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Abstract

In the present paper a mixed approach is proposed for the simulta�

neously estimation of regression and correlation structure parameters in

multivariate probit models using generalized estimating equations for the

former and pseudo�score equations for the latter� The �nite sample proper�

ties of the corresponding estimators are compared to estimators proposed

by Qu� Williams� Beck and Medendorp ����	
 and Qu� Piedmonte and

Williams �����
 using generalized estimating equations for both sets of

parameters via a Monte Carlo experiment� As a �reference
 estimator for

an equicorrelation model� the maximum likelihood �ML
 estimator of the
random e�ects probit model is calculated� The results show the mixed

approach to be the most robust approach in the sense that the number

of datasets for which the corresponding estimates converged was largest

relative to the other two approaches� Furthermore� the mixed approach

led to the most e�cient non�ML estimators and to very e�cient estima�

tors for regression and correlation structure parameters relative to the ML

estimator if individual covariance matrices were used�

Key words� Generalized estimating equations� Pseudo�score equations�

Multivariate binary data� Panel data� Simulation study

� Introduction

In the last few years estimation of regression models with correlated binary re�
sponse variables has received considerable attention� A prominent and �exible
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subclass within this class of regression models consists of binary probit models
with correlated responses which are the focus of the present paper� Since high�
dimensional integrals have to be evaluated� maximum likelihood �ML� estimation
of the general binary probit models is quite expensive if at all possible�

One possibility avoiding the evaluation of high�dimensional integrals is to use
the 	generalized estimating equations
 �GEE� approach proposed by Liang and
Zeger ����
� which leads to consistent and asymptotically normally distributed
estimators if only the expectation of the responses given the covariates are cor�
rectly speci�ed� Originally� this approach was not developed for the estimation of
probit models solely� but was introduced by Liang and Zeger ����
� and Zeger and
Liang ����
� using a linear and two logit models as examples� Furthermore� using
the GEE approach� the structure of dependence within blocks �e�g� subjects or
families� are modelled in the observable response variables and not in the reponse
variables of an underlying model given exogenous variables� The assumption of
a latent regression model� however� is crucial e�g� in structural equation models
and is a plausible assumption in many contexts �e�g� Ashford and Sowden� �����
Bartholomew� ����� Muth�en ������

In their work Qu� Williams� Beck and Medendorp ������ and Qu� Piedmonte
and Williams ������ incorporate the assumption of a latent regression model with
multivariate normally distributed errors into the GEE approach� They propose
the simultaneously estimation of regression parameters and of functions of the
tetrachoric correlations� i�e� functions of the correlations of the latent errors� us�
ing an extension of the GEE approach which is similar to an approach introduced
by Prentice ������� Calculating the estimates� the regression parameters and the
correlation structure parameters are assumed to be orthogonal to one another�
The advantage of this approach is that the regression parameter estimator re�
mains consistent if only the expectation of the response given the covariates is
correctly speci�ed even if the correlation structure is misspeci�ed� The results
of a simulation study designed to 	� � � examine the small sample performance of
GEE estimates for both regression and covariance parameters � � � 
 �pp� ��������
are presented in Qu et al� ������� Unfortunately� no results for the covariance pa�
rameters� i�e� correlation structure parameters� are given allowing the evaluation
of the �nite sample properties�

Zhao and Prentice ������ proposed the non�orthogonal simultaneously esti�
mation of regression parameters and correlation structure parameters� again as in
Prentice ������ of the correlation structure of the observable responses� leading
to more e�cient estimators� In this case� however� the consistency of all esti�
mators depends not only on the correct speci�cation of the expectation of the
response given the covariates but also on the correct speci�cation of the structure
of dependence �Liang� Zeger and Qaqish� ������ Furthermore� the e�ciency gain
for the regression parameter estimators seems to be rather small compared to
the above mentioned GEE approach �Liang� Zeger and Qaqish� ������ On the
other hand� estimation of the parameters of the dependence structure �Liang et
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al�� ����� used odds�ratios� were more e�cient using the method of Zhao and
Prentice ������ than using the approach proposed by Liang and Zeger ����
��

To increase e�ciency of the parameters modelling the correlation structure
of the latent errors� in the present paper a mixed generalized estimating�pseudo�
score equations �GEPSE� approach is proposed� where similar to Qu et al� ������
and Qu et al� ������ both sets of parameters are estimated simultaneously� How�
ever� whereas the regression parameter estimators are calculated using the GEE
approach� the estimators of the correlation structure parameters are de�ned to
be the solution of so�called pseudo�score equations �Gourieroux� Montfort and
Trognon� ����a� ����b�� This approach combines the e�ciency of estimators cal�
culated using the maximum likelihood principle and the robustness of the regres�
sion parameters estimators against misspeci�cation of the correlation structure
by treating both sets of parameters as if they were orthogonal�

The �nite sample properties of these estimators are compared with those of
the GEE estimators as proposed by Qu et al� ������ and Qu et al� ������ and�
for an equicorrelations structure in the latent errors� with the properties of the
ML estimator of a random e�ects probit model via a Monte Carlo experiment�

This paper is organized as follows� In section � the general model is introduced
and in section � the estimation procedures are described� Section ��� gives the
approach proposed by Qu et al� ������ and Qu et al� ������� whereas in section
��� the mixed approach is described� The format and results of a Monte Carlo
experiment designed to evaluate the �nite sample e�ciency of the estimators are
presented in section ��� and section ���� respectively� Conclusions can be found
in section ��

� Model and Notation

Let N �n � �� � � � � N� be the number of blocks and T �t � �� � � � � T � be the
number of observations within every block� The �T � �� vector of observable
binary responses for the nth block will be denoted as yn � �yn�� � � � � ynT �

�� Let
xnt � �xnt�� � � � � xntP �

� denote the �P � �� vector of covariates associated with the
ntth observation and Xn the �T � P � matrix of covariates associated with the
nth block� The �NT � P � data matrix is assumed to have full column rank�

Throughout a threshold model �Pearson� �����

y�nt � x�nt�
� � �nt and ynt �

�
� if y�nt � ��
� otherwise�

is assumed� where y�nt is the latent� i�e� not observable� continuous response vari�
able� �� is the unknown regression parameter vector and �nt is an unobserv�
able error term independently distributed from the covariates� For the multi�
variate binary probit model considered� let �n � ��n�� � � � � �nT �

�� �n � N�����
and � � diag���� � � � � �T � Rdiag���� � � � � �T �� where diag���� � � � � �T � denotes a
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diagonal matrix with the diagonal elements being the standard deviations of
�nt� �t� and R denotes the correlation matrix of �n with elements �tt� �t �� t���
Throughout� � denotes the vector of all T �T���	� o� diagonal elements of R� i�e�
� � ����� ���� ���� � � � � �T �T����

�� where �tt� is the element in the tth row and t�th col�
umn of R� The structure of R is determined by a K�� parameter vector denoted
by 
� For example� if an equicorrelation structure is assumed in the correlation
matrix of the latent error terms � � �T �T�����
� where �T �T����� � ��� � � � � ��� is
a �T �T � ��	� � ���vector and 
 is a scalar �j
j � � and 
 �� ��	�T � ���� If
a stationary �rst�order autoregressive process �AR��� process� is assumed in the
latent error terms� then the corresponding structure of the assumed correlation
matrix is an AR��� structure� where the elements of � are �tt� � 
jt�t

�j and 

again is a scalar �j
j � ��� Observations from di�erent blocks are assumed to be
independent�

In the sequel let ���� denote the standard normal cumulative distribution
function� ���� the standard normal density function� ���� �� �tt�� the standard bi�
variate normal cumulative distribution function and ���� �� �tt�� the standard bi�
variate normal density function�

� Estimation approaches

In the model of section � not all parameters are identi�ed� Therefore� the restric�
tion �� � �t � � � � � � will be adopted for the remainder of this paper�� The
identi�able parameters then are � � ������ the regression parameter� and 
� the
correlation structure parameter determining the structure of R�

��� The GEE approach

Following Prentice ������� Qu et al� ������ and Qu et al� ������ de�ne the estima�
tor of the regression parameter � to be the solution to the generalized estimating
equationsX

n

A�
n�

��
n en � �� ���

where en � �yn�
n�� For the multivariate probit model considered in this paper�

n � �
n�� � � � � 
nT �

�� where 
nt � ��x�nt��� �n � Cov�yn�� with diagonal elements

nt���
nt� and covariance� i�e� o� diagonal element� ��x�nt�� x

�
nt��� �tt���
nt
nt�

in the tth row and t�th column �t �� t�� and A�
n � X �

ndiag���x
�
n���� � � � � ��x

�
nT����

The generalized estimating equations for the estimation of the correlation
structure parameter 
 are given byX

n

E�nV
��
n wn � �� ���

�This constraint is more restrictive than necessary and could be relaxed in what follows�
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where wn � �sn � �n�� �n � ��n��� �n��� � � � � �nT �T����
� and �ntt� �t� � t� are

the elements below the diagonal of the covariance matrix �n� Correspondingly�
sn � �sn��� sn��� � � � � snT �T����

� with elements sntt� � �ynt�
nt��ynt��
nt�� �t� � t��
The matrix Vn is a covariance matrix for sn� Qu et al� ������ and Qu et al� ������
take Vn � diag�vn��� vn��� � � � � vnT �T����

�� where

vntt� � Var�sntt�� � ��� �
nt���� �
nt���ntt� � �ntt�nt�t� � ��
ntt�

and �ntt is the tth diagonal element of �n� The matrix E�n is de�ned as

� �n

� 

�

� �

� 

diag���
n�� 
n�� ����� � � � � ��
nT � 
n�T���� �T �T������

where � is considered as a function of the structural parameter 
 which may be
a vector or a scalar depending upon the assumed correlation strucure� The GEE
estimator  � � � � ��  
��� is calculated iteratively with updated value in the �j���th
iteration given by

 �j�� �  �j�� P
nA

�
n�

��
n An �

�
P

n E
�
nV

��
n En

���
����j

� P
nA

�
n�

��
n �yn � 
n�P

n E
�
nV

��
n �sn � �n�

�
����j

�

The asymptotic covariance matrix of
p
N� � � �� can consistently be estimated

by

dCov � N

�
L �
M Q

��� �
!�� !��

!��� !��

��
L M�

� Q

���
�

where

L �

�X
n

A�
n�

��
n An

�
����

�

and

!�� �

�X
n

A�
n�

��
n ene

�
n�

��
n An

�
����

�see Qu et al�� ����� Qu et al�� ����� Prentice� ������ For M� Q� !�� and !�� Qu
et al� ������ and Qu et al� ������ refer to Prentice ������� According to Prentice
������

Q �

�X
n

E�nV
��
n En

�
����

�

!�� �

�X
n

A�
n�

��
n enw

�
nV

��
n En

�
����

�



and

!�� �

�X
n

E�nV
��
n wnw

�
nV

��
n En

�
����

�

However� the matrix M is not identical to the corresponding matrix given by
Prentice ������ p� ������ Given that E�sn� is correctly speci�ed� then under mild
regularity conditions �Prentice� ����� for N ��

N�� �

� � �
X
n

E�nV
��
n �sn � �n�

p�� N��
X
n

E�nV
��
n

� �sn � �n�

� � �
�

since both sn and �n are functions of �� Therefore�

M � �
�X

n

E�nV
��
n

� �sn � �n�

� � �

�
����

�

In section � two correlation structures in the correlation matrix of the la�
tent error terms are considered" an equicorrelation and an AR��� structure� The
corresponding estimators will be denoted as GEEE and GEEA estimator� respec�
tively�

Following the idea in Liang and Zeger ����
� of using a correlation matrix
which is identical for all N observation blocks� instead of using the 	working

covariance matrix �n � Cov�yn� as de�ned above� the 	working
 covariance matrix
��
n with o��diagonal elements

��ntt� � �
nt��� 
nt��
��� rtt� �
nt���� 
nt���

����

where

rtt� �

�X
n


nt��� 
nt�

����� �X
n

�ntt�

� �X
n


nt���� 
nt��

�����
and diagonal elements

��ntt � 
nt��� 
nt�

will be calculated� The corresponding estimators will be denoted as GEE�E and
GEE�A estimator� respectively�

��� The GEPSE approach

As another approach consider again the generalized estimating equations ��� for
the estimation of � as de�ned in section ��� and the pseudo�score equations for
the estimation of the correlation structure parameterX

n

B�
nW

��
n vn � �� ���






The elements of the �T �T � ��	�� �� vector vn are ��ynt � ����ynt� � ���

Wn � diag�Pn������ � � � � Pn�T�T�����

where Pn�t�t�� � Pr�ynt� ynt�j x�nt  �� x�nt�  �� �tt�� is the probability of the variables ynt
and ynt� assuming speci�c values� given the covariates� the regression parameter
and the correlation� and

B�
n �

� �

� 

diag���x�n�

 �� x�n�
 �� ����� � � � � ��x

�
nT

 �� x�n�T���
 �� �T �T������

where � is again considered as a function of the structural parameter 
� Note
that ��� is just the vector of �rst derivatives of the pseudo�maximum likelihood
functions

l�
� �
X
n

ln�
� �
X
n

X
t�t�

�t��t�

logPn�t�t��

with respect to 
� where
P

t�t�

�t��t�

means summation over all T �T���	� probabilities
Pn������ Pn������ Pn������ � � � � Pn�T�T���� Note that Pn�t�t�� is also a function of �� so if
necessary the function l�
� will also be written as l�
� ���

The corresponding estimator  
 is similar to the pseudo ML �PML� estimator
described in Gourieroux� Monfort and Trognon �����a�� since both estimators
are calculated as if the ytyt� were independent� However� contrary to Gourieroux
et al� �����a� who used PML estimators for � calculated under the assumption
of an independent probit model� in the approach proposed above both sets of
parameters are estimated simultaneously and� furthermore� in estimating the
regression parameters the assumed structure of association is taken into account�

The vector of estimates  � � � � ��  
��� is iteratively calculated with updated
value in the �j � ��th iteration given by

 �j�� �  �j�� �PnA
�
n�

��
n An �

�
P

n
�� ln���
� � � ��

���
����j

� P
nA

�
n�

��
n enP

n B
�
nW

��
n vn

�
����j

�

Since the estimator  � is de�ned to be the solution to two sets of equations�
namely the generalized estimating equations ��� and the pseudo�score equations
���� it will be denoted as GEPSE estimator�

Following closely the theory in Prentice ������
p
N� � � �	�� where �	 is the

true value� can be shown to be asymptotically normally distributed with zero
mean and covariance matrix consistenly estimated by

dCov � N

�
L �
M Q

��� �
!�� !��

!��� !��

��
L M�

� Q

���
�

�



where L and !�� as de�ned in section ����

M �

�X
n

�� ln�
� ��

� 
 � � �

�
����

�

Q �

�X
n

�� ln�
�

� 
 � 
�

�
����

�

!�� �

�X
n

A�
n�

��
n env

�
nW

��
n Bn

�
����

and

!�� �

�X
n

B�
nW

��
n vnv

�
nW

��
n Bn

�
����

�see Appendix��
Again� two di�erent correlation structures will be estimated� i�e� an equicor�

relation structure leading to an estimator denoted as GEPSEE estimator and an
AR��� structure leading to an estimator denoted as GEPSEA estimator� Further�
more� as in section ��� an alternative 	working
 covariance matrix ��

n will be used�
which is calculated as described in section ���� The corresponding estimators will
be denoted as GEPSE�E and GEPSE�A estimator� respectively�

� Simulation Study

��� Description

To compare the �nite sample properties of the estimators described above� a
simulation study was conducted using the 	interactice matrix language
 �IML�
included in the SAS system �	statistical analysis system
� SAS Institute Inc��
������ To save space� in subsection ��� not all simulation results are presented�
Therefore� in this subsection only those factors of the Monte Carlo experiment
relevant to the main results reported in the next subsection are described�

According to a panel regression model with T � � observations within each
block� for each of s � ��� replications samples of N � ��� N � ��� and N � ���
blocks were generated� Using the random number generators RANNOR and RA�
NUNI provided by the SAS system �SAS Institute Inc�� ������ one dichotomous�
one normally and one uniformly distributed covariate was generated for every
observation� These covariates variied freely over all NT observations but were
held constant over the s replications� The values of the regression parameters
were chosen to be �� � �� weighting the dichotomous� �� � �� weighting the
normally distributed� �
 � ���� weighting the uniformly distributed covariate
and �� � ��� weighting the constant term in the data matrix� The error terms
were generated as standard normally distributed variates according to one of
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two correlation structures" ��� an equicorrelation structure with �tt� � 
 � ��
or �tt� � 
 � �� for all t� t� and ��� an AR��� structure with �tt� � 
jt�t

�j and

 � �� or 
 � �� for all t� t�� The standard deviations were restricted to � � ��
hence � � ��� The 	latent
 responses and the 	observable
 responses ynt were then
generated according to the model described in section ��

As a 	reference
 estimator in the case of the equicorrelation model� we cal�
culated the maximum likelihood estimator of the random e�ects probit model
�e�g� Butler and Mo�t� ������ restricting the error variance to unity� For the
ML estimator�  � � � ��� � � � �  �
�  
�

�� to be unbiased in this model� a necessary
condition is a su�cient number of points used for the approximative evaluation
of the integrals in the log likelihood function and their derivatives� To ensure
this� we calculated the ML estimates for the models over s � ��� replications�
successively increasing the number of evaluation points by one until the results
remained stable� For the computation of the estimates and for the estimation of
the variances� the matrix of analytical second derivatives was used �for details
see Spiess and Hamerle� ������

As starting values for the calculation of the estimates the 	true
 parameter
values used to create the datasets were used� Since the log likelihood function
for the computation of the ML estimate is not globally concave �see Spiess and
Hamerle� ������ the ML estimates of the independent probit model were used as
starting values for the regression parameter � in this case�

The iterations stopped if all elements of the vector of �rst derivatives or
estimation equations and all elements of the vector of increments of the last
iteration were smaller in absolute value than �� �����

To compare the results� we used the following measures� where for simplicity
 � denotes a scalar estimate and � denotes the 	true
 value"

�� the arithmetic mean of the estimates over s replications �m��

�� the relative bias �bias�� de�ned as j�m� ��� ��	�j�
�� the standard deviation �sd� of the estimates over s replications�

�� the estimated standard deviation de�ned as csd � �s��
Ps

r��
dVar� �r������

where dVar� �r� is the estimated asymptotic variance of  �r �r � �� � � � � s��

�� sd	csd� indicating an over� or underestimation of the variance�


� the root mean squared error �rmse� of the estimates and

�� the proportion of rejections �rej� at the �# level of signi�cance of the null
hypothesis that the parameter is identical to the 	true
 value against a two�
sided alternative �df � N � P �K��

�



��� Simulation Study� Results

Because of the limited space� not all simulation results are presented� However�
the results reported in this section are consistent with the �ndings using di�erent
models�

In small samples �N � ���� the calculation of the di�erent estimators turned
out to be problematic� For example� for an equicorrelation structure with 
 � ���
the ML estimator of 
 converged to the boundary point zero in � out of ���
datasets� For 
 � ��� again for a 	true
 equicorrelation matrix� the GEEE esti�
mates converged only in ��� out of ��� datasets to a solution although a global
strategy �see Dennis and Schnabel� ����� was implemented and di�erent starting
values were used� Therefore� the estimation results are hardly comparable over
estimation methods and simulated models� However� it is possible to draw some
conclusions about the robustness of the estimation procedures in small samples�
Considering the results in Table �� the di�erent estimation procedures may be
ranked according to the number of datasets for which the estimates converged"
��� GEPSE�E�A� ��� GEPSEE�A� ��� GEE�E�A and ��� GEEE�A� Clearly� the most
robust estimation procedure is the GEPSE� procedure followed by the GEPSE
procedure� If only the equicorrelation models are considered� the ML estima�
tion procedure lies somewhere between the GEPSE��GEPSE and GEE��GEE
estimation procedures�

Table �" Number of datasets for which the estimates converged for a model with
N � ��� T � �� �� � ���� �� � ��� �� � ��� �
 � ���� and an equicorrelation
�Equi� and an AR��� �AR���� structure with 
 � �� and 
 � �� over s � ���
replications

GEE�E GEEE GEPSE�E GEPSEE ML

� � �	 ��� ��� ��� ��� ���
Equi

� � �� ��� ��� ��� ��� ���

GEE�A GEEA GEPSE�A GEPSEA ML

� � �	 ��� ��� ��� ��� �
AR��


� � �� ��� ��� ��� ��� �

Generally� for all models used� the relative bias tended to be larger forN � ���
than forN � ���� independently of the estimation approach� However� there were
no systematic and signi�cant deviations of the averaged estimates from the 	true

values for all estimators� Since the overall results therefore do not change whether
standard deviations or root mean squared errors are considered� only the root
mean squared errors are reported� Furthermore� given a simulated model� there
was no systematic di�erence in the measure bias using the di�erent estimation
approaches� Since the results are similar for the di�erent regressions parameters�
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only the estimation results for �
 � ���� and 
 are reported�
Using the di�erent approaches� the estimation results for an equicorrelation

model with N � ��� and N � ��� blocks are given in Table � and �� respectively�
Note� that for the low 	true
 correlation �
 � ��� and N � ��� the ML estimates
converged only in s � ��� cases� For the high 	true
 correlation model �
 � ���
and N � ��� the GEE�E estimates converged only in ��� and the GEEE estimates
converged only in ��� out of s � ��� cases�

Table �" m� csd� rmse� sd	csd and rej for  �
 and  
 for a model with N � ����
T � �� �
 � ���� and an equicorrelation structure with 
 � �� and 
 � �� over s
replications

mcsd GEE�E GEEE GEPSE�E GEPSEE ML

rmse

sd�csd � � �	

rej
s � ��� s � ��� s � ��� s � ��� s � ���

������ �����	 ������ �����	 ������
��	��� ��	�	� ��	��� ��	�	� ��	���

��
 ��	�	� ��	�	� ��	�	� ��	�	� ��	��	
���� ���� ���� ���� ����
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For N � ��� as well as for N � ��� blocks if 
 � ��� the di�erences in the
measures m� csd and rmse for the di�erent estimators are negligible� However�
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Table �" m� csd� rmse sd	csd and rej for  �
 and  
 for a model with N � ����
T � �� �
 � ���� and an equicorrelation structure with 
 � �� and 
 � �� over
s � ��� replications
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the picture is quite di�erent for the models with high 	true
 correlation 
 � ���
For the regression parameter �
 the GEE�E and GEPSE�E estimators are the most
ine�cient estimators if the values of rmse and csd are considered� Clearly� the
GEEE� GEPSEE and ML estimators for �
 are more e�cient� On the other
hand� the most e�cient estimators for the correlation structure parameter 
 are
the GEPSE�E� the GEPSEE and the ML estimator� The least e�cient estimators
are the GEE�E and the GEEE estimators� with the GEEE being more e�cient than
the GEE�E estimator� If both parameters are taken into consideration� the GEPSE
estimator is the most e�cient of the non�ML estimators and is very e�cient
relative to the ML estimator� This statement also holds if the other regression
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parameters �not reported� are considered� Although to a smaller degree� the same

pattern in the measures rmse and csd also resulted if a moderate 	true
 correlation
�
 � ��� was used�

Note� that there is no signi�cant or systematic di�erence in the measures
sd	csd from unity for all estimators� indicating that there is no systematic under�
or overestimation of the variances� Since all experiments were conducted with
approximately ��� replications� the critical values for a test of the hypothesis of
the proportions of rejections being ���� are approximately ��������� �� � ������
The statistic rej lies outside this interval for all non�ML estimators only in the
model with N � ��� and 
 � �� for the parameter 
 �see Table ���

Guilkey and Murphy ������ identi�ed situations in which the ML estimator

performed poorly on the measure sd	csd for the regression parameter estimator�
For an equicorrelation model with N � ���� 
 � ��� and T � � they found
sd	csd � �� for the ML regression parameter estimator using the DFP algorithm�
To see whether the results for the non�ML estimators are better in this case�
additional experiments were run using an equicorrelation model with N � ����

 � ���� T � � and exogenous variables and � as in the models described above�

For the non�ML estimators the values sd	csd for all parameters were between
���� and ����� However� the ML estimates converged only in �
� out of s � ���
cases� The values sd	csd for the regression parameters were between ���� and
���� for these s � �
� cases� On the other hand� the results for 
 were not
as good� i�e� sd	csd � ��� and m � ������ Considering the estimation results

for the non�ML estimators� this value for sd	csd and the large bias can easily
be explained" Whereas the ML estimator forces  
 to be positive $ which is a
consequence of the random e�ects model $� the non�ML estimators described in
section � also allow negative values for  
� For this particular model� for example
the GEPSE approach leads to negative values for  
 in 
� cases �s � ����� In
�� out of these 
� simulated datasets the ML estimates for 
 converged to a
positive value near zero� In �� of these datasets and one dataset for which also
the GEPSE estimates did not converge� the Newton�Raphson algorithm used
together with a global strategy �Dennis and Schnabel� ����� ended up with a
non�negative de�nite matrix of second derivatives� Therefore� the variance of the
ML estimates  
 is forced to be too small and the mean value too large�

In a di�erent experiment we used exactly the same model as Guilkey and
Murphy ������� i�e� N � ���� 
 � ���� T � �� �� � �� �� � �� weighting a
normally distributed covariate� and s � ���� but again found the same general
results as above�

To summarize� contrary to Guilkey and Murphy ������ we found no system�
atic or signi�cant overestimation of the variances of the ML regression parameter
estimators for a model with N � ���� 
 � ��� and T � �� However� the
ML estimator of the random e�ects probit model forces  
 to be positive even
if  
 should be negative� which is clearly possible in simulated datasets if the

��




true
 value of 
 is low� the number of blocks is small and T � �� This in turn
leads a large value of sd	csd for  
� Since the results of Guilkey and Murphy ������
could not be replicated� it may only be speculated about the cause of their results
for the regression parameter estimates� Clearly� it is not� as they suppose� that
there is not su�cient information available for 
 to be estimated accurately�

Overall� concerning the relative e�ciency� the same pattern of results as in
Table � and � can be derived for the non�ML estimators from Table � were the
estimation results for a model with an AR��� structure with 
 � �� and 
 � ��
for N � ��� and N � ��� are given� When the 	true
 value of 
 is low �
 � ���

the di�erences between the estimators in the measures rmse and csd are negligible�
If 
 � ��� the most e�cient estimator �rmse and csd� is the GEPSEA estimator�
whereas the least e�cient estimator is the GEE�A estimator if both parameters
are considered� Again� this statement is true if the other regression parameters
are considered� If a moderate value for 
 was used �
 � ���� the same pattern in

the measures rmse and csd resulted as for 
 � ��� although the di�erences were
smaller�

Again� there are no signi�cant and systematic di�erences in the measure sd	csd
for the di�erent estimators� The statistic rej lies inside the interval ���� � ����
for all estimators and all models�

From the results in Table � to Table � for moderate to high 	true
 correlations
it may be concluded for the non ML�estimators that $ at least for the di�er�
ent models considered in this paper $ using an individual covariance matrix in
calculating the regression parameter estimates leads to more e�cient estimators
for � than using a covariance matrix composed of a correlation matrix identical
for all blocks and individual variances $ if the association structure is correctly
speci�ed� On the other hand� the use of pseudo�score equations lead to more
e�cient estimators for the correlation structure parameter than using the gener�
alized estimating equations� The conclusion clearly is� that the GEPSE estimator
is the most e�cient non�ML estimator and is very e�cient relative to the ML
estimator� Beside these two 	main
 e�ects of 	type of covariance matrix
 and
	estimation method for the correlation structure parameter
 there also seems to
be an 	interaction
 e�ect on the e�ciency of  
" Whereas there is no di�erence
in e�ciency �csd and rmse� of  
 using the GEPSE� and GEPSE approach� there
is a clear di�erence using the GEE� and GEE approach� with the  
 estimator
being more e�cient using the GEE approach than using the GEE� approach� A
possible explanation for this 	interaction
 e�ect is that the pseudo�score equations
for the estimation of 
 are more robust with respect to ine�cient estimators of
� than the generalized estimating equations�

Overall� it may be concluded that the di�erent estimators do not di�er signif�
icantly or systematically in the statistics bias� sd	csd and rej� They are� however�
systematically di�erent for moderate to high 	true
 correlations if the statistics
rmse and csd are considered" The GEPSEE�A estimator is the most e�cient non�
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Table �" m� csd� rmse� sd	csd and rej for  �
 and  
 for a model with N � ��� and
N � ���� T � �� �
 � ���� and an AR��� structure with 
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 � �� over
s � ��� replications
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ML estimator if compared to the GEE�E�A� GEEE�A and GEPSE�E�A estimators�
In the equicorrelation model it is a very e�cient estimator relative to the ML
estimator�

� Discussion

In the present paper a mixed approach for the estimation of regression and cor�
relation structure parameters in multivariate probit models is proposed� where
the regression and correlation structure parameters are estimated using general�
ized estimating equations for the former and pseudo�score equations for the latter
�GEPSE approach�� Via a Monte Carlo experiment the corresponding estimator
is compared with an estimator proposed by Qu et al� ������ and Qu et al� ������
�GEE approach� in �nite samples� For an equicorrelation model both estimators
are compared with the ML estimator of a random e�ects probit model� For both
non�ML approaches two di�erent types of 	working
 covariance matrices for the
estimation of the regression parameters are used" GEPSE and GEE use indi�
vidual covariance matrices� whereas GEPSE� and GEE� use individual variances
and correlation matrices which are identical for all blocks�

The results of the Monte Carlo experiment show the GEPSE� estimator to be
the most robust estimator� in the sense that the number of datasets for which the
corresponding estimates converged was largest� closely followed by the GEPSE
and the ML approach� In any case� convergence problems only occured in small
samples� In general� the GEPSE approach led to very e�cient regression and cor�
relation structure parameters relative to the ML estimator� and is therefore rec�
ommended in applications if an equicorrelation cannot be assumed� Furthermore�
since the ML estimator of the random e�ects probit model forces the correlation
between the responses to be positive� the GEPSE approach may also be preferred
to the ML estimator of the random e�ects probit model in small samples with a
small number of observations within blocks and if a low 	true
 correlation has to
be assumed�

The results of the present study are� however� restricted to models as used in
the present paper� If for example� special types of covariates are included into
the regression model� then the results are expected to change accordingly �see
e�g� Mancl and Leroux� ���
� or Spiess and Hamerle� forthcoming� for the GEE
estimators as proposed by Liang and Zeger� ���
�� Clearly� further research is
needed to examine the �nite sample properties of the GEPSE estimator under
various standard and non�standard conditions not realized in the above Monte
Carlo experiment�
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Appendix

For the following see also Prentice ������ and K%usters ������� Let � � �� �� 
����
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then� using a Taylor expansion�
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tions $ be approximated by
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It can then be shown� that the functions �N����u����� 
�� N
����u����� 
��

�
���� have

an asymptotic normal distribution as N � � with mean zero and covariance
matrix
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Again� under mild regularity conditions� it can be shown that as N ��
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Therefore� the matrix in �A��� converges as N �� to
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Combining �A��� with �A��� and inserting estimates  � for � leads to the covariance
matrix estimator described in section ��
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