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Measurement Error

Markus Thamerus� SFB ���

Institut f�ur Statistik� Universit�at M�unchen

Abstract

We consider the case where a latent variable X cannot be observed directly

and instead a variable W � X �U with an heteroscedastic measurement error

U is observed� It is assumed that the distribution of the true variable X is a

mixture of normals and a type of the EM algorithm is applied to �nd approxi�

mate ML estimates of the distribution parameters of X �

Keywords� Measurement error� EM algorithm� Finite mixture distribution

� Introduction

It is well known that measurement errors in the covariates of a regression model lead

to biased parameter estimates� Most likelihood based methods that adjust for this

e	ect treat the true predictor X as a stochastic variable and require an assumption

about the marginal distribution of X� see e�g� Carroll� Ruppert and Stefanski 
����
�

Usually an unimodal distribution is assumed and without external knowledge its

parameters have to be estimated from the observed data� But if the observations

suggest that the underlying statistical population of interest decomposes into several

parts� the estimation problem is more �exibly addressed by the assumption of a

mixture distribution� One example of specifying a mixture distribution in an errors�

in�variables model can be found in K�uchenho	 
����
�

Here� we assume that the distribution of the latent variable X is a �nite mixture of

normal distributions and that the observable variableW is related to X by an additive

error U independent ofX� Whereas the assumption of unbiased errors 
i�e� E 
U
 � �


is useful for most applications� assuming homoscedasticity among the errors is not�

As an example consider an environmental research project where data are collected

through di	erent monitoring devices each operating with its individual precision�



�

In such cases� a single observed data point from one device is very often taken as

the mean of several measurements of the outcome variable� A heteroscedastic error

structure therefore accounts also for sampling errors made by aggregation� If enough

information about the measurement process is provided� we are able to determine the

heteroscedastic error variances�

The methods to estimate the parameters of a mixture distribution has been the

subject of a large body of literature and a very extensive survey on that topic can

be found in Redner and Walker 
����
� The aim of this paper is to derive a general

procedure for estimating the parameters of the mixture distribution of X when the

observed W is subject to heteroscedastic measurement error and the error variances

are known� First� the error model and the involved types of distributions are stated�

Then� we make use of the EM algorithm to �nd approximate ML estimates and brie�y

address how the information matrix associated with the parameter estimates can be

derived� Finally� the results of a small simulation study are presented and in addition

an empirical example is given�

� The Error Model

Let the observed variables Wi follow a structural measurement error model with

heteroscedastic error variances� that is the true variables Xi can only be observed

with additive errors Ui that are assumed to be normal with mean zero and known

variances ��i �

Wi � Xi � Ui with Ui � N
�� ��i 
 for i � �� � � � � n� 
�


The errors Ui are mutually independent and independent of the true variables Xi for

i � �� � � � � n� The distribution of the i�i�d variables Xi� i � �� � � � � n is parametrically

modeled as a mixture of normals with density

p
xi j �
 �

mX
k��

�k pk
xi j �k
 for k � �� � � � �m

with �k � � for k � �� � � � �m and
mX
k��

�k � �� 
�




�

Each component pk itself is a normal density function with associated parameter

vector �k �
�
�k
��
k

�
� The parameter vector � of the mixture can therefore be denoted

by � � 
��� � � ��m� �
�

�� � � � � �
�

m

�

� A natural interpretation of �nite mixture densities

is that the population under study is a mixture of m components with associated

component densities fpkg and mixing proportions f�kg� Usually the observations

fwig are unlabeled in a sense that there is no information about their component

population of origin� The objective is to �nd the maximum likelihood estimator for

the parameter vector � of the mixture� we do not consider the problem of estimating

the number m of components�

For estimation� the heterogeneous structure of the likelihood function of the obser�

ved sample fwig has to be considered� Each contribution to this likelihood is a

�nite mixture of normals� Its individual parameter vector di	ers from � by ad�

ding the known error variance ��i to each component variance ��k and is given by �i �


��� � � � � �m� ��� �
�
���

�
i � � � � � �m� �

�
m��

�
i 


�

� In the sequel we agree on this notation� the

parameter vector to be estimated is � � 
��� � � � � �m� �
�

�� � � � � �
�

m

�

with �k �
�
�k
��
k

�
and

the density function for Wi � wi will be denoted by p
wi j �
 �
Pm

k�� �kpk
wi j �k


where pk
wi j �k
 is the normal density function with parameters �k and ��k � ��i �

Under the constraint that the mixing proportions f�kg sum up to one� the number

of parameters to be estimated is �m� ��

� The EM algorithm

The EM algorithm is a widely used approximate method for �nding maximum like�

lihood estimates� The proposed algorithm for a mixture of normals in the presence of

heteroscedastic measurement error is an expansion of the EM algorithm as it is sugge�

sted in Redner and Walker 
����
� The EM algorithm for mixture density estimation

problems should� as stated by the authors above� �best be regarded as a specialization

of the general EM algorithm� formalized by Dempster� Laird and Rubin 
����
�

For our estimation problem� we have to incorporate an �incomplete� data structure to

make use of the algorithm� We regard our sample fwig as a sample of �incomplete�



�

data� where wi has to be considered as the known part of a �complete� observation

yi � 
wi� zi�� � � � � zim
 referring to the sample variables Yi � 
Wi� Zi�� � � � � Zim
� where

Zik �

�����
����

� if Wi is from N
�k� ��k � ��i 
�

� else�


�


The density function of the �complete� data is therefore given by

f 
y j �
 �
nY
i��

mY
k��

�zik
k pk
wi j �k


zik �

whereas for the �incomplete� data it is

g 
w j �
 �
nY
i��

mX
k��

�kpk
wi j �k
�

The purpose of the EM algorithms is to maximize for a given sample S of W the

�incomplete� loglikelihood function L
�
 � log 
g
W j �

 with respect to �� With

k 
Y j W��
 we will denote the conditional density of Y given 
W��
 and write the

loglikelihood function as

L
�
 � log f 
Y j �
 � log k 
Y j W��
�

As described in Dempster et al� 
����
 the loglikelihood for � can be decomposed

for a known �k into

L
�
 � E
log f 
Y j �
 jW��k
� E
log k 
Y j W��
 j W��k
�

� Q
� j �k
�H
� j �k


The EM algorithm is of an iterative nature and for a current approximation �c of a

maximizer of L
�
 the next approximation �n is obtained through two steps�

The E step� Determine the function Q
� j �c
�

The M step� Choose the next approximation �n as the set of values that

maximizes Q
� j �c
 with respect to ��

For �c � 
�c
�� � � � � �

c
m� �

c
�� � � � � �

c
m
 the conditional expectation of log f
Y j �
 is found

by



�

Q
� j �c
 � E 
log f 
Y j �
 j W��c


� E 
log

nY
i��

mY
k��

�Zik

k pk
Wi j �k

Zik jW��c


�
nX
i��

mX
k��

E 
Zik log �k � Zik log pk
Wi j �k
 jW��c


�
mX
k��

nX
i��

�c
k pk
Wi j �

c
k


p
Wi j �c

log�k

�
mX
k��

nX
i��

log pk
Wi j �k

�c
k pk
Wi j �

c
k


p
Wi j �c

� 
�


Note that E
Zik j Wi��c
 � P 
Zik � � j Wi��c
 �
�c
k
pk�Wij�

c
k
�

p�Wij�c�
is the posterior

probability that Wi belongs to component k given Wi and the current knowledge

about �k� Having derived a functional form for Q
� j �c
 it can be shown that

the maximization problem in the M�step consists of two parts which will be treated

separately� The �rst one involves only the proportions ��� � � � � �m and yields an unique

solution� For the following we will assume that from the precedent step the algorithm

provides us with a current approximation �c� The maximization

mX
k��

nX
i��

�c
k pk
Wi j �

c
k


p
Wi j �c

� log�k �� max �����������m�

has to be solved under the restriction that
Pm

k�� �k � �� This can be done easily

with the help of a Lagrange multiplier and the next approximizer �n � 
�n
� � � � � � �

n
m


prescribed by the M�Step of the algorithm satis�es

�n
k �

�

n

nX
i��

�c
k pk
Wi j �

c
k


p
Wi j �c

for k � �� � � � �m�

Notice that given �c the new proportions �n
k can be computed directly�

The second part of the M�Step involves the remaining parameters ��� � � � � �m and

can be separated further into m component problems� each referring to �k� We can

think of this as a �weighted� maximum likelihood estimation with sums of logarithms

weighted by posterior probabilities� In fact� for each component k we want to solve

nX
i��

log pk
Wi j �k
 �
�c
k pk
Wi j �

c
k


p
Wi j �c

�� max�k�



�

The weights
�c
k
pk�Wij�c

k
�

p�Wij�c�
will be denoted by wc

i�k in the sequel� If we write the second

term of the expectation given in 
�
 as Q�
� j �c
 �
Pm

k�� qk
�k� �k
 with

qk
�k� �k
 �
nX
i��

�
�
�

�
log 
�	
�

�

�
log 
��k � ��i 
�

�

�


Wi � �k
�

��k � ��i

	
� wc

i�k �� max�k��k

and take the partial derivatives for �k and �k� we want to solve the equation

fk �



BBB�

�qk
��k

�qk
��k

�
CCCA �



BBB�

Pn

i��
Wi��k
��
k
���

i

� wc
i�k

Pn

i��



� �k

��
k
���i

� �k�Wi��k�
�

���
k
���i �

�

�
� wc

i�k

�
CCCA �



BBB�

�

�

�
CCCA �

A closed form solution of the equation can only be found in the homogeneous case�

that is ��i � ��u for i � �� � � � � n and is given in Appendix A� For an heteroscedastic

error variance structure we suggest to use a Newton algorithm to derive approxi�

mations for the maxima �nk and �n
k instead� This requires an iteration within each

step of the EM algorithm where in addition to fk the Jacobian matrix Jfk
�k� �k


of the second derivatives of qk
�k� �k
 has to be computed 
for its elements� see also

Appendix A
� In the following we give a formal description of an EM algorithm for a

heteroscedastic measurement error model�

Initialization�

Run an EM algorithm with the data of the sample fwig under the assumption that

we have no measurement error� We can use the explicit formulas of the homoscedastic

error model as given in Appendix A and set ��u � �� As a result we obtain the initial

values ��	�
k �

�	�
k and �

�	�
k for each component k of the mixture�

For r � �� �� �� � � � the r � ��th step of the algorithm is given by�

E Step�

Determine the function Q
� j �r
� where �r is the current parameter vector obtained

from the r�th step�

M Step�

for each component k compute the k�th proportion as

�r��
k �

�

n

nX
i��

�r
k p
wi j �

r
k


p
wi j �r




�

and get �r��k � �r��
k as the �nal result of the Newton approximation


BBB�

�r�i��k

�r�i��
k

�
CCCA �



BBB�

�r�ik

�r�i

k

�
CCCA� J��

fk

�r�i

k � �r�ik 
 � f r�ik � 
�


where k denotes the k � th component of the mixture � r is the precedent step of the

EM algorithm and i is the number of the cycle of the Newton iteration� If convergence

occurs for i � i� then �r��k � �r�i
�

k and �r��
k � �r�i�

k �

It seems reasonable to give more weight on the overall convergence criterion of the EM

algorithm than for the chosen criterion for the Newton approximation in the M�Step

since the approximated values of the parameters are approximations themselves� We

�nd it useful to apply the Newton approximation only for a predetermined number

of cycles to increase the convergence rate of the EM algorithm� The performance of

the algorithm strongly depends on the initial values used in its �rst step� Even the

simpli�ed EM algorithm� which is only used to generate starting values for the one

considering the heteroscedastic error structure� requires to input some starting values

for the parameters� This values can be taken more or less arbitrarily using purely

descriptive methods�

� Observed Information

Unfortunately the EM algorithm does not provide us with the mean of estimating the

information matrix associated with the parameter estimates� Louis 
����
 derived a

procedure to compute the observed information matrix of the approximate MLE if

an additional analysis is applied using the results of the algorithm� We apply this

method directly to get the standard errors of the estimated distribution parameters�

Therefore we will not give a detailed description of it but stress some important

features of the analysis� Let lY 
�� Y 
 � log f
Y j �
 and lW 
��W 
 � log g
W j �


denote the loglikelihood functions of the �complete� and �incomplete� data� SY 
�� Y 


and SW 
��W 
 are the gradient vectors of lY and lW and BY 
�� Y 
 and BW 
��W 


denote the negatives of the associated second derivative matrices� The observed



�

information matrix for W is de�ned by IW 
�
 � BW 
��W 
 with

BW 
��W 

 � E�
BY 
�� Y 
 j W 
� E�
SY 
�� Y 
S
�

Y 
�� Y 
 j W 


�E�
SY 
�� Y 
 j W 
 E
�

�
SY 
�� Y 
 j W 
�

If �� is the MLE found by the EM algorithm and if we further assume that the

Y�� � � � � Yn are independent� the observed information can be computed as

�IW 
��
 �
nX
i��

E
�
BYi
��� Yi
 j Wi
�
nX
i��

E
�



SYi
��� Yi
S

�

Yi

��� Yi
 jWi

�

�
X
i�j
i��j

E
�
SYi
��� Yi
 j Wi
 E
�


�

SYj 
��� Yj
 j Wj
�

All these conditional expectations can be computed after the last cycle of the al�

gorithm and require lengthy but straightforward di	erentiations� If we notice that

ZikZij � � for k �� j and that the expectations E
�
Zik j Wi
 �

�kpk�Wi� 
�k�Pm

j��

�jpj�Wi� 
�j�

equal

the estimated weights �wik� the programming of �IW 
��
 can be done easily�

� Simulation and Example

Simulation was carried out for a two and for a three components mixture model� In

both cases observations of a random variable X following a normal mixture distribu�

tion were drawn� Then independently simulated heteroscedastic measurement errors

Ui were added to get the observations of the sample variables Wi� The Ui�s were each

drawn from a normal distribution with zero mean and variance ��i � where �
�
i itself

was uniformly distributed over the interval ��� c�� Only the sample fwig was used for

estimation� For di	erent sample sizes and di	erent values of c ���� replications of

each experiment were run� In tables � and � we present the results of both models

for a measurement error of medium size� which is given for the simulated mixtures at

a value for c � ���� The results of small 
c � ���
 and large 
c � ���
 measurement

errors are given in the Appendix B�

For each parameter of the mixture distribution we calculated the average of the para�

meter estimates over the number of replications 
avg� est�
� In each experiment the



�

observed information matrix of the parameter estimates was calculated and �nally

the mean of the estimated variances of the parameter estimates 
avg� ���est�
 was taken�

This value can be compared to the sample variance of the estimates 
S�
est
� With the

help of the estimates and its estimated standard errors� we constructed con�dence

intervals for ��� � ���� ��� and ���� and computed the frequency how often the true

parameter values fell into this intervals�

For the two components mixture model the true parameters are � � ���� �� �

�� �� � �� and �� � �� � �� For all parameters the average estimates show sa�

tisfactory results and their precision increases with the sample size� but it is ob�

vious that the estimates of the standard deviations �k do not perform as well as

the parameter estimates for the means and proportions� As expected the mean

estimated variance of the parameters are getting closer to its sample variance if

n increases� This also holds for the three components model� where we have

�� � ���� �� � ���� �� � ���� �� � �� �� � �� �� � �� and �� � �� � �� � �� As

in the two components model the ��k�s do not show the same satisfactory results as

the other parameter estimates� which is also re�ected in the produced coverage rates

for their con�dence intervals� They clearly show deviations from the expected rates

and if we would test for the unknown rate on a �� � con�dence level we would have

to reject the null hypothesis for almost all of them in the case of a medium sample

size of n � ����

The convergence of the algorithm depends on the structure of the data� If there are

clearly distinct components� the algorithm performs well even for small sample sizes�

In other cases where the data show almost an unimodal structure� di�culties arise

due to the disability of the algorithm to identify di	erent components of a mixture

and it seems not worthwhile to further investigate such ill conditioned problems�

The main purpose of this simulation study was to see if the EM algorithm can be used

to handle this sort of data� where� in addition to the task of estimating distribution

parameters of a �nite mixture� the data can only be observed with an individual

measurement error� The results obtained are promising and we will �nally give an

empirical example� where all these di�culties can be found�



��

parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

� � ��� n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table �� Simulation results for the two components mixture model with

heteroscedastic measurement error of medium size 
c����
� For each sample

size n ���� replications of the experiment were conducted�



��

parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � �� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table �� Simulation results for the three components mixture model with

heteroscedastic measurement error of medium size 
c����
� For each sample

size n ���� replications of the experiment were conducted�



��

The Radon Problem

In ���� a Swiss study on the e	ect of radon on the occurrence of lung cancer cases

was carried out and some of the results can be found in Minder and V�olkle 
����
�

We will apply our model to the radon data of this study to give an example of the

use of an heteroscedastic measurement error model�

Most researchers who want to obtain reliable data on radon� will agree that this is a

di�cult matter� This arises partly from the nature of radon itself and partly from the

various environmental sources of in�uences on the measurement process� First of all�

the amount of radon strongly depends on local geological conditions and second� once

in the air� it decomposes into other substances like polonium� lead and wismut� Indoor

measurements are a	ected by the building structure and the constructing material of

the place as well as by the amount of ventilation�

In this study radon averages from �� di	erent Swiss regions were observed� In each

region ni measurements of radon were taken from di	erent locations to obtain the

regional averages Wi � n��i
P

j
Wij� Due to all the di�culties described above� the

single radon measurements observed in region i follow the error model

Wij � Xi � 
ij� 
ij � N
�� ��	i
� with i � �� � � � � �� and j � �� � � �ni�

where Wij is the j�th observed value in region i and Xi is the true regional mean�

Therefore the observed means are deviations from a existing true mean� that is

Wi � Xi � Ui� Ui � N
�� ��i 
 with i � �� � � � � ���

The heteroscedastic error variances are given by ��i � ��	i�ni and even if the ��	i�s

are equal for all regions� heteroscedasticity in the errors Ui is caused by the di	erent

number of observations� In the study� ni varies from �� to ��� and in addition the

sample variances S�
i of the ni measurements are given for each region� The estimated

error variances ���i � S�
i �ni range from ����� to ������� and those values will serve as

the error variances ��i � which we earlier assumed to be known�

Figure � shows a histogram of the �� mean radon measurements� A kernel estimator

is drawn into the picture to illustrate that the assumption of a mixture distribution

for the true average seems reasonable�
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Figure �� Histogram of the mean Radon measurements of �� di	erent regions in

Switzerland� The solid line represents the estimated Gaussian kernel density�

Usually radon measurements are assumed to be lognormally distributed� but this

mainly holds for data coming from a homogeneous stratum� As our data are col�

lected from all over Switzerland� a mixture distribution makes more allowance for

regional di	erences for the occurrence of radon� In Figure � we plotted the observed

radon averages against their standard errors so that the heteroscedastic structure of

the errors can be seen� We �xed the number of components to be three� well aware

that this will cause large standard errors for the third component� which will only be

identi�ed by four data points� But three of those are neighboring regions� so their

means are coherent and can be regarded as a cluster� Parameter estimation was car�

ried out via application of the EM algorithm and its results are given in Table �� In

view of the descriptive plot in Figure � the obtained estimation results are not surpri�

sing� Their large standard errors are mainly due to the fact that only �� observations



��

were available for estimation� It would be interesting to have a larger data base to

test the model�

Swiss Radon data

Estimate for Component � Component � Component �

proportions �k ������ 
������
 ������ 
������
 ������ 
������


means �k ������� 
������
 ������� 
������
 �������� 
�������


stand� dev� �k ������ 
������
 ������� 
������
 ������� 
�������


Table �� Estimation results for Swiss radon data �tting a mixture of three

normal distributions to the observed mean values� The standard errors of the

parameter estimates are given in brackets�

Figure �� Scatterplot of the regional radon measurements against the estimated

standard deviations of their measurement errors�
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� Discussion

Within the framework of the errors�in�variables models� likelihood based approaches

to �t regression models are very attractive� As soon as a regressor variable is assumed

to be stochastic� its distribution plays an important role in the analysis of such models�

A �rst step is to specify a model for the distribution of the incorrectly observed

variable� Finite mixture distributions can add considerable information when the

observed variables do not come from a homogeneous population and therefore we

should be able to estimate its parameters even in the presence of a measurement error�

The main task is a computational one� but as long as the means of the components in

relation to their variances� are not too close to each other� we made good experiences

with the proposed algorithm� �
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Appendix A�

For a homoscedastic measurement error model� that is Ui � N
�� ��u
 for i � �� � � � � n�

the M�Step of the algorithm lk
�k� �k
 �� max�k��k yields unique solutions for each

component k and the updated parameters for the next step are given by

�k �

Pn

i��Wi � w
c
i�kPn

i�� w
c
i�k

and

��k � ��u �

Pn

i��
Wi � �nk

� � wc

i�kPn

i��w
c
i�k

�

where the weights wc
i�k are given as stated above� It is worth noting that in this case

the algorithm provides us in each step with an approximate estimation of the sum of

the component variance and the error variance�

The Jacobian matrix Jfk
�k� �k
 of the second derivatives of qk
�k� �k
 used in the

Newton approximation of the M Step of the algorithm is given by

Jfk
�k� �k
 �



BBB�

��qk
��k��k

��qk
��k��k

��qk
��k��k

��qk
��k��k

�
CCCA �

Its elements are computed as

��qk
��k��k

� �

nX
i��

wc
i�k

��k � ��i
�

��qk
��k��k

� ��

nX
i��

�k
Wi � �k



��k � ��i 

�
� wc

i�k �

��qk
��k��k

�

nX
i��

wc
i�k


��k � ��i 

�

�
��k � ��i � 
��i � ���k

Wi � �k


�
�
�
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Appendix B�

parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

� � ��� n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table �� Simulation results for the two components mixture model with

heteroscedastic measurement error of small size 
c����
� For each sample size

n ���� replications of the experiment were conducted�
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parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

� � ��� n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � �� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table �� Simulation results for the two components mixture model with

heteroscedastic measurement error of large size 
c����
� For each sample size

n ���� replications of the experiment were conducted�
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parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � �� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table 	� Simulation results for the three components mixture model with

heteroscedastic measurement error of small size 
c����
� For each sample size

n ���� replications of the experiment were conducted�
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parameter sample avg� est� avg� ���est S�
est KI	�� KI	�
 KI	�
�

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � ��� n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � �� n � ��� ������� ������ ������ ����� ����� �����

n � ��� ������� ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

�� � � n � ��� ������ ������ ������ ����� ����� �����

n � ��� ������ ������ ������ ����� ����� �����

Table 
� Simulation results for the three components mixture model with

heteroscedastic measurement error of large size 
c����
� For each sample size

n ���� replications of the experiment were conducted�
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