inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cs₁₀Ta_{29.27}O₇₈

Martin Zeuner, Alexander Hofer and Wolfgang Schnick*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Lehrstuhl für Anorganische Festkörperchemie, Butenandtstrasse 5–13, D-81377 München, Germany

Correspondence e-mail: wolfgang.schnick@uni-muenchen.de

Received 13 January 2009; accepted 23 January 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (Ta–O) = 0.010 Å; disorder in main residue; R factor = 0.033; wR factor = 0.083; data-to-parameter ratio = 12.8.

Single crystals of caesium tantalate(V), $Cs_{10}Ta_{29,27}O_{78}$, were obtained as a serendipitous product in a welded tantalum ampoule by a blank reaction of CsBr and bismuth subnitrate $[Bi_5O(OH)_9(NO_3)_4]$ with the container material. The crystal structure of the title compound is made up of a three-dimensional framework constituted by two types of layers, *viz.* $(Ta_6O_{15})_n$ and $(Ta_3O_9)_n$, parallel to (001), which are linked together by TaO₆ octahedra (3*m*. symmetry) along [001]. This framework has cavities where three independent Cs⁺ ions (3*m*. and $\overline{6m2}$ symmetry, respectively) are located. The compound reveals a Ta deficiency at one trigonal prismatic coordinated site ($\overline{6m2}$ symmetry). The composition of the title compound was verified by energy-dispersive X-ray analysis of single crystals.

Related literature

For a previous powder diffraction study of $Cs_{10}Ta_{29,27}O_{78}$, see: Michel *et al.* (1978). For an isotypic compound, see: Haddad & Jouini (1997). For general background and related structures, see: du Boulay *et al.* (2003); Magnéli (1953); Marini *et al.* (1979); Serafin & Hoppe (1982).

Experimental

Crystal data

 $Cs_{10}Ta_{29,27}O_{78}$ $M_r = 7873.51$ Hexagonal, $P6_3/mmc$ a = 7.5170 (11) Å c = 36.340 (7) Å V = 1778.3 (5) Å³

Data collection

Stoe IPDS-I diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) $T_{min} = 0.218, T_{max} = 0.607$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 67 parameters

 $wR(F^2) = 0.083$ $\Delta \rho_{max} = 1.54 \text{ e Å}^{-3}$

 S = 0.89 $\Delta \rho_{min} = -3.28 \text{ e Å}^{-3}$

 855 reflections
 $\Delta \rho_{min} = -3.28 \text{ e Å}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Z = 1

Mo $K\alpha$ radiation

 $0.03 \times 0.02 \times 0.01 \text{ mm}$

14043 measured reflections

855 independent reflections

587 reflections with $I > 2\sigma(I)$

 $\mu = 49.96 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.119$

The authors are indebted to Thomas Miller for performing the single-crystal X-ray diffractometry. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2217).

References

Boulay, D. du, Oono, A. & Ishizawa, N. (2003). Acta Cryst. E59, i86–i88.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Haddad, A. & Jouini, T. (1997). J. Solid State Chem. 25, 251–261.
Magnéli, A. (1953). Acta Chem. Scand. 7, 315–324.
Marini, A., Michel, C. & Raveau, B. (1979). J. Rev. Chim. Miner. 16, 73–79.

Michel, C., Guyomarch, A. & Raveau, B. (1978). J. Solid State Chem. 25, 251-261.

Serafin, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 493, 77-92.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2009). E65, i12 [doi:10.1107/S1600536809002967]

Cs10Ta29.27O78

M. Zeuner, A. Hofer and W. Schnick

Comment

The title compound has a three-dimensional framework, constituted by two types of layers, $(Ta_6O_{15})_n$ (Fig. 1, green) and $(Ta_3O_9)_n$ (Fig. 2, blue), parallel to (001). These layers are linked together along [001], according to the sequence $(Ta_6O_{15})_n$ -TaO₆- $(Ta_3O_9)_n$ -TaO₆, by sharing corners of TaO₆ octahedra (red, Fig. 3). The tantalum atom with deficient occupation is located in a site with trigonal-prismatic coordinated sites (yellow), between two Ta₃O₉ units belonging to two neighboring $(Ta_3O_9)_n$ layers. This framework has cavities which communicate with interconnected channels, parallel to [100]. Cs⁺ ions (black) are located in these cavities. Geometric parameters of the title compound are in the usual ranges. Based on a previous powder diffraction study of Cs₁₀Ta_{29.27}O₇₈ reported by Michel *et al.* (1978), an additional Ta site was found, but was not observed in the current re-investigation. The closely related structure of Tl₁₀Nb_{29.2}O₇₈ was also reported (Marini *et al.*, 1979) with an additional Nb site with too short interatomic distances between the Nb atoms.

The title compound crystallizes isotypically with $Rb_5VONb_{14}O_{38}$ (Haddad & Jouini, 1997), in which the vanadium atom occupies the trigonal-prismatic Ta deficiency site of the title compound. The related compound $Cs_3Ta_5O_{14}$ was first investigated by powder diffraction studies by Serafin & Hoppe (1982) and was later re-investigated on the basis of single-crystal X-ray diffraction by du Boulay *et al.* (2003). An overview on the related hexagonal tungsten bronzes of potassium, rubidium and caesium was presented by Magnéli (1953).

Experimental

The title compound was obtained as a serendipitious product by the reaction of CsBr and bismuth subnitrate $(Bi_5O(OH)_9(NO_3)_4, 98\%$, Sigma-Aldrich) with the tantalum container material. It was synthesized under argon at temperatures of 1523 K in a welded tantalum ampoule. The air stable title compound crystallizes in brown rods. The chemical composition of the single-crystal was confirmed by energy-dispersive X-ray (EDX) analysis which revealed no impurity elements.

Refinement

The site occupation factor (s.o.f.) of the Ta-deficient Ta4 site was refined freely. The maximum residual electron density lies 0.95 Å from O1 and the minimum residual electron density lies at the position of the Cs1 atom.

Figures

Fig. 1. View along [001] on the $(Ta_6O_{15})_n$ layer.

Fig. 2. View along [001] on the $(Ta_3O_9)_n$ layer.

Fig. 3. View along [010] on the layers of the title compound connected via TaO₆ octahedra. Displacement ellipsoids are drawn at the 50% probability level.

caesium tantalate(V)

Crystal data	
$Cs_{10}Ta_{29,27}O_{78}$	Z = 1
$M_r = 7873.51$	$F_{000} = 3310.4$
Hexagonal, P63/mmc	$D_{\rm x} = 7.352 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 6c 2c	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.5170 (11) Å	Cell parameters from 1275 reflections
b = 7.5170 (11) Å	$\theta = 2.6 - 31.6^{\circ}$
c = 36.340 (7) Å	$\mu = 49.96 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 294 (2) K
$\beta = 90^{\circ}$	Rod, brown
$\gamma = 120^{\circ}$	$0.03\times0.02\times0.01~mm$
$V = 1778.3 (5) \text{ Å}^3$	
Data collection	

855 independent reflections

Stoe IPDS-I

diffractometer	
Radiation source: fine-focus sealed tube	587 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.119$
T = 294(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999)	$h = -9 \rightarrow 9$
$T_{\min} = 0.218, T_{\max} = 0.607$	$k = -9 \rightarrow 9$
14043 measured reflections	$l = -46 \rightarrow 46$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{max} = 1.54 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -3.28 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ta1	0.0000	0.0000	0.11749 (3)	0.0166 (2)	
Ta2	0.33551 (10)	0.16775 (5)	0.034126 (15)	0.01525 (19)	
Ta3	0.17146 (6)	0.34292 (11)	0.196383 (17)	0.0204 (2)	
Ta4	0.0000	0.0000	0.2500	0.0163 (8)	0.633 (10)
01	0.0814 (19)	0.5407 (9)	0.1881 (4)	0.021 (2)	
02	0.5486 (9)	0.4514 (9)	0.0368 (3)	0.019 (2)	
O3	0.1256 (9)	0.2511 (18)	0.1456 (3)	0.022 (2)	
O4	0.2470 (17)	0.1235 (8)	0.0825 (3)	0.017 (2)	
05	0.1410 (8)	-0.1410 (8)	0.0233 (3)	0.012 (2)	
O6	0.2379 (18)	0.1190 (9)	0.2082 (3)	0.019 (2)	
07	0.1878 (15)	0.376 (3)	0.2500	0.023 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

Cs1	0.6667	0.3333	0.2500	0.0337 (6)
Cs2	0.3333	0.6667	0.08755 (7)	0.0459 (6)
Cs3	0.6667	0.3333	0.13681 (8)	0.0564 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ta1	0.0158 (3)	0.0158 (3)	0.0180 (5)	0.00791 (16)	0.000	0.000
Ta2	0.0141 (3)	0.0144 (3)	0.0173 (3)	0.00703 (15)	-0.0001 (2)	-0.00005 (11)
Ta3	0.0181 (3)	0.0217 (4)	0.0226 (4)	0.01083 (19)	-0.00299 (13)	-0.0060 (3)
Ta4	0.0151 (10)	0.0151 (10)	0.0188 (13)	0.0075 (5)	0.000	0.000
01	0.019 (5)	0.014 (4)	0.031 (6)	0.010 (3)	-0.001 (5)	0.000 (2)
O2	0.020 (4)	0.020 (4)	0.022 (5)	0.013 (5)	0.002 (2)	-0.002 (2)
O3	0.025 (5)	0.019 (6)	0.020 (5)	0.010 (3)	0.000 (2)	0.000 (4)
O4	0.016 (5)	0.016 (4)	0.019 (5)	0.008 (3)	0.007 (4)	0.004 (2)
O5	0.015 (4)	0.015 (4)	0.002 (4)	0.005 (4)	-0.0019 (19)	0.0019 (19)
O6	0.016 (5)	0.013 (4)	0.028 (6)	0.008 (3)	0.000 (4)	0.000 (2)
O7	0.021 (6)	0.038 (11)	0.015 (7)	0.019 (5)	0.000	0.000
Cs1	0.0317 (9)	0.0317 (9)	0.0377 (15)	0.0159 (5)	0.000	0.000
Cs2	0.0443 (8)	0.0443 (8)	0.0493 (15)	0.0221 (4)	0.000	0.000
Cs3	0.0626 (11)	0.0626 (11)	0.0441 (14)	0.0313 (6)	0.000	0.000

Geometric parameters (Å, °)

Ta1—O3	1.928 (12)	Та3—О7	1.960 (2)
Ta1—O3 ⁱ	1.928 (12)	Ta3—O6 ⁱⁱ	2.028 (12)
Ta1—O3 ⁱⁱ	1.928 (12)	Та3—Об	2.027 (10)
Ta1—O4 ⁱ	2.050 (11)	Ta3—Ta4	2.9631 (8)
Ta1—O4 ⁱⁱ	2.050 (11)	Ta4—O6 ⁱ	2.170 (12)
Ta1—O4	2.050 (11)	Ta4—O6 ⁱⁱ	2.170 (12)
Ta2—O4	1.850 (11)	Ta4—O6 ^{vii}	2.170 (12)
Ta2—O2	1.925 (7)	Ta4—O6	2.170 (12)
Ta2—O2 ⁱⁱⁱ	1.925 (8)	Ta4—O6 ^{viii}	2.170 (12)
Ta2—O5 ⁱⁱ	2.070 (4)	Ta4—O6 ^{ix}	2.170 (12)
Ta2—O5	2.070 (4)	Ta4—O7 ⁱⁱ	2.45 (2)
Ta2—O5 ^{iv}	2.114 (10)	Ta4—O7	2.45 (2)
Ta2—Ta2 ^v	3.3049 (10)	Ta4—O7 ^{ix}	2.446 (19)
Ta2—Ta2 ^{iv}	3.3049 (10)	Ta4—Ta3 ⁱⁱ	2.9631 (8)
Ta3—O3	1.940 (12)	Ta4—Ta3 ⁱ	2.9631 (8)
Ta3—O1	1.941 (12)	Ta4—Ta3 ^{vii}	2.9631 (8)
Ta3—O1 ^{vi}	1.941 (12)		
O3—Ta1—O3 ⁱ	94.5 (5)	O3—Ta3—Ta4	113.2 (4)
O3—Ta1—O3 ⁱⁱ	94.5 (5)	O1—Ta3—Ta4	127.0 (4)
O3 ⁱ —Ta1—O3 ⁱⁱ	94.5 (5)	O1 ^{vi} —Ta3—Ta4	127.0 (4)
O3—Ta1—O4 ⁱ	173.7 (5)	O7—Ta3—Ta4	55.1 (6)

O3 ⁱ —Ta1—O4 ⁱ	89.8 (3)	O6 ⁱⁱ —Ta3—Ta4	47.1 (3)
O3 ⁱⁱ —Ta1—O4 ⁱ	89.8 (3)	O6—Ta3—Ta4	47.1 (3)
O3—Ta1—O4 ⁱⁱ	89.8 (3)	O6 ⁱ —Ta4—O6 ⁱⁱ	76.4 (5)
O3 ⁱ —Ta1—O4 ⁱⁱ	173.7 (5)	O6 ⁱ —Ta4—O6 ^{vii}	138.2 (2)
O3 ⁱⁱ —Ta1—O4 ⁱⁱ	89.8 (3)	O6 ⁱⁱ —Ta4—O6 ^{vii}	138.2 (2)
O4 ⁱ —Ta1—O4 ⁱⁱ	85.6 (5)	O6 ⁱ —Ta4—O6	76.4 (5)
O3—Ta1—O4	89.8 (3)	O6 ⁱⁱ —Ta4—O6	76.4 (5)
O3 ⁱ —Ta1—O4	89.8 (3)	O6 ^{vii} —Ta4—O6	88.9 (6)
O3 ⁱⁱ —Ta1—O4	173.7 (5)	O6 ⁱ —Ta4—O6 ^{viii}	138.2 (2)
O4 ⁱ —Ta1—O4	85.6 (5)	O6 ⁱⁱ —Ta4—O6 ^{viii}	88.9 (6)
O4 ⁱⁱ —Ta1—O4	85.6 (5)	O6 ^{vii} —Ta4—O6 ^{viii}	76.4 (5)
O4—Ta2—O2	100.2 (4)	O6—Ta4—O6 ^{viii}	138.2 (2)
O4—Ta2—O2 ⁱⁱⁱ	100.2 (4)	O6 ⁱ —Ta4—O6 ^{ix}	88.9 (6)
O2—Ta2—O2 ⁱⁱⁱ	87.5 (7)	O6 ⁱⁱ —Ta4—O6 ^{ix}	138.2 (2)
O4—Ta2—O5 ⁱⁱ	89.5 (4)	O6 ^{vii} —Ta4—O6 ^{ix}	76.4 (5)
O2—Ta2—O5 ⁱⁱ	85.4 (4)	O6—Ta4—O6 ^{ix}	138.2 (2)
O2 ⁱⁱⁱ —Ta2—O5 ⁱⁱ	168.9 (4)	O6 ^{viii} —Ta4—O6 ^{ix}	76.4 (5)
O4—Ta2—O5	89.5 (4)	O6 ⁱ —Ta4—O7 ⁱⁱ	69.09 (12)
O2—Ta2—O5	168.9 (4)	O6 ⁱⁱ —Ta4—O7 ⁱⁱ	69.09 (12)
O2 ⁱⁱⁱ —Ta2—O5	85.4 (4)	O6 ^{vii} —Ta4—O7 ⁱⁱ	135.5 (3)
O5 ⁱⁱ —Ta2—O5	100.3 (6)	O6—Ta4—O7 ⁱⁱ	135.5 (3)
O4—Ta2—O5 ^{iv}	152.4 (5)	O6 ^{viii} —Ta4—O7 ⁱⁱ	69.09 (12)
O2—Ta2—O5 ^{iv}	99.7 (4)	O6 ^{ix} —Ta4—O7 ⁱⁱ	69.09 (12)
O2 ⁱⁱⁱ —Ta2—O5 ^{iv}	99.7 (4)	O6 ⁱ —Ta4—O7	135.5 (3)
O5 ⁱⁱ —Ta2—O5 ^{iv}	73.2 (4)	O6 ⁱⁱ —Ta4—O7	69.09 (12)
O5—Ta2—O5 ^{iv}	73.2 (4)	O6 ^{vii} —Ta4—O7	69.09 (12)
O4—Ta2—Ta2 ^v	127.6 (2)	O6—Ta4—O7	69.09 (12)
O2—Ta2—Ta2 ^v	132.2 (3)	O6 ^{viii} —Ta4—O7	69.09 (12)
O2 ⁱⁱⁱ —Ta2—Ta2 ^v	83.1 (3)	O6 ^{ix} —Ta4—O7	135.5 (3)
O5 ⁱⁱ —Ta2—Ta2 ^v	95.4 (3)	O7 ⁱⁱ —Ta4—O7	120.000 (1)
O5—Ta2—Ta2 ^v	38.3 (3)	O6 ⁱ —Ta4—O7 ^{ix}	69.09 (12)
O5 ^{iv} —Ta2—Ta2 ^v	37.37 (10)	O6 ⁱⁱ —Ta4—O7 ^{ix}	135.5 (3)
O4—Ta2—Ta2 ^{iv}	127.6 (2)	O6 ^{vii} —Ta4—O7 ^{ix}	69.09 (12)
O2—Ta2—Ta2 ^{iv}	83.1 (3)	O6—Ta4—O7 ^{ix}	69.09 (12)
O2 ⁱⁱⁱ —Ta2—Ta2 ^{iv}	132.2 (3)	O6 ^{viii} —Ta4—O7 ^{ix}	135.5 (3)
O5 ⁱⁱ —Ta2—Ta2 ^{iv}	38.3 (3)	O6 ^{ix} —Ta4—O7 ^{ix}	69.09 (12)
O5—Ta2—Ta2 ^{iv}	95.4 (3)	O7 ⁱⁱ —Ta4—O7 ^{ix}	120.000 (1)
O5 ^{iv} —Ta2—Ta2 ^{iv}	37.37 (10)	O7—Ta4—O7 ^{ix}	120.000 (2)
Ta2 ^v —Ta2—Ta2 ^{iv}	69.83 (3)	Ta3 ⁱⁱ —Ta4—Ta3 ^{vii}	135.741 (10)
O3—Ta3—O1	93.3 (4)	Ta3 ⁱ —Ta4—Ta3 ^{vii}	135.741 (10)
O3—Ta3—O1 ^{vi}	93.3 (5)	Ta3—O1—Ta3 ^x	140.3 (7)

supplementary materials

94.1 (7)	Ta2—O2—Ta2 ^{xi}	151.8 (7)
168.3 (7)	Ta1—O3—Ta3	139.9 (7)
94.7 (5)	Ta2—O4—Ta1	146.5 (7)
94.7 (5)	Ta2 ⁱ —O5—Ta2	132.0 (6)
88.8 (4)	Ta2 ⁱ —O5—Ta2 ^v	104.3 (3)
91.5 (5)	Ta2—O5—Ta2 ^v	104.3 (3)
173.9 (5)	Ta3 ⁱ —O6—Ta3	145.0 (6)
82.4 (6)	Ta3 ⁱ —O6—Ta4	89.8 (3)
88.8 (4)	Ta3—O6—Ta4	89.8 (3)
173.9 (5)	Ta3—O7—Ta3 ^{vii}	167.5 (11)
91.5 (5)	Ta3—O7—Ta4	83.8 (6)
82.4 (5)	Ta3 ^{vii} —O7—Ta4	83.8 (6)
82.9 (6)		
	94.1 (7) 168.3 (7) 94.7 (5) 94.7 (5) 88.8 (4) 91.5 (5) 173.9 (5) 82.4 (6) 88.8 (4) 173.9 (5) 91.5 (5) 82.4 (5) 82.9 (6)	94.1 (7) $Ta2-O2-Ta2^{xi}$ 168.3 (7) $Ta1-O3-Ta3$ 94.7 (5) $Ta2-O4-Ta1$ 94.7 (5) $Ta2^i-O5-Ta2$ 88.8 (4) $Ta2^i-O5-Ta2^v$ 91.5 (5) $Ta2-O5-Ta2^v$ 173.9 (5) $Ta3^i-O6-Ta3$ 82.4 (6) $Ta3^i-O6-Ta4$ 173.9 (5) $Ta3-O6-Ta4$ 173.9 (5) $Ta3-O7-Ta3^{vii}$ 91.5 (5) $Ta3-O7-Ta3^{vii}$ 91.5 (6) $Ta3^{vii}-O7-Ta4$

Symmetry codes: (i) -*x*+*y*, -*x*, *z*; (ii) -*y*, *x*-*y*, *z*; (iii) -*y*+1, *x*-*y*, *z*; (iv) *x*-*y*, *x*, -*z*; (v) *y*, -*x*+*y*, -*z*; (vi) -*y*+1, *x*-*y*+1, *z*; (vii) *x*, *y*, -*z*+1/2; (viii) -*y*, *x*-*y*, -*z*+1/2; (ix) -*x*+*y*, -*x*, -*z*+1/2; (x) -*x*+*y*, -*x*+1, *z*; (xi) -*x*+*y*+1, -*x*+1, *z*.

Fig. 2

Fig. 3

