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Abstract

We consider the case where a latent variable X cannot be observed directly
and instead a variable W = X + U with an heteroscedastic measurement error
U is observed. It is assumed that the distribution of the true variable X is a
mixture of normals and a type of the EM algorithm is applied to find approxi-
mate ML estimates of the distribution parameters of X.
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1 Introduction

It is well known that measurement errors in the covariates of a regression model lead
to biased parameter estimates. Most likelihood based methods that adjust for this
effect treat the true predictor X as a stochastic variable and require an assumption
about the marginal distribution of X, see e.g. Carroll, Ruppert and Stefanski (1995).
Usually an unimodal distribution is assumed and without external knowledge its
parameters have to be estimated from the observed data. But if the observations
suggest that the underlying statistical population of interest decomposes into several
parts, the estimation problem is more flexibly addressed by the assumption of a
mixture distribution. One example of specifying a mixture distribution in an errors-
in-variables model can be found in Kiichenhoff (1995).

Here, we assume that the distribution of the latent variable X is a finite mixture of
normal distributions and that the observable variable W is related to X by an additive
error U/ independent of X. Whereas the assumption of unbiased errors (i.e. E(U) = 0)
is useful for most applications, assuming homoscedasticity among the errors is not.
As an example consider an environmental research project where data are collected

through different monitoring devices each operating with its individual precision.



In such cases, a single observed data point from one device is very often taken as
the mean of several measurements of the outcome variable. A heteroscedastic error
structure therefore accounts also for sampling errors made by aggregation. If enough
information about the measurement process is provided, we are able to determine the
heteroscedastic error variances.

The methods to estimate the parameters of a mixture distribution has been the
subject of a large body of literature and a very extensive survey on that topic can
be found in Redner and Walker (1984). The aim of this paper is to derive a general
procedure for estimating the parameters of the mixture distribution of X when the
observed W is subject to heteroscedastic measurement error and the error variances
are known. First, the error model and the involved types of distributions are stated.
Then, we make use of the EM algorithm to find approximate ML estimates and briefly
address how the information matrix associated with the parameter estimates can be
derived. Finally, the results of a small simulation study are presented and in addition

an empirical example is given.

2 The Error Model

Let the observed variables W; follow a structural measurement error model with
heteroscedastic error variances; that is the true variables X; can only be observed
with additive errors U; that are assumed to be normal with mean zero and known

variances o7
W; = X; + U; with U; ~ N(0,0?) for i =1,...,n. (1)

The errors U; are mutually independent and independent of the true variables X; for
¢ =1,...,n. The distribution of the i.i.d variables X;,z = 1,...,n is parametrically
modeled as a mixture of normals with density
pla; | @) = Zozkpk(xi | g) for k=1,....m
k=1

with ap >0 for £ =1,...,m and Zozkzl. (2)
k=1



Each component p;, itself is a normal density function with associated parameter
vector ¢ = <Z§> The parameter vector ® of the mixture can therefore be denoted
by ® = (a1,...om, iy ;/);n)/ A natural interpretation of finite mixture densities
is that the population under study is a mixture of m components with associated
component densities {py} and mixing proportions {ay}. Usually the observations
{w;} are unlabeled in a sense that there is no information about their component
population of origin. The objective is to find the maximum likelihood estimator for
the parameter vector ® of the mixture, we do not consider the problem of estimating
the number m of components.

For estimation, the heterogeneous structure of the likelihood function of the obser-
ved sample {w;} has to be considered. Each contribution to this likelihood is a
finite mixture of normals. Its individual parameter vector differs from ® by ad-
ding the known error variance o? to each component variance o} and is given by ®; =
(s ey Qs i1, O+ G2, o s Ufn—l—af)/. In the sequel we agree on this notation: the
parameter vector to be estimated is ® = (aq, ..., am, ey ;/);n)/ with ¢ = (Z%) and
the density function for W; = w; will be denoted by p(w; | ®) = > 1", arpr(w; | ©x)
where py(w; | 1) is the normal density function with parameters p; and of + o?.
Under the constraint that the mixing proportions {ay} sum up to one, the number

of parameters to be estimated is 3m — 1.

3 The EM algorithm

The EM algorithm is a widely used approximate method for finding maximum like-
lihood estimates. The proposed algorithm for a mixture of normals in the presence of
heteroscedastic measurement error is an expansion of the EM algorithm as it is sugge-
sted in Redner and Walker (1984). The EM algorithm for mixture density estimation
problems should, as stated by the authors above, "best be regarded as a specialization
of the general EM algorithm’ formalized by Dempster, Laird and Rubin (1977).

For our estimation problem, we have to incorporate an 'incomplete’ data structure to

make use of the algorithm. We regard our sample {w;} as a sample of 'incomplete’



data, where w; has to be considered as the known part of a ’complete’ observation

yi = (Wi, zi1, . . ., zim ) referring to the sample variables Y; = (W, Za, ..., Zin ), where

1 if W, is from N(ug, 0} + o?),
Zik = (3)

0 else.

The density function of the 'complete’ data is therefore given by

flyl @) HHOé *pr(wi [ he)™,

=1 k=1

whereas for the 'incomplete’ data it is

n m

g(w|®)= Hzakpk w; | Pr).

=1 k=1
The purpose of the EM algorithms is to maximize for a given sample S of W the
‘incomplete’ loglikelihood function L(®) = log (¢(W | ®)) with respect to ®. With
k(Y | W,®) we will denote the conditional density of Y given (W, ®) and write the

loglikelihood function as
L(®)=logf(Y | ®)—loghk(Y | W, D).

As described in Dempster et al. (1977) the loglikelihood for ® can be decomposed

for a known ®* into
L(®) = Bflog f (Y | @) | IV, 0) — Bllog k (¥ | W, ®) | W, %),
= Q[ ®") - H(® | ")

The EM algorithm is of an iterative nature and for a current approximation ®° of a

maximizer of L(®) the next approximation ®” is obtained through two steps:

The E step:  Determine the function Q(® | ®°).
The M step: Choose the next approximation ®" as the set of values that
maximizes Q(® | ¢¢) with respect to ®.

For ®° = (af,...,aS,, ¥, ..., ¢%) the conditional expectation of log f(Y | ®) is found
by



Qo |9 = Ef(log

I
= Blog [ L af*n(Wi | v | W, 0°)

Y| @) w,o%)

= Y ) E (Zixlogay + Zixlog px(Wi | vor) | W, °)

=1 k=1
_ NN (] )
= ZZ FUARS log g,
k=1 i=1
+§:Zlogpkw|¢k)apk( Z|77Z)]§)‘ (4)
o p(Wi | @)

Note that E(Z; | Wi, ®°) = P(Zy, = 1 | W,,9°%) = % is the posterior
probability that W, belongs to component k given W; and the current knowledge
about 1. Having derived a functional form for Q(® | ®°) it can be shown that
the maximization problem in the M-step consists of two parts which will be treated
separately. The first one involves only the proportions a, ..., a,, and yields an unique

solution. For the following we will assume that from the precedent step the algorithm

provides us with a current approximation ®°. The maximization

O‘kpk W | ¢k>

has to be solved under the restriction that Y, ax = 1. This can be done easily

n

with the help of a Lagrange multiplier and the next approximizer o™ = (af,..., o)

prescribed by the M-Step of the algorithm satisfies

azzlzakpk(m|¢k) fork=1,...,m
ni=  p(Wi| @)

=1
Notice that given ®¢ the new proportions «} can be computed directly.

The second part of the M-Step involves the remaining parameters 1, ..., %, and
can be separated further into m component problems, each referring to ;. We can
think of this as a 'weighted” maximum likelihood estimation with sums of logarithms

weighted by posterior probabilities. In fact, for each component & we want to solve

of pe(Wi | 20f)
p(W; | @°)

— ATy, .

Zlogm(m | i) -



of pe(Wilf)

The weights LS

will be denoted by w;, in the sequel. If we write the second
term of the expectation given in (4) as Q2(® | ©°) = > 7 qu(pr, o%) with

- 1 1 L (W, — pr)?
o) = Y (e 2m) = Jlow (ot +.02) = 00 EEY

2 2
=1 2 O-k —I_ O-i

and take the partial derivatives for pp and g, we want to solve the equation

gk n Wi—up ¢

E > et 2o Wik 0
fk pu— pu— pu—

gy n ok oxWi—p)®\ ¢

Ao Ei:l < cri—l—cr? + (cri—l—cr?)2 wivk 0

A closed form solution of the equation can only be found in the homogeneous case,
that is 02 = o2 for : = 1,...,n and is given in Appendix A. For an heteroscedastic
error variance structure we suggest to use a Newton algorithm to derive approxi-
mations for the maxima p} and o} instead. This requires an iteration within each
step of the EM algorithm where in addition to f; the Jacobian matrix Jy, (pg, o)
of the second derivatives of g (g, o) has to be computed (for its elements, see also
Appendix A). In the following we give a formal description of an EM algorithm for a
heteroscedastic measurement error model.

Initialization:

Run an EM algorithm with the data of the sample {w;} under the assumption that
we have no measurement error. We can use the explicit formulas of the homoscedastic
error model as given in Appendix A and set o2 = 0. As a result we obtain the initial
values a;ﬂo) ,uggo) and 0'](;)) for each component k of the mixture.

For r =0,1,2,... the r + 1-th step of the algorithm is given by:

Determine the function Q(® | ®"), where ®” is the current parameter vector obtained
from the r-th step.

M Step:

for each component k& compute the k-th proportion as

P41 1 zn: szp(wi | ¢£)

le% — —
CT RS i)



and get u;t" o7 as the final result of the Newton approximation
ra+1 7,0
F F —1/ 7m0 Ty 7,0
= —J (o ) - (5)
U]:,Z—I—l 0_]:,2

where k denotes the k — th component of the mixture , r is the precedent step of the
EM algorithm and ¢ is the number of the cycle of the Newton iteration. If convergence
occurs for ¢ = 7* then p}™' = ,uZ’i* and o} = U;’i*.

It seems reasonable to give more weight on the overall convergence criterion of the EM
algorithm than for the chosen criterion for the Newton approximation in the M-Step
since the approximated values of the parameters are approximations themselves. We
find it useful to apply the Newton approximation only for a predetermined number
of cycles to increase the convergence rate of the EM algorithm. The performance of
the algorithm strongly depends on the initial values used in its first step. Fven the
simplified EM algorithm, which is only used to generate starting values for the one
considering the heteroscedastic error structure, requires to input some starting values

for the parameters. This values can be taken more or less arbitrarily using purely

descriptive methods.

4 Observed Information

Unfortunately the EM algorithm does not provide us with the mean of estimating the
information matrix associated with the parameter estimates. Louis (1982) derived a
procedure to compute the observed information matrix of the approximate MLE if
an additional analysis is applied using the results of the algorithm. We apply this
method directly to get the standard errors of the estimated distribution parameters.
Therefore we will not give a detailed description of it but stress some important
features of the analysis. Let Iy (®,Y) = log f(Y | ®) and Iy (P, W) = logg(W | ®)
denote the loglikelihood functions of the 'complete’ and 'incomplete’ data. Sy (®,Y)
and Sy (®, W) are the gradient vectors of ly and Iy and By (®,Y") and By (9, W)

denote the negatives of the associated second derivative matrices. The observed



information matrix for W is defined by Iy (®) = Bw (®, W) with

Bw(®,W)) = Eo(By(®,Y)| W) — Eg(Sy(®,Y)Si(®,Y) | W)
+Ea(Sy(®,Y) | W) Eg(Sy(@,Y) | W).

If & is the MLE found by the EM algorithm and if we further assume that the

Yi,..., Y, are independent, the observed information can be computed as

Iw(®) = 3 Ba(Br(@, 1) | W) = 3 By (Sn(®,¥)85,(8,1) | W)
=1 =1

— > Ea(Sn(®,Yi) | Wi E5(Sy,(9,Y]) | W)).
i:fjj
All these conditional expectations can be computed after the last cycle of the al-

gorithm and require lengthy but straightforward differentiations. If we notice that

ZinZij = 0 for k # j and that the expectations Eg(Z;y, | Wi) = Z%klpzjzi(’&?%) equal

the estimated weights w;;, the programming of jw(é)) can be done easily.

5 Simulation and Example

Simulation was carried out for a two and for a three components mixture model. In
both cases observations of a random variable X following a normal mixture distribu-
tion were drawn. Then independently simulated heteroscedastic measurement errors
U; were added to get the observations of the sample variables W;. The U,;’s were each
drawn from a normal distribution with zero mean and variance o?, where o7 itself
was uniformly distributed over the interval [0, ¢]. Only the sample {w;} was used for
estimation. For different sample sizes and different values of ¢ 1000 replications of
each experiment were run. In tables 1 and 2 we present the results of both models
for a measurement error of medium size, which is given for the simulated mixtures at
a value for ¢ = 0.3. The results of small (¢ = 0.1) and large (¢ = 0.5) measurement
errors are given in the Appendix B.

For each parameter of the mixture distribution we calculated the average of the para-

meter estimates over the number of replications (avg. est.). In each experiment the



observed information matrix of the parameter estimates was calculated and finally
the mean of the estimated variances of the parameter estimates (avg. 62, ) was taken.

). With the

This value can be compared to the sample variance of the estimates (52,
help of the estimates and its estimated standard errors, we constructed confidence
intervals for 1 —a = 0.5,0.9 and 0.95 and computed the frequency how often the true
parameter values fell into this intervals.

For the two components mixture model the true parameters are o = 0.7,p1 =
0,19 = 5, and o1 = o9 = 1. For all parameters the average estimates show sa-
tisfactory results and their precision increases with the sample size, but it is ob-
vious that the estimates of the standard deviations o;, do not perform as well as
the parameter estimates for the means and proportions. As expected the mean
estimated variance of the parameters are getting closer to its sample variance if
n increases. This also holds for the three components model, where we have
a1 = 0.7 a0 =03, a3 = 0.1, 40 = 0,00 = 5,03 = 10 and 0y = 03 = 03 = 1. As
in the two components model the 6;’s do not show the same satisfactory results as
the other parameter estimates, which is also reflected in the produced coverage rates
for their confidence intervals. They clearly show deviations from the expected rates
and if we would test for the unknown rate on a 95 % confidence level we would have
to reject the null hypothesis for almost all of them in the case of a medium sample
size of n = 100.

The convergence of the algorithm depends on the structure of the data. If there are
clearly distinct components, the algorithm performs well even for small sample sizes.
In other cases where the data show almost an unimodal structure, difficulties arise
due to the disability of the algorithm to identify different components of a mixture
and it seems not worthwhile to further investigate such ill conditioned problems.
The main purpose of this simulation study was to see if the EM algorithm can be used
to handle this sort of data, where, in addition to the task of estimating distribution
parameters of a finite mixture, the data can only be observed with an individual
measurement error. The results obtained are promising and we will finally give an

empirical example, where all these difficulties can be found.



parameter sample | avg. est. | avg. &2, S2, Klys | Klgo | Klgos

a=0.7 n =530 0.6947 0.0049 | 0.0044 | 0.542 | 0.899 | 0.953

n =100 || 0.6974 0.0023 | 0.0023 | 0.506 | 0.887 | 0.937

n =500 || 0.6997 0.0005 | 0.0004 | 0.524 | 0.894 | 0.947

1 =10 n =530 0.1216 0.0391 | 0.0220 | 0.543 | 0.897 | 0.945
n =100 || -0.0046 0.0188 | 0.0193 | 0.488 | 0.896 | 0.939

n =500 || 0.0002 0.0037 | 0.0038 | 0.509 | 0.900 | 0.949

fo =95 n =530 5.0053 0.1225 | 0.1157 | 0.466 | 0.876 | 0.933
n =100 || 4.9894 0.0525 | 0.0489 | 0.506 | 0.891 | 0.932

n =500 || 4.9991 0.0096 | 0.0093 | 0.490 | 0.908 | 0.953

o =1 n = 50 0.9621 0.0263 | 0.0246 | 0.492 | 0.861 | 0.912

n =100 || 0.9833 0.0126 | 0.0135 | 0.494 | 0.877 | 0.920

n =500 || 0.9963 0.0024 | 0.0027 | 0.504 | 0.879 | 0.934

oy =1 n =530 0.9460 0.0775 | 0.0750 | 0.484 | 0.825 | 0.879

n =100 || 0.9782 0.0356 | 0.0364 | 0.502 | 0.864 | 0.913

n =500 || 0.9938 0.0065 | 0.0066 | 0.484 | 0.892 | 0.943

Table 1.  Simulation results for the two components mixture model with
heteroscedastic measurement error of medium size (¢=0.3). For each sample

size n 1000 replications of the experiment were conducted.



parameter sample | avg. est. | avg. &2, S2, Klys | Klpo | Klygs

o =0.7 n =100 || 0.6941 0.0024 | 0.0024 | 0.489 | 0.894 | 0.956

n =500 || 0.6991 0.0004 | 0.0004 | 0.537 | 0.923 | 0.960

oy = 0.2 n =100 || 0.2024 0.0021 | 0.0020 | 0.493 | 0.886 | 0.932

n =500 || 0.1991 0.0004 | 0.0004 | 0.517 | 0.890 | 0.949

as = 0.1 n =100 || 0.1034 0.0011 | 0.0010 | 0.501 | 0.889 | 0.947

n =500 || 0.1018 0.0002 | 0.0002 | 0.502 | 0.902 | 0.957

=0 n =100 || 0.1045 0.0181 | 0.0099 | 0.467 | 0.870 | 0.924

n =500 || 0.0696 0.0035 | 0.0016 | 0.241 | 0.777 | 0.883

fo =95 n =100 | 4.9879 0.0990 | 0.1109 | 0.447 | 0.837 | 0.902

n =500 || 4.9978 0.0159 | 0.0151 | 0.494 | 0.910 | 0.954

ps = 10 n =100 || 9.9863 0.2153 | 0.2031 | 0.457 | 0.858 | 0.908

n =500 || 10.0106 | 0.0320 | 0.0340 | 0.476 | 0.874 | 0.928

o =1 n =100 || 0.9632 0.0120 | 0.0129 | 0.461 | 0.852 | 0.918

n =500 || 0.9814 0.0023 | 0.0021 | 0.490 | 0.884 | 0.943

oy =1 n =100 || 0.9462 0.0918 | 0.1016 | 0.430 | 0.812 | 0.855

n =500 || 0.9797 0.0150 | 0.0159 | 0.469 | 0.878 | 0.933

o3 =1 n =100 || 0.9570 0.1265 | 0.1245 | 0.455 | 0.823 | 0.868

n =500 || 1.0171 0.0216 | 0.0213 | 0.490 | 0.899 | 0.947

Table 2. Simulation results for the three components mixture model with
heteroscedastic measurement error of medium size (¢=0.3). For each sample

size n 1000 replications of the experiment were conducted.
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The Radon Problem

In 1992 a Swiss study on the effect of radon on the occurrence of lung cancer cases
was carried out and some of the results can be found in Minder and Volkle (1995).
We will apply our model to the radon data of this study to give an example of the
use of an heteroscedastic measurement error model.

Most researchers who want to obtain reliable data on radon, will agree that this is a
difficult matter. This arises partly from the nature of radon itself and partly from the
various environmental sources of influences on the measurement process. First of all,
the amount of radon strongly depends on local geological conditions and second, once
in the air, it decomposes into other substances like polonium, lead and wismut. Indoor
measurements are affected by the building structure and the constructing material of
the place as well as by the amount of ventilation.

In this study radon averages from 46 different Swiss regions were observed. In each
region n; measurements of radon were taken from different locations to obtain the
regional averages W; = nj! E]‘ Wi;. Due to all the difficulties described above, the

single radon measurements observed in region 2 follow the error model
VVZ']‘ == XZ + €5y €5 ™~ N(0,0‘i), with ¢ = 1,,46 and j == 1,...7%,

where W;; is the j-th observed value in region 7 and X; is the true regional mean.

Therefore the observed means are deviations from a existing true mean, that is

VVZ:XZ—I-UZ, UZNN(O,O'ZQ)WIch:L,46

The heteroscedastic error variances are given by of = oZ /n; and even if the ¢2’s
are equal for all regions, heteroscedasticity in the errors U; is caused by the different
number of observations. In the study, n; varies from 16 to 511 and in addition the
sample variances S? of the n; measurements are given for each region. The estimated
error variances &7 = S?/n; range from 0.769 to 426.983 and those values will serve as
the error variances o2, which we earlier assumed to be known.

Figure 1 shows a histogram of the 46 mean radon measurements. A kernel estimator

is drawn into the picture to illustrate that the assumption of a mixture distribution

for the true average seems reasonable.
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Figure 1. Histogram of the mean Radon measurements of 46 different regions in

Switzerland. The solid line represents the estimated Gaussian kernel density.

Usually radon measurements are assumed to be lognormally distributed, but this
mainly holds for data coming from a homogeneous stratum. As our data are col-
lected from all over Switzerland, a mixture distribution makes more allowance for
regional differences for the occurrence of radon. In Figure 2 we plotted the observed
radon averages against their standard errors so that the heteroscedastic structure of
the errors can be seen. We fixed the number of components to be three, well aware
that this will cause large standard errors for the third component, which will only be
identified by four data points. But three of those are neighboring regions, so their
means are coherent and can be regarded as a cluster. Parameter estimation was car-
ried out via application of the EM algorithm and its results are given in Table 3. In
view of the descriptive plot in Figure 1 the obtained estimation results are not surpri-

sing. Their large standard errors are mainly due to the fact that only 46 observations
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were available for estimation. It would be interesting to have a larger data base to

test the model.

Swiss Radon data

Estimate for Component 1 Component 2 Component 3

proportions ay | 0.6225  (0.0815) 0.2905 (0.0776)  0.0870 (0.0416)

means Ju 497573 (1.8943) 94.2082 (6.4696) 254.5958 (13.9715)

stand. dev. o | 8.4732  (1.4605) 15.5282 (5.3460) 25.3031  (11.4102)

Table 3. Estimation results for Swiss radon data fitting a mixture of three
normal distributions to the observed mean values. The standard errors of the

parameter estimates are given in brackets.

22
>k

20+ .
o
3
*E 18
T 167
)

14 =
=
o 124 *
= *
El *x * ok
o * K *
he} 8 4 o
~
E 6 - > * * sk
= s

4 - >k

2 - o F ok * X

ork
0—
I I I I
0 100 200 300

Regional radon averages (Bg/m**3)

Figure 2. Scatterplot of the regional radon measurements against the estimated

standard deviations of their measurement errors.
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6 Discussion

Within the framework of the errors-in-variables models, likelihood based approaches
to fit regression models are very attractive. As soon as a regressor variable is assumed
to be stochastic, its distribution plays an important role in the analysis of such models.
A first step is to specify a model for the distribution of the incorrectly observed
variable. Finite mixture distributions can add considerable information when the
observed variables do not come from a homogeneous population and therefore we
should be able to estimate its parameters even in the presence of a measurement error.
The main task is a computational one, but as long as the means of the components in
relation to their variances, are not too close to each other, we made good experiences

with the proposed algorithm. *
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Appendix A:
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For a homoscedastic measurement error model, that is U; ~ N(0,02) fori = 1,...,n,

the M-Step of the algorithm I (ug, or) — mazx,, ,, yields unique solutions for each

component k£ and the updated parameters for the next step are given by

e = E?:lnm ) wik
Ei:1 (CH
E?:I(I/Vi - qu)z ) wf,k
E?:l (CH 7

and

2 2
o, + o,

where the weights wf, are given as stated above. It is worth noting that in this case

the algorithm provides us in each step with an approximate estimation of the sum of

the component variance and the error variance.

The Jacobian matrix Jy, (yx, 0%) of the second derivatives of qx(pk, ox) used in the

Newton approximation of the M Step of the algorithm is given by

%qp %qp
Oppdpy  Oopdug

Jfk(:ukv Uk) =
9% 9%
aukao'k ao'kao'k

Its elements are computed as

A o
OOty Py O'z + O'Z»2 ’

Pagp _Qi on(Wi — )
doyOpun (oo Y

6@6@

02 - w
B N (of— ot + (0 = 30]) (Wi — )?) .
=1



Appendix B:

Klos | Klog | Kloogs

£ 2 2
parameter sample | avg. est. | avg. 67, | S7,

a=0.7 n =530 0.6953 0.0047 | 0.0044 | 0.530 | 0.897 | 0.940

n =100 || 0.6990 0.0022 | 0.0023 | 0.486 | 0.885 | 0.942

n =500 || 0.6989 0.0004 | 0.0004 | 0.496 | 0.889 | 0.950

=0 n =530 0.1170 0.0334 | 0.0177 | 0.535 | 0.888 | 0.934
n =100 || -0.0005 0.0167 | 0.0173 | 0.484 | 0.890 | 0.942

n =500 || -0.0013 0.0033 | 0.0035 | 0.478 | 0.886 | 0.945

fo =95 n =530 4.9870 0.1024 | 0.1146 | 0.465 | 0.854 | 0.912
n =100 || 4.9933 0.0437 | 0.0444 | 0.487 | 0.858 | 0.931

n =500 || 4.9956 0.0083 | 0.0089 | 0.507 | 0.883 | 0.945

op =1 n =530 0.9589 0.0203 | 0.0208 | 0.477 | 0.843 | 0.901

n =100 || 0.9910 0.0101 | 0.0104 | 0.486 | 0.884 | 0.938

n =500 || 0.9983 0.0020 | 0.0019 | 0.524 | 0.909 | 0.957

oy =1 n =530 0.9604 0.0604 | 0.0646 | 0.464 | 0.815 | 0.871

n =100 || 0.9634 0.0273 | 0.0288 | 0.453 | 0.856 | 0.896

n =500 || 0.9961 0.0052 | 0.0052 | 0.493 | 0.889 | 0.939

Table 4.  Simulation results for the two components mixture model with
heteroscedastic measurement error of small size (c=0.1). For each sample size

n 1000 replications of the experiment were conducted.



parameter sample | avg. est. | avg. &2, S2, Klys | Klgo | Klgos

a=0.7 n =530 0.6974 0.0052 | 0.0049 | 0.536 | 0.876 | 0.938

n =100 || 0.6963 0.0025 | 0.0024 | 0.514 | 0.902 | 0.946

n =500 || 0.6987 0.0005 | 0.0004 | 0.507 | 0.906 | 0.957

1 =10 n =530 0.1310 0.0428 ] 0.0226 | 0.516 | 0.906 | 0.947
n =100 || 0.1000 0.0210 | 0.0124 | 0.486 | 0.876 | 0.939

n =500 || -0.0029 0.0041 | 0.0043 | 0.484 | 0.890 | 0.947

fo =95 n =530 5.0042 0.1590 | 0.1380 | 0.481 | 0.867 | 0.919
n =100 || 4.9964 0.0688 | 0.0736 | 0.488 | 0.885 | 0.940

n =500 || 5.0017 0.0109 | 0.0115 | 0.475 | 0.884 | 0.939

o =1 n =530 0.9466 0.0303 | 0.0301 | 0.488 | 0.854 | 0.907

n =100 || 0.9648 0.0151 | 0.0144 | 0.498 | 0.877 | 0.921

n =500 || 0.9973 0.0029 | 0.0029 | 0.508 | 0.897 | 0.945

oy =1 n = 50 0.9694 0.1014 | 0.0973 | 0.462 | 0.847 | 0.898

n =100 || 1.0001 0.0476 | 0.0527 | 0.467 | 0.879 | 0.928

n =500 | 0.9972 0.0079 | 0.0081 | 0.523 | 0.894 | 0.943

Table 5.  Simulation results for the two components mixture model with
heteroscedastic measurement error of large size (c=0.5). For each sample size

n 1000 replications of the experiment were conducted.



parameter sample | avg. est. | avg. &2, S2, Klys | Klpo | Klygs

oq = 0.7 n =100 || 0.6962 0.0024 | 0.0022 | 0.487 | 0.901 | 0.962

n =500 || 0.6990 0.0004 | 0.0004 | 0.484 | 0.902 | 0.945

oy = 0.2 n =100 || 0.2001 0.0020 | 0.0018 | 0.489 | 0.895 | 0.947

n =500 || 0.1999 0.0003 | 0.0003 | 0.499 | 0.901 | 0.947

as = 0.1 n =100 || 0.1037 0.0010 | 0.0010 | 0.476 | 0.882 | 0.938

n =500 || 0.1012 0.0002 | 0.0002 | 0.491 | 0.897 | 0.949

=0 n =100 || 0.0961 0.0167 | 0.0080 | 0.495 | 0.902 | 0.947

n =500 || 0.0639 0.0032 | 0.0015 | 0.256 | 0.799 | 0.892

Ho =D n =100 || 4.9911 0.1030 | 0.0951 | 0.457 | 0.849 | 0.907

n =500 || 5.0009 0.0134 | 0.0126 | 0.502 | 0.909 | 0.950

ps = 10 n =100 || 9.9961 0.1671 | 0.2322 | 0.448 | 0.833 | 0.894

n =500 || 10.0083 | 0.0260 | 0.0261 | 0.484 | 0.897 | 0.943

op =1 n =100 || 0.9797 0.0100 | 0.0097 | 0.512 | 0.864 | 0.918

n =500 || 0.9878 0.0019 | 0.0020 | 0.478 | 0.871 | 0.915

oy =1 n =100 || 0.9626 0.0806 | 0.0861 | 0.441 | 0.783 | 0.836

n =500 || 0.9830 0.0109 | 0.0108 | 0.492 | 0.871 | 0.921

o3 =1 n =100 || 0.9461 0.0936 | 0.1070 | 0.465 | 0.791 | 0.840

n =500 || 0.9998 0.0162 | 0.0157 | 0.500 | 0.904 | 0.944

Table 6. Simulation results for the three components mixture model with
heteroscedastic measurement error of small size (¢c=0.1). For each sample size

n 1000 replications of the experiment were conducted.




parameter sample | avg. est. | avg. &2, S2, Klys | Klpo | Klygs

oq = 0.7 n =100 || 0.6955 0.0026 | 0.0025 | 0.500 | 0.894 | 0.950

n =500 || 0.6990 0.0005 | 0.0004 | 0.508 | 0.911 | 0.961

oy = 0.2 n =100 || 0.2010 0.0023 | 0.0023 | 0.489 | 0.877 | 0.943

n =500 || 0.2002 0.0004 | 0.0004 | 0.494 | 0.907 | 0.949

as = 0.1 n =100 || 0.1035 0.0011 | 0.0010 | 0.522 | 0.901 | 0.942

n =500 || 0.1008 0.0002 | 0.0002 | 0.476 | 0.907 | 0.954

1 =10 n =100 || 0.1116 0.0202 | 0.0098 | 0.454 | 0.879 | 0.936

n =500 || 0.0774 0.0040 | 0.0019 | 0.209 | 0.751 | 0.854

fo =95 n =100 || 4.9638 0.1366 | 0.1296 | 0.447 | 0.845 | 0.900

n =500 || 4.9929 0.0187 | 0.0184 | 0.503 | 0.899 | 0.946

ps = 10 n =100 || 10.0038 | 0.2436 | 0.2583 | 0.440 | 0.808 | 0.871

n =1500 || 10.0107 | 0.0392 | 0.0391 | 0.465 | 0.889 | 0.944

o =1 n =100 || 0.9507 0.0143 | 0.0135 | 0.484 | 0.858 | 0.911

n =500 || 0.9807 0.0028 | 0.0027 | 0.456 | 0.881 | 0.934

oy =1 n =100 || 0.9400 0.1221 | 0.1387 | 0.444 | 0.767 | 0.838

n =>500 || 0.9771 0.0202 | 0.0223 | 0.483 | 0.882 | 0.920

o3 =1 n =100 || 0.9571 0.1516 | 0.1395 | 0.472 | 0.838 | 0.893

n =500 || 1.0302 0.0278 | 0.0253 | 0.503 | 0.928 | 0.963

Table 7. Simulation results for the three components mixture model with
heteroscedastic measurement error of large size (¢=0.5). For each sample size

n 1000 replications of the experiment were conducted.
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