� ���z � �z� � �NS� M � N ��� z� � �����

with z � � such that the variance of M is greater than � � For approximate
normality the contamination radius is chosen r � ��"� As a nonnormal F � the
uniform on the interval ��z� z�

�U� F � U ��z� z� �����

is considered� with z � p
� such that the variance of M is greater than � �

The expression ����� may be evaluated analytically in more detail and then
numerically� Via sF it only depends on the scale estimate� The true scale matters�
The larger � the larger the bias� For � � ����� and � � � we have plotted �F ���
as a function of z � � � Only this range is relevant since the true log�x are roughly
between log ��� � ���
 � ���� and log ���� � ���� � and log qx � � always�

Relative Bias�Asymmetric Case

Outliers may also occur in asymmetric ways� In �OlMi��� p �� on the one hand�
only outliers to the left� for which qx is small or even � � are mentioned at all$ these
are the observations with large j log qxj � Actually� it is the logarithmic transform
itself that generates such outliers�

Remark ��� The logarithm introduces a skewness to the left� Relative distances
j log ��x � log�xj � j log �j to the right are decreased� since j log �j � j� � �j for
� � � � whereas to the left� since j log �j � j�� �j for � � � � they are increased�

For example� let us consider an age group of size Lx � ���� and mortality
�x � ��� � ���� � such that �x � ��� � Then a 
uctuation of the observed about
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Figure �� Systematic bias of minL��VAR and minL��IQR� for � 
 ���� and � 
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under symmetric error distributions DS� NS� and the uniform U��z	 z� ��rd plot�
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the expected number � �� � of deaths by �� ��� � ��� � ��� � translates into a

uctuation of log qx about log �x � ���� by log � � ���� � ��� � ��� � � � to the
left and to the right by only log ��� � ���� � ���� � ���� � ���� � respectively�� Thus�
the logarithmic transform generates outliers to the left that are not in the data� 				

On the other hand it may be argued that� starting from a certain background
mortality� outliers mostly occur to the right �accidental crashs of full carloads� � � � ��
and so the real distribution would actually be asymmetric to the right� Both e�ects
may result in a symmetric contamination� but should of course be formulated and
investigated separately�

Asymmetric F

Therefore� we secondly consider error distributions F � �� � r�N ��� �� � rM of
radius r � ��" and with the contaminating M asymmetric Dirac and shifted
normal� respectively� both generating outliers z �exactly or on the average��

�DA� M � �z � �NA� M � N �z� �� �����

Relative Bias�General Case

To determine the systematic bias under asymmetry� we assume the regression func�
tion fb�c�x� of type ����� and rewrite model equation ����� in the following form�

log qx � fb�c��m�x� � � �x �m� �����

Depending on the estimate of the regression coe�cients�minL� or minL��the
constant m denotes the mean and median of F � respectively� and the zero m ofR
�k��m�F �d� � � for general Huber estimates� Then the consistency conditions

����� and ����� are ful	lled� Consequentially� ����� and ���� are replaced by

�qk�x� �� exp
�
fb�c��m�x� � �

��
�s�F

�
�����

and

�x � exp
�
fb�c��m�x�

� Z
e ���m� F �d� ����

As the exp f term cancels again� the systematic bias is

�F ��� �
exp��m� �

��
�s�F �R

e ��F �d�
������

where m expresses the in
uence of the regression estimate under asymmetry�

� Root�Transformation

The following stochastic reasoning suggests the square root transformation instead
of the logarithm�
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	�� Variance Considerations

Heteroskedasticity Without further knowledge� the observed mortalities are bi�
nomial� Lxqx � Bin�Lx� �x� � and qx � �x as Lx � � �law of large numbers��

The Taylor expansion
p
qx �

p
�x � ��

p
�x �

���qx � �x� � � � � suggests that ap�
proximately E�

p
qx � � p

�x and

Var�
p
qx � � �x��� �x�

�
��Lx�x� � �

�
��Lx� �����

The )�method� linking Taylor expansion and deMoivre�Laplace central limit the�
orem� even tells us that approximately� in distribution�p

Lx �
p
qx �p�x � � N ��� �� � �����

Therefore� the variance ��x of
p
qx at age x is approximately

��x � �
�
��Lx� �����

Stabilization In comparison with ������ the square root has stabilized the vari�
ance by removing the dependence on �x �

Homoskedasticity Homoskedasticity amounts to the condition that

Lx � constant �����

The values of Lx for x 
 ��	 � � � 	 � in DAV ���� T �males�� in the special company table

of �OlMi���� and in table � of �Loeb��� scaled down by Lfac 
 � have a median of ��� �

��� � and ���� � respectively� Hence the corresponding �x 	values have medians in the

range from ��� � ���� � ��� � ���� � to ���� � ���� � Thus� in the homoskedastic case� the

value of � 
 ���� is plausible and corresponds to age groups of size Lx � ��� �

	�� Model Formulation

Thus� we consider the following model for the observed root�mortalities�

p
qx � f�x� �

�p
Lx

x �����

with the errors x i�i�d� � F and the scale � unknown� Corresponding weights are

wx �
p
Lx �����

Regression Function As regression function f�x� we employ a parabola and a
cubic�

f�x� � a� bx� cx� �� dx
 � �����

and an exponential with additive constant�

f�x� � c� exp�a� bx� �����

The regression functions f�x� may be set constant for x � ��� � � � � �� by simply
inserting (x � maxf��� xg for x �
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Interpretation of f �x� Again� one cannot simply equate f�x� with
p
�x �

From ����� and EF qx � �x we obtain

�x �
�
f�x� � �w��x m

��
� ��w��x VarF  ����

where m � EF  � and hence actually

f�x� �

q
�x � ��w��x VarF  � �w��x EF  ������

In this way regression and scale parameters are related with the estimand �x � On
the one hand� this indicates an intricate dependence of mortalities and population
sizes� which undoubtedly exists for an entire population� On the other hand� if the
original mortalities �x are assumed to obey a certain functional form� the f�x� to
be 	tted in the transformed model is necessarily prescribed by �������

	�� Back�Transformation

The �theoretical� back�transformation formula is

EY � � �� � �� ������

which is valid for any random variabe Y with mean � and variance �� � In this
sense� and contrary to ������� formula ������ is in fact %nonparametric&�

Remark ��� Without setting �� �x � � � the variance�stabilizing transformation
would be arcsin

p
qx � The corresponding back�transformation formula is

E�sin Y �� � �
� � �

�

�
�Y ��� � �Y ����� ������

and involves the Fourier transform �Y of Y � Thus� instead of mean and variance�
the Fourier transform at �� would have to be estimated� 				

The back�transformation formula for estimates �� of the unknown parameter � of
the regression function f�x� � f��x� that are based on

p
qx is

�qx � �f �x�� � ���
Lx ������

where �f � f�� � Bumps of Lx inevitably create bumps of the estimate �qx � Only in
the homoskedastic case this problem does not appear�

	�� The Huber Family

Estimates �� of the regression parameter � that are based on
p
qx may be de	ned

according to ����������� employing the weights wx �
p
Lx � In particular� the

Huber family of estimators minL��VAR� minL��AAD� and rg Huber with tuning
constant kfac is available�
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	�� Least Squares Unbiased

In the homoskedastic case� model ����� attains the form

p
qx � f�x� � � x ������

with x i�i�d� � F and � unknown� and the back�transformation is given by

�qx � �f �x�� � ��� ������

Consistency of minL�	VAR Assuming an error distribution of 	nite variance
VarF  � � and setting m � EF  � we rewrite the homoskedastic model ������ in
the following form� p

qx � f�x� � �m� � �x �m� ������

In the product�model� the minL��VAR estimate can be proved to be consistent�

�fk�x� �� f�x� � �m� ���k �� �� VarF  ������

Thus�

�qk�x� � �fk�x�
� � ���k ��

�
f�x� � �m

��
� �� VarF  ������

where the limiting value is in fact the target since� in view of ������ with m � EF  �

�x � EF qx �
�
f�x� � �m

��
� �� VarF  �����

In this sense� minL��VAR is always unbiased� The existence of such an estimator
speaks in favor of the model�

	�	 Outliers

The problem of robustness will not be as severe as with the logarithm since the
root�transform does not generate outliers� In particular� as

p
� � � � observed

mortalities qx � � do not need an extra treatment�

Remark ��� In the numerical example given in Remark ��� the roots
p
qx 
uc�

tuate about
p
�x � ����" � with �x � ����"� attaining the following values �ob�

served number of deaths in brackets� �" ���� ����" ���� ����" ���� ����" ����
����" ����� ���" ����� ��" ����� ����" ����� and ����" �����

Relative distances towards both sides
��p��x � p

�x
�� � jp� � �jp�x � since

jp� � �j � j�� �j for � � � and � � � � are decreased� 				

	�
 Nonnegativity

Without an explicit nonnegativity condition� the 	ts to
p
qx have turned out so

good for the data considered that �f �x� � � automatically�
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	 Estimates Based on Root�Mortalities


�� Estimates and Functions in Comparison

Comparison of Huber Estimates

First� a parabola f�(x� with constant initial section is 	tted to
p
qx of our standard

data set from table � of �Loeb��� The di�erent estimates of the Huber family
�minL��VAR� minL��AAD� rg Huber� are evaluated for

p
qx � transformed back�

and compared�

Contrary to log qx based estimation�recall Figure ��the di�erent estimates
plotted in Figure � practically agree � � which indicates stability of the model� Thus�
one may stay with minL��VAR�

Comparison of Parabola� Cubic� and Exponential

Second� the 	t by di�erent regression functions is compared� By minL��VAR we
determine the

p
qx based 	t of parabola� cubic� and exponential given by �����

and ����� with constant initial section$ confer the left�hand plot of Figure ��

Third� the right�hand plot of Figure � shows the goodness�of�	t measured by the
p �value as a function of the population rescaling factor Lfac $ confer Subsection ����

The three estimates and corresponding p �values achieved are practically indis�
tinguishable� Thus one may stay with the parabola�

�We have also tried the Hampel�Krasker family �computed by iterative weights� and obtained
similar results�
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Figure ��
p
qx based minL��VAR �t of a parabola � � � � �� cubic �	 	 	�� and exponential

���� with corresponding p 	values as a function of the population rescaling factor Lfac  
the fourth curve �� �� belongs to the log qx based minL��IQR �t �����������

Numerical� minL�	VAR Parabola� and Log�Linear minL�	IQR Fit

As a reference curve� we appeal to the numerical 	t qux taken from column � of
table � in �Loeb��� Also� the log qx based minL��IQR estimate rqrohx de	ned by
����������� and its p �value are determined� These estimates� the parabola �qparx �
and the observed mortalities are plotted on the left�hand of Figure  and tabulated
in Table ��

The right�hand plot of Figure  shows the di�erences between the various 	ts
and the numerical smooth �reference curve��


�� Unresolved Problems

Not only bias but also variance of estimators should be treated�

Based on an analysis of likelihoods of the transformed model� the asymptotic
distribution of regression estimators centered at the regression parameters may be
derived� Likewise� robustness of Huber and other estimates has been de	ned and
proved in terms of bias and variance� in the context of estimating the regression
parameters of the transformed model�

How do these properties carry over to the estimation of �x *
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 MLE in a Poisson Generalized Linear Model

��� Poisson GLM

Probability Model The number of deaths Tx observed in the group of age x
may instead of binomial well be supposed Poisson�

Pr�Tx � tx� � e�
x
�txx
tx�

� tx � �� �� � � � �����

with expected number of deaths

�x � Lx�x �����

Assuming stochastic independence the log�likelihood function is

log Pr
�
Tx � tx � x � ��� � � � � ��

�
�

��X
x���

���x � tx log�x � log�tx��
�

�����

Regression Functions We model the function of true mortalities �x by an ex�
ponential and a cubic in (x � maxf��� xg �

�x � exp
�
a� b(x

�
�����

respectively�
�x � a � b(x� c(x� � d(x
 �����
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��� Maximum Likelihood Estimate �MLE

The log�likelihood ����� with either choice ����� or ����� is di�erentiable with respect
to the parameters and yields the maximum likelihood equations by setting the
derivative equal to zero�

Likelihood Equations

In case ����� the likelihood equations to be solved for �a and �b areP
x (xLxe

�b�xP
x Lxe

�b�x
�

P
x (xtxP
x tx

� e�a �

P
x txP

xLx e
�b�x

�����

In case ����� the likelihood equations to be solved for �a � �b � �c � and �d are

��X
x���

LxX �
��X

x���

tx

�a� �b(x� �c(x� � �d(x

X �����

where X� � ��� (x� (x�� (x
 � �

Iterative Solutions These equations are numerically well�behaved and can be
solved by a dozen iterations of the Newton�Raphson algorithm� �As starting values
for the cubic we took the 	rst derivatives from the exponential 	t at x � �� � for
the exponential 	t we chose the initial value b� � � ��

��� Exponential and Cubic

The 	rst plot of Figure �� shows the exponential and cubic 	ts together with the
numerical smooth and raw mortalities from the standard data set �confer Subsec�
tion ����� Second� the p �values are plotted as a function of the population rescaling
factor Lfac �confer Subsection ����� The third plot shows the di�erences between
these 	ts and the numerical smooth�

The numerical values (qexpx and (qcubx are tabulated in the last two columns
of Table ��

��� Further Developments

Asymptotics and Robustness

As model ����������� is smoothly parametrized� it should be possible to bring mod�
ern asymptotic statistics and in	nitesimal robustness to bear on the �non�i�i�d�� es�
timation problem� Thus� optimally robust alternatives to the MLE may eventually
be derived�confer �Ridr�� and �Slatr���

Dynamic Aspects

As mortalities may change over time a dynamic modelling seems to be required�
The models of �FaTu��� Section ���� may turn out useful�
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Figure ��� MLE of exponential � � � � � and cubic �	 	 	� in GLM� with the numerical smooth
��� and corresponding p 	values as a function of the population rescaling factor Lfac  
di�erences with respect to the numerical smooth



ESTIMATION OF MORTALITIES ��

x tux Lux tux�L
u
x qux

rqrohx �qparx !qexpx !qcubx

�� � ���� ����� ���	 ����� ����� ����� �����
�� � ��
� ��� ��
� ����� ��	�	 ����� �����
�� � ���� ���
� ���� ����� ��	�� ����� �����
�� � ��� ��	�� ����� ����� ����� ����� �����
�� � �
�� ����� ����� ����� ����� ����� �����
�
 � ���� ���� ����� ����� ����� ����� �����
�� 
 ���� ����� ���
 ����� ���� ����� �����
� � ��
� ����� ��
� ����� ��� ����� �����
�� � 
��
 ��	� ���� ����� ���� ����� �����
�	 � 
��� ��
�� ���
� ����� ��
� ����� �����
�� 
 
��� ��	�� ����� ����� ��
� ����� �����
�� � ��	� ��	�
 ��
	 ����� ���	 ����� �����
�� � �
�	 ����� ��
�� ��
�� ���� ���
� ����
�� � �	�
 ����� ��
� ��
�� ���� ���	� �����
�� � �
� ���

 ����� ����� ���� ��
�� ���	�
�
 �� ����� ���
� ����� ����	 ���� ����� ����
�� � ��	�� ���� ���� ���� ��
� ����� ���

� �� ����� ���� ��
 ����� ��� ���	 ���

�� 	 ����� ����� ����� ���� ����� ����� �����
�	 �� ��	�� ����� ����
 ��	
� ����� ����� ���
�
�� �
 ����� ���� ����	 ����� ��	�� ��	� ��	��
�� �� ��	

 ����� ��	�� ����� ��		� ���� ��	��
�� �	 ����� ��� ��		 ���
� ����� ���� ����
�� �� �
��� ��	�
 ����� ���� ����� ���	� ����
�� � ����� ���		 ����
 ��
�� ����� ����	 ���	�
�
 �� ���� ����� ��
�� ����� ����	 ��
�� �����
�� 
� ��	�� ��
� ��		 ��	
 ��
	� ��� ��
	�
� ��� ��
	 ��		� ����� ��	�� ���� ����� ���
�� � ��		 ���
	 ���
 ���� ��	�� ��� ��	
�	 � ���� ���� ����
 ����� ��� ����� �����

� � ����� ����� ����	 ��
�	 ����	 ��
�� �����

� �� ���� ���� ����� ����� ����� ���� ����

� �� ����� ����	 ��
 ���� ��	�� ����� ���
�

� �
 ��� ���� ����� ����� ����� ����� ���		

� �� ��� ����� ���� ��� ���		 ���
 ���


 	� ����
 ��
	 ����� ����� ����� ����� �����

� �	 	
� ���	� ��� ���		 ��
	 ����
 ����


 �
 	��� ���� 
���� ����� 
��
� ����	 
���


� �	 
	�
 ��
	� 
���� 
���� 
���� 
�� 
����

	 �� �	� ��	
 ����� 
�
� ����� 
�	�� �����
�� �� ��� 
�
�� ����
 ���	� ���	� ��
�� ����
�� �� 
��� 
��� �
�� ���� �
�� ��
� ����
�� � ���� ����� ����� �
�� ����� ��� �����
�� �� �	� �����
 	���� ����	 	���� ���
� ����
�� � ��� ����� �����
 	���� ����� 	�
�
 	����
�
 � ��� ������ ���
�� 	��
 ����	 �����
 ������

Table �� Number of deaths tux � size Lux of group at age x � raw mortality qux 
 tux�L
u
x �

and numerical smooth qux taken from table � of �Loeb��� the log qx based minL��IQR
�t rqrohx computed according to ���������� and

p
qx based minL��VAR �t �qparx of a

parabola !qexpx denotes the exponential and !qcubx the cubic MLE �t in the Poisson GLM�
The unit of probabilities is ���� �
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Zusammenfassung

Bei der Sch"atzung von Sterblichkeiten mittels log	linearer Regression und R"uck	

transformation gem"a# der Formel E eY 
 e���
��� entsteht ein systematischer

Bias� es sei denn� die Fehlerverteilung ist exakt normal und der Skalensch"atzer
sch"atzt die Varianz� Dies folgt aus dem Eindeutigkeitssatz f"ur die Laplace�
Transformierte�

Unter uniformer Fehlerverteilung und vier kontaminierten Normalverteilun	
gen bestimmen wir den Bias f"ur Minimum�L� und �L� Sch"atzungen mit Stich	
probenvarianz und Quartilsabstand der Residuen als Skalensch"atzer� Schon bei
unscheinbarer Kontamination k"onnen die wahren Sterblichkeiten im statistischen
Mittel systematisch um �� untersch"atzt werden�

"Uberdies f"uhrt die logarithmische Transformation zu einer Instabilit"at des
Modells� welche sich in einer gro#en Diskrepanz der Sch"atzer vom Typ rg Huber

bei sich "andernder tuning�Konstante� die den Grad der Robustheit steuert� "au#ert�
Im Unterschied zum Logarithmus stabilisiert die Wurzel�Transformation die

Varianz� sie d"ampft den Ein�u# von Ausrei#ern� beobachtete Null�H"au�gkeiten
verursachen keine Probleme� sie f"uhrt auf die �nichtparametrische� R"ucktrans	
formationsformel EY � 
 ����� und verhindert im homoskedastischen Fall einen
systematischen Bias der Minimum�L� Sch"atzung mit Stichprobenvarianz�

F"ur die unternehmensspezi�sche Tafel � in �Loeb��� passen wir im Altersbe	
reich ���� Jahre eine Parabel an die Wurzeln der Sterblichkeiten an und zwar
mittels Minimum�L� � �L� und robusten rg Huber Sch"atzungen� sowie ein ku	
bisches Polynom und eine Exponentialfunktion mittels Kleinste�Quadrate� Die
damit im Originalmodell erzielten Anpassungen sind hervorragend und praktisch
mit einem �� �Anpassungstest nicht zu unterscheiden�

Schlie#lich verwenden wir ein Poissonsches generalisiertes lineares Modell und
sch"atzen eine Exponentialfunktion und ein kubisches Polynom nach der Maximum�
Likelihood Methode ohne jegliche Transformation von Beobachtungen�

Prof� Dr� Helmut Rieder
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