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Abstract

This paper considers the estimation of coe�cients in a linear regression

model with missing observations in the independent variables and intro�

duces a modi�cation of the standard �rst order regression method for

imputation of missing values� The modi�cation provides stochastic values

for imputation� Asymptotic properties of the estimators for the regression

coe�cients arising from the proposed modi�cation are derived when ei�

ther both the number of complete observations and the number of missing

values grow large or only the number of complete observations grows large

and the number of missing observations stays �xed� Using these results�

the proposed procedure is compared with two popular procedures�one

which utilizes only the complete observations and the other which employs

the standard �rst order regression imputation method for missing values�

It is suggested that an elaborate simulation experiment will be helpful

to evaluate the gain in e�ciency especially in case of discrete regressor

variables and to examine some other interesting issues like the impact of

varying degree of multicollinearity in explanatory variables� Applications

to some concrete data sets may also shed some light on these aspects�

Some work on these lines is in progress and will be reported in a future

article to follow�

� Introduction

It is not uncommon in many applications of regression analysis that some val�
ues of certain explanatory variables are not available due to one reason or the
other� A simple solution is then to discard the available values of other variables

�



in the model and to con�ne attention to complete data only� Such a solution�
it is well known� has often serious statistical consequences and is surely not
an e�cient strategy� An alternative solution is to plug in imputed values for
missing observations and then to carry out the regression analysis� Such im�
puted values can be obtained in several ways� see� e�g�� Little and Rubin 	�
��
for basic considerations and Little 	�

� for a detailed discussion of missing
X�values in regression� and Rao and Toutenburg 	�

� for a detailed account
of MSE�superiority investigations for imputation methods� When these im�
puted values are nonstochastic� the application of least squares procedure for
the estimation of regression coe�cients generally yields biased and inconsistent
estimators� see� e�g�� Toutenburg� Heumann� Fieger and Park 	�

� who have
examined the e�ciency properties of such procedures with respect to the pro�
cedure that uses only complete observations and provides unbiased estimators
of regression coe�cients� This raises an interesting issue related to e�ciency
properties of procedures which employ stochastic values for imputation of miss�
ing observations on explanatory variables� This article is a modest attempt in
this direction�

We consider the imputationmethod based on �rst order regression� This method
and some modi�cations are discussed in Buck 	�
��� A�� and Elasho� 	�
��
and Dagenais 	�
��� It essentially amounts to running the auxiliary regressions
of each one of explanatory variables 	for which some values are missing on the
remaining explanatory variables 	for which no value is missing employing the
complete observations only� The estimated equations are then used to formu�
late predictors for missing values� The thus obtained predicted values are then
utilized as substitutes for missing observations on explanatory variables� This
leads to complete data set and now the regression analysis is performed� As
all the observations on study variable are available� we can easily include the
study variable also in the capacity of an additional explanatory variable while
running the auxiliary regressions� This will lead to another imputation method
which can be termed as modi�ed �rst order regression method� and will obvi�
ously provide imputed values that are no more nonstochastic� Examining the
impact of such imputed values on the estimation of regression coe�cients is the
objective of present investigation�

The plan of this article is as follows� In Section �� we present the model speci�
�cation and describe three estimation procedures for the regression coe�cients�
One is the procedure that discards incomplete portion of data while the re�
maining two employ imputed values obtained from �rst order regressions� Out
of these two� one uses nonstochastic values for imputation while the other uses
stochastic values� Asymptotic properties of these three procedures are discussed
in Section ��

Finally� some summarizing remarks are placed in Section �� Lastly� the proofs
of Theorems are outlined in Appendix�
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� Model Speci�cation And Estimation Proce�

dure

Let us consider the following linear regression model�

y � X� � �

which is structured as follows�

yc � Xc� � ��c � 	���

y� � X�� � ��� � 	���

where yc and y� denote mc�� and m��� vectors of observations on the study
variable� Xc and X� are mc � K and m� � K matrices of observations on K

explanatory variables� � is a K�� vector of unknown regression coe�cients� �c
and �� are mc � � and m� � � vectors of disturbances and � is a scalar�

It is assumed that the matrixX� is partially observed and contains some missing
values� To keep the exposition simple but without any loss of generality� let us
assume that the values of the last explanatory variable in X� are missing� Thus
we can express X� as �Z� �x�� where Z� is m�� 	K �� matrix with no missing
values and x� is the last column vector with all missing values� Accordingly
partitioning Xc and �� we write

Xc � �Zc �xc� � � �

�
�

�

�
�

where Zc comprises �rst 	K�� column vectors of Xc and xc is the last column
vector� Similarly� � denotes a column vector formed by �rst 	K � � elements
of � and � is the last element�

Thus we can write the model as follows�

yc � Zc� � �xc � ��c � 	���

y� � Z�� � �x� � ��� � 	���

Finally� we assume that the elements of disturbance vectors �c and �� are inde�
pendently and identically distributed with zero mean and variance one�

For the following it is assumed that missingness of x� depends only on the values
of all the explanatory variables but is independent of the study variable y� Using
the missing data indicator matrixR 	Rubin� �
�� with 	i� jth element rij � �
if xij is observed and rij � � if xij is missing� in our notationR has the structure

R �

�
	� � � �� �

	� � � �� �

�

corresponding to the dimensions of

�
Zc xc
Z� x�

�
�

�



Then the assumption on the missing mechanism results in

f	yjR�X �
f	y�RjX

f	RjX
� f	yjX 	���

as f	Rjy�X � f	RjX� i�e�� regression of y on X is independent of R�

Note� If 	��� is not valid� i�e� missingness may also depend on y� then we get

f	yjX �
f	R�yjX

f	Rjy�X
�
f	yjR�Xf	RjX

f	Rjy�X
�� f	yjR�X

In this case estimation procedures would depend on the missing data process�

As x� is not available� application of least squares to the entire model speci�ed
by 	��� and 	��� provides although best linear unbiased estimators of regres�
sion coe�cients but lacks any practical utility� The simplest solution in such
circumstance is to ignore 	��� and to apply least squares to 	���� This gives
the following estimator of ��

bc � 	X�

cXc
��X�

cyc� 	���

This estimator bc fails to utilize the information contained in m� observations
on the study variable and 	K�� explanatory variables of the model� This kind
of complete discard is obviously not always a satisfactory proposition and may
often have misleading implications�

An alternative solution is to employ some imputation method so that missing
values of the last explanatory variable can be replaced� There are several ways
to do it� see� e�g�� Rao and Toutenburg 	�

�� Chap� �� Among them� an
interesting procedure known as �rst order regression method is to run an aux�
iliary regression of the variable in xc on the remaining 	K � � variables in Zc
and to use the estimated equation for �nding the predicted values of missing
observations� viz��

xR � Z�	Z
�

cZc
��Z�cxc � 	���

Replacing x� in 	��� by xR and then applying least squares to the thus obtained
repaired model for estimating �� we get the following estimator

bR � 	X�

cXc �X
�

RXR
��	X�

cyc �X�

Ry� � 	���

where XR is the same as X� except that the last column vector x� is replaced
by xR�

If we include the study variable also as an explanatory variable while running
the auxiliary regression of xc on Zc� the imputed values for the elements of x�
are given by

�x� � �Z� �y��

�
Z�cZc Z�cyc
y�cZc y�cyc

�
���

Z�cxc
y�cxc

�

� �Z� �y��

�
A b

b� c

��
Z�cxc
y�cxc

�

� Z�	Z
�

cZc
��Z�cxc �

x�cMyc

y�cMyc

�
y� � Z�	Z

�

cZc
��Z�cyc

�

� xR �
x�cMyc

y�cMyc

�
y� � Z�	Z

�

cZc
��Z�cyc

�
� 	��


�



where

M � I� Zc	Z
�

cZc
��Z�c �

A � 	Z�cZc
�� �

�

y�cMyc
	Z�cZc

��Z�cycy
�

cZc	Z
�

cZc
�� �

b � �
�

y�cMyc
	Z�cZc

��Z�cyc �

c �
�

y�cMyc
�

Substituting �x� for x� in 	��� and then applying least squares to the resulting
repaired model� we obtain the following estimator of ��

�� � 	X�

cXc � �X�

�

�X�
��	X�

cyc �
�X�

�
y� � 	����

where �X� is same as X� except that x� in X� is replaced by �x��

Remark� The estimator �� 	���� is of OLSE�type ignoring the fact that the
disturbances in the �lled�up model are

�
yc
y�

�
�

�
Zc xc
Z� x�

�
� �

�
�

v

�

with v � 	��� and E	�cv� �� �� Using the approximations of the appendix it
is easy to prove that

E

�
�

v

�
	�� v� �

�
I �

� I

�

with order O	n����� so that the use of OLSE instead of GLSE is justi�ed�

It may be noticed that nonstochastic quantities are used to replace the missing
values in the traditional �rst order regression method� In the proposed proce�
dure involving a modi�cation of the �rst order regression method� we substitute
stochastic quantities for missing values� Thus xR is a �xed vector while �x� is a
random vector�

� E�ciency Properties

It is easy to see that the estimator bc based on complete observations alone is
unbiased for � with variance covariance matrix as

V 	bc � E	bc � �	bc � �
�

� ��	X�

cXc
�� � 	���

Next� we observe that the estimator bR is biased with bias vector and mean
squard error matrix as

B	bR � E	bR � �

�



� �	X�

cXc �X
�

RXR
��X�

R� � 	���

M 	bR � E	bR � �	bR � ��

� ��	X�

cXc �X
�

RXR
�� � ��	X�

cXc �X�

RXR
��

�X�

R��
�XR	X

�

cXc �X�

RXR
�� � 	���

where

� � 	x� � xR �
�

�
	X� �XR� � 	���

Toutenburg� Heumann� Fieger and Park 	�

� have analyzed the e�ciency
properties of bc and bR in detail and have deduced conditions under which bR
is superior to bc with respect to di�erent weak and strong mean squared error
criteria�

Deriving the exact distributional properties of the estimator �� arising from our
proposed procedure� it can be easily visualized� will be a fairly intricate excercise
and may not lead to any meaningful and clear conclusion regarding the e�ciency
properties of ��� Let us therefore consider its asymptotic properties�

If we employ large sample asymptotic theory� we need to assume either m� ��
or mc �� or both m� �� and mc ��� The �rst assumption is obviously
not an interesting proposition� It speci�es a situation where the number of
complete observations is few and the number of missing observations grows
large� Just the reverse is true in case of second assumption� that is� the number
of missing observations is small while the number of complete observations grows
large� In other words� the model has a tendency in which missing observations
are given lesser importance as the number of complete observations increases�
Such a situation may arise in many practical applications� The third assumption
is equally interesting and may be a tenable proposition in some applications
because in this case missing observations as well as complete observations both
grow large possibly with varying speed� We shall therefore restrict our attention
to second and third speci�cations of asymptotic theory�

��� Properties When Both m
c
And m

�
Grows Large

For analyzing the properties of estimators under the speci�cation that both mc

and m� are large� we introduce a quantity m de�ned as

m �

�
mc if mc � m�

m� if mc � m�

	���

so that m tending to in�nity is equivalent to both mc and m� tending to in�nity�

Next� we assume the asymptotic cooperativeness of explanatory variables� i�e��
both 	 �

mc

X�

cXc and 	 �

m�

X�

�
X� tend to �nite nonsingular matrices as m tends

to in�nity�

Under the above speci�cation� it follows from 	��� that the estimator bR is
biased and in fact inconsistent� Its mean square matrix to order O	m�� has
the same expression as 	����

For the estimator ��� we have the following results which are derived in Appendix�

�



Theorem �� The bias vector of �� up to order O	m�
�

�  is null� Its mean

squared error matrix up to order O	m�� is given by

M 	 �� � ���X�

cXc� � 	���

where � � 	X�

cXc � X�

�
X� �

��m�

��
ee��� with e as K � � vector having �rst

	K � � elements zero and last element one�

Now comparing bc� bR and ��� we observe that bc is unbiased and consistent for
� but it ignores the available set of m� observations� The estimator bR is nei�
ther unbiased nor consistent although it utilizes the additional m� observations
on 	K�� explanatory variables only� The estimator �� not only utilizes the ad�
ditional m� observations on 	K � � explanatory variables but also uses the m�

observations on study variable� This improves the performance of estimators�
Thus our proposed estimator is consistent but biased�

Next� let us compare the estimators with respect to the criterion of mean squared
error matrix to order O	m��� Restricting attention to consistent estimators bc
and ��� we observe from 	��� and 	��� that

V 	bc�M 	 �� � ���
�
���	X�

cXc
����� �X�

cXc

�
� � 	���

Substituting the expression for ��� inside the square brackets� it is seen that
the expression for matrix di�erence is positive de�nite� This implies that the
biased estimator �� is more e�cient than the unbiased estimator bc�

So far as the comparison of bR with bc and �� is concerned� we feel that it is
rather inappropriate and improper to compare the asymptotic approximations
for bias vectors and mean squared error matrices of an inconsistent estimator
with a consistent estimator� We have therefore not done it� At this point�
it may be mentioned that the comparative study of bc and bR conducted by
Toutenburg� Heumann� Fieger and Park 	�

� remains meaningful and valid
because they have employed exact� and not asymptotic� expressions�

��� Properties When m
c
Grows Large While m

�
Stays

Fixed

In order to study the asymptotic properties under the present assumption� we
assume that explanatory variables in 	��� or 	��� are asymptotically coopera�
tive in the sense that Vc � 	 �

mc

X�

cXc
�� tends to a �nite nonsingular matrix

as mc tends to in�nity�

Using 	���� 	��� and 	��
� it can be easily seen from 	���� that

m
�

�

c 	 �� � � � �m
�

�

�

c VcX
�

c�c �Op	m
�

�

�

c  � 	���

whence it follows that the asymptotic distribution of m
�

�

c 	 ���� is multivariate
normal with mean vector � and variance covariance matrix ��Vc which is the

same as the asymptotic distribution of m
�

�

�

c 	bc � � and m
�

�

c 	bR � ��

�



It is thus observed that all the three estimators� viz�� bc� bR and �� are asymp�
totically equivalent in the sense of possessing same asymptotic distribution� Let
us therefore consider higher order approximations�

It is easy to see from 	��� and 	��� that the bias vector of bR to order O	m��

c 
is

B	bR �
�

mc
VcX

�

R� � 	��


while the mean squared error matrix to order O	m��

c  is given by

M 	bR �
��

mc
Vc �

�

m�
c

Vc

�
��X�

RXR � ��X�

R��
�XR

�
Vc

�
��

mc
Vc �

�

m�
c

Vc

�
��X�

RXR

�X�

R	X� �XR��
�	X� �XR

�XR

�
Vc 	����

Similar results for the estimator �� are derived in Appendix and presented below�

Theorem �� The estimator �� is unbiased up to order O	m��

c � An asymptotic

approximation for its mean squared error matrix to order O	m��

c  is given by

M 	 �� �
��

mc
Vc �

��

m�
c

Vc

�
���m�	�� ��

��
ee� �W �W�

	
Vc � 	����

where

W � X�

�
Z�Vc	

�

mc
Z�cXc �

�	�� ��

�
X�

�
�e�

� X�

�
XR �

	� � ��

�
X�

�
	X� �XR�e

� � 	����

with � � 	�� � ��

m
x�cMxc and e as K � � vector with �rst 	K � � elements

zero and last element one�

Comparing the estimators bc� bR and �� with respect to the criterion of bias to
order O	m��

c � we observe that bc and �� are unbiased while bR is not unless
x� and xR turn out to be numerically same�

Looking at the expressions 	���� and 	����� it is di�cult to draw any clear

inference from the comparison of bc� bR and �� with respect to the criterion of
mean squared error matrix to the order of our approximation�

� Some Remarks

We have considered the problem of estimating the coe�cients in a linear regres�
sion model with some missing observations on some of the explanatory variables�
To keep the exposition simple� we have assumed that missing observations per�
tain to one explanatory variable only� Our investigations can� however� be easily
extended to the case when there are more than one explanatory variable with
possibly varying numbers of missing observations�

�



Recognizing that the application of least squares procedure to the entire model
does not lead to feasible estimators for the regression coe�cients� two estima�
tion strategies are chie�y considered� The �rst strategy ignores the incomplete
observations fully and involves application of least squares to complete data
set only� This kind of complete discard of information contained in the incom�
plete data set may not always be a satisfactory proposition� The second strategy
comprises substituting imputed values for the missing observations and then ap�
plying least squares to completed or repaired data set� For �nding the imputed
values� the method of �rst order regression is considered and two alternatives
are presented� One provides nonstochastic values for imputation through the
conventional method while the other yields stochastic values through a modi��
cation in the conventional method�

We have investigated the asymptotic properties of the three estimation proce�
dures mentioned above� When both the number of complete observations and
the number of incomplete observations are large� it is observed that the conven�
tional �rst order regression method yields inconsistent and biased estimators
of regression coe�cients while the simple strategy of ignoring the incomplete
data set completely produces consistent and unbiased estimators� On the other
hand� the modi�ed �rst order regression method gives consistent and biased es�
timators but it is asymptoticallymore e�cient than the method which uses only
complete data set� It is interesting to note that the proposed modi�cation over�
comes the problem of inconsistency of estimators arising from the conventional
�rst order regression method�

When only the number of complete observations grows large while the number
of incomplete observations stays �xed� our investigations have revealed that all
the three estimation procedures are asymptotically equivalent in the sense that
they share the same distributional properties asymptotically and thus do not
permit us to prefer one over the other� We have therefore considered higher
order asymptotic approximations�

These approximations do not provide us any clear inference regarding the su�
periority of one estimation procedure over the other� Perhaps an elaborate
simulation experiment may be helpful to examine this aspect� It will also be
interesting to investigate the impact of the presence of multicollinearity of vary�
ing degree on the lines of Hill and Ziemer 	�
��� Applications to some concrete
data sets involving possibly some discrete variables may also shed some light on
the e�ciency properties� Some work in these directions is in progress and will
be reported in future�

A Appendix

In order to derive the results stated in Theorem �� we �rst observe that

�
y� � Z�	Z

�

cZc
��Z�cyc

�
� �

�
x� � Z�	Z

�

cZc
��Z�cxc

�
� ��� � �Z�	Z

�

cZc
��Z�c�c

� �	x� � xR � ��� � �Z�	Z
�

cZc
��Z�c�c � 	A��






Notice that the last term on the right hand side is Op	m
�

�

�

c  while the other
terms are of order Op	��

Writing v � 	 �

mc

��c�c�� and noticing that v has order Op	m
�

�

�

c � we can express

x�cMyc

y�cMyc
�

�

�
�
y�cM	yc � �xc

�y�cMyc

�
�

�
�

��x�cM�c

	��x�cMxc � ��mc � 	���x�cM�c � ��mcv � ����cZc	Z
�

cZc
��Z�c�c

�
�

�
�

��

mc�
x�cMxc

�
� �

���x�cM�c � ��mcv

mc�
�
����cZc	Z

�

cZc
��Z�c�c

mc�

	��

�

where � � 	�� � ��

mc

x�cMxc�

Expanding the expression inside the square brackets� we �nd

x�cMyc

y�cMyc
�

�

�
�

��

mc�
x�cM�c �Op	m

��

c  � 	A��

Using 	A�� and 	A�� in 	��
� we get

�x� � 	x� �
�

�
��

�
�

mc

�
�

�
Z�VcZ

�

c�c �
��

�
x�cM�c	� �

�

�
��

	
� Op	m

��

c 

from which we can express

�X� � 	X� �
�

�
U� �

�

mc
U� Op	m

��

c  � 	A��

where

U� � �� ���

U �

�
�

�

�
Z�VcZ

�

c�c �
��

�
x�cM�c	� �

�

�
��

	
�

� denoting a null matrix of order m� � 	K � ��

It may be recalled that both mc and m� are large� It is equivalent to saying
that m is large where m denotes the minimum of mc and m�� i�e��

m �

�
mc if mc � m�

m� if mc � m�

Now from 	A��� it is easy to see that

	X�

cXc � �X�

�

�X�
�� � � �Op	m

�
�

�  �

so that we can express

	 �� � � � 	X�

cXc � �X�

�

�X�
��

h
�	X�

c�c �
�X�

�
�� � �X�

�
	X� � �X��

i

� ��X�

c�c � Op	m
�� �

��



Thus we have bias vector up to order O	m�
�

�  as null and mean squared error
matrix up to order O	m�� as ���X�

cXc��

This establishes the results of Theorem ��

Using 	A�� in 	����� we have

	 �� � � � 	X�

cXc � �X�

�

�X�
��	X�

cyc �
�X�

�
y�� �

� 	X�

cXc � �X�

�

�X�
��

h
�	X�

c�c �
�X�

�
�� � �X�

�
	X� � �X��

i

� �
�

�

�

� �
�

�

�

� Op	m
��

c  � 	A��

where

�
�

�

�

�
�

mc
VcX

�

c�c

�
�

�

�

�
�

m�
c

Vc	X
�

�
�
�

�
U�

�


�
Z�VcZ

�

c�c �
��

�
x�cM�c	� �

�

�
��

	
�

Here the su�xes of � indicate the order of magnitude in probability�

As E	�
�

�

�

 � �� the bias vector to order O	m��

c  is equal to a null vector�

Further� the mean squared error matrix to order O	m��

c  is given by

M 	 �� � E	�
�

�

�

��
�

�

�

 �E	�
�

�

�

��
�

�

�

� �
�

�

�

��
�

�

�

 � 	A��

It is easy to see that

E	�
�

�

�

��
�

�

�

 �
��

mc
Vc �

For the second term on the right hand side� we observe that
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Using these� we obtain E	�
�

�

�

��
�

�

�

� The last term on the right hand side of

	A�� is its transpose� Substituting these and using

x�cMXc � 	x�cMZc x�cMxc

� x�cMxce
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we obtain the result 	���� stated in Theorem ��
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