Phosphorus Nitride P₃N₅: Synthesis, Spectroscopic, and Electron Microscopic Investigations

Wolfgang Schnick*

Laboratory for Inorganic Chemistry, University of Bayreuth, D-95440 Bayreuth, Germany

Jan Lücke

Institute of Materials Research, University of Bayreuth, D-95440 Bayreuth, Germany

Frank Krumeich

Institute for Inorganic Chemistry, University of Bonn, D-53117 Bonn, Germany

Received August 15, 1995. Revised Manuscript Received September 25, 1995[®]

Pure, stoichiometric, hydrogen-free, and crystalline phosphorus nitride P₃N₅ has been obtained for the first time by reaction of $(PNCl_2)_3$ and NH_4Cl between 770 and 1050 K. The compound has been characterized by elemental analyses, ³¹P and ¹⁵N MAS NMR, EXAFS, IR spectroscopy, X-ray powder diffraction, and electron microscopy. In the solid a threedimensional cross-linked network structure of corner sharing PN_4 tetrahedra has been identified with $^{2}/_{5}$ of the nitrogen atoms bonded to three P atoms and $^{3}/_{5}$ of the nitrogen atoms bonded to two P atoms. By electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM) two distinguishable modifications α -P₃N₅ and β -P₃N₅ have been identified which differentiate only by the stacking order of identical sheets similar to the polytypes of SiC.

Introduction

In the past two decades, nonmetal nitrides have gained increasing interest. Particularly, the binary nitrides of boron and silicon (BN and Si₃N₄) have been used as high-performance materials because of their outstanding thermal, mechanical, and chemical stability.^{1,2} Essential structural features for these specific properties are the strengths of the covalent bonds joining the constituent elements as well as the presence of highly cross-linked structures in the solid. For reasons of analogy, P_3N_5 should have a structure and properties, which resemble those of the above mentioned compounds BN and Si₃N₄. Nevertheless, reliable spectroscopic, crystallographic, and structural data of P₃N₅ have not as yet been reported in the literature, though the formation of binary phosphorus nitride during pyrolysis of polyphosphazenes has already been postulated.³

Recently, we have started a systematic investigation of binary and multinary nonmetal nitrides,⁴ and we have mainly focused our interest on the phosphorus nitride class of compounds. The characteristic structural elements found in all phosphorus nitrides are PN4 tetrahedra which may be linked via common vertexes showing differing degrees of condensation:⁴ Isolated PN47- anions are found in Li7PN4, whereas in Li12P3N9 three PN_4 units form $P_3N_9{}^{12-}$ rings, analogously to

0897-4756/96/2808-0281\$12.00/0

cyclotrisilicates. Infinite chains of corner-sharing PN₄ tetrahedra occur in Ca₂PN₃. The smallest imaginable cage structure that can be formed from corner-sharing PN₄ tetrahedra has been found in Li₁₀P₄N₁₀, which contains the $P_4N_{10}^{10-}$ anion, the nitrido analogue of molecular phosphorus oxide P₄O₁₀. HPN₂, LiPN₂, and Zn₇[P₁₂N₂₄]Cl₂ each exhibit three-dimensional infinite network structures of corner-sharing PN₄ tetrahedra, which can be considered as the topological equivalent of β -cristobalite or of the sodalite framework, respectively.4

With a molar ratio of P:N = 3:5 phosphorus nitride (P₃N₅) has an intermediate composition with respect to SiO_2 (3:6) and Si_3N_4 (3:4). Accordingly, a cross-linked network structure of corner-sharing PN₄ tetrahedra might be expected for this binary nitride.⁵

Binary and ternary phosphorus nitrides have the potential for various ceramic applications, e.g., ionic conductors,⁶ sintering additives,⁷ pigments,⁴ or microporous materials.8

In this paper we describe a new synthetic procedure which leads to pure, stoichiometric, hydrogen-free, and crystalline phosphorus nitride P₃N₅ for the first time. On pure samples of P₃N₅ we have obtained reliable

^{*} To whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, November 1, 1995. Boberski, C.; Hamminger, R.; Peuckert, M.; Aldinger, F.;
 Dillinger, R.; Heinrich, J.; Huber, J. Adv. Mater. **1989**, *1*, 378.
 Paine, R. T.; Narula, C. K. Chem. Rev. **1990**, *90*, 73.

⁽³⁾ Allcock, H. R.; Mc Donnell, G. S.; Riding, G. H.; Manners, I. Chem. Mater.1990, 2, 425.

⁽⁴⁾ Schnick, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 806.

⁽⁵⁾ Veprek, S; Iqbal, Z.; Brunner, J.; Schärli, M. Philos. Mag. 1981, 43, 527.

⁽⁶⁾ Schnick, W.; Lücke, J. Solid State Ionics 1990, 38, 271.
(7) Baldus, H. P.; Schnick, W.; Lücke, J.; Wannagat, U.; Bogedain, G., Chem. Mater. 1993, 5, 845.

⁽⁸⁾ Schnick, W. Stud. Surf. Sci. Catal. 1994, 84, 2221.

⁽⁹⁾ Baltkaula, A. A.; Miller, T. N.; Puzinja, I. A.; Ozolinsch, G. W.; Wajwad, A. Ja. *Latv. PSR Zinat. Akad. Vestis* **1968**, *6*, 761.

⁽¹⁰⁾ Baltkaula, A. A.; Miller, T. N. Latv. PSR Zinat. Akad. Vestis 1971. 4. 389.

⁽¹¹⁾ Boden, G.; Sadowski, G.; Lehmann, H.-A. Z. Chem. 1971, 11, 114

⁽¹²⁾ Ronis, J. V.; Kuzjukevic, A. A.; Bondars, B. J.; Avotins, V. E.; Vitola, A. A.; Latv. PSR Zinat. Akad. Vestis 1986, 3, 366.

Figure 1. FT-IR spectra of phosphorus nitride (a) amorphous; (b) crystalline P₃N₅.

spectroscopic data. For the first time small single crystals of P₃N₅ have been grown and have been studied thoroughly, leading to an unambiguous crystallographic characterization of this important binary nitride which overcomes the contradictory results of former investigations.^{9–12}

Experimental Section

Materials. Hexachlorocyclotriphosphazene (Merck Schuchardt) as well as ammonium chloride (Riedel-de-Haen) have been purified by sublimation in vacuum (330 K, (PNCl₂)₃; 450 K, NH₄Cl). ¹⁵NH₄Cl was used for the synthesis of ¹⁵N-enriched samples of P₃N₅.

All operations were carried out under purified argon atmosphere $(O_2 < 0.5 \text{ ppm}, H_2O < 0.1 \text{ ppm})$ using standard Schlenk technique or an inert gas glovebox (type MBRAUN 200).

Synthesis of P₃N₅. Stoichiometric amounts of (PNCl₂)₃ and NH₄Cl with molar ratio 1:2 are sealed in an evacuated thickwalled quartz ampule (length 150 mm, inner diameter 10 mm). The reaction mixture was held for 12 h at 770 K and for 24 h at 1050 K in an electrical tube furnace. To condense gaseous hydrogen chloride, which forms during the reaction, the ampules are cooled with liquid nitrogen and are opened under pure argon atmosphere. Surface deposits (NH₄Cl, (PNCl₂)₃, HCl) are removed by heating in vacuum (500 K). The product is obtained as a fine crystalline, colorless powder.

For elemental analyses the products were solubilized in a special digestion apparatus¹³ at 460 K and 1.2 MPa (reaction time 2 days) in diluted sulfuric acid. During this reaction phosphorus nitride hydrolyzes forming ammonium hydrogen phosphate. Phosphorus and nitrogen were determined as molybdovanadato phosphate and indophenol blue, respectively. No deviations from the stoichiometric composition P₃N₅ have been detected. Even traces of silicon and chlorine have been detected neither in the solid (X-ray microprobe analysis) nor in the digested products. Equally, traces of oxygen have not been detected in the solid by WDX analyses (detection threshold \sim 0.5 mass %). The absence of hydrogen (N-H) has been proved by IR spectroscopy.

Physical Measurements. Infrared spectra were obtained on a Bruker IFS113v FTIR spectrometer equipped with a dry argon purge assembly and using a DTGS detector. Phosphorus nitride was ground in an agate mortar in the glovebox, mixed with potassium bromide (500 mg of KBr, dilution 1:1000) and pressed into pellets for transmission studies.

Solid-state NMR spectra were recorded on a Varian Unity 400 spectrometer (observing frequency 161.9 MHz (³¹P) or 40.5 MHz⁽¹⁵N)). Magic angle spinning (MAS) at 2-6 kHz was employed using cylindrical rotors made of boron nitride (diameter 5-7 mm, sample weight about 300 mg). Chemical

Figure 2. The 161.9-MHz ³¹P solid state MAS NMR spectrum of P_3N_5 (* = rotational sidebands).

shifts of phosphorus and nitrogen were referenced to H₃PO₄ (85%) and ¹⁵NH₄Cl, respectively. Because of the low natural occurrence of the ¹⁵N isotope measurements on the nitrogen nucleus were performed on ¹⁵N-enriched samples.

X-ray absorption experiments were performed at the ELSA high-energy storage ring (2.5 GeV, Physics Institute, University of Bonn). Powdered samples were homogeneously distributed on a capton foil and measured in transmission mode using double monochromators.

X-ray powder diffraction patterns were acquired using Cu K α_1 radiation ($\lambda = 154.056$ pm) on a STOE STADI/P transmission powder diffractometer in Debye-Scherrer mode, equipped with a Ge-(111) single-crystal monochromator. Intensities were recorded by a position sensitive detector (mini-PSD, STOE) with an aperture of $2\theta = 6.7^{\circ}$

For electron microscopic investigations the microcrystalline samples were crushed in an agate mortar and dispersed in acetone. Some droplets of this dispersion were deposited on a copper grid covered with a perforated foil (carbon-coated Formvar). Selected area electron diffraction (SAED) investigations of microcrystals were performed using a 100 kV EM300 microscope (Philips) equipped with a goniometer stage which offers high tilting capability of $\pm 60^{\circ}$. The use of a rotation holder allows to observe a crystal along different low-indexed zone axes. The evaluation of both several different electron diffraction patterns and the measured tilting angles between them enables a reconstruction of its reciprocal lattice (program TEMGIB¹⁴). The camera length of the microscope was calibrated using a polycrystalline Au standard. High-resolution transmission electron microscopy (HRTEM) was carried out on a EM400 microscope (Philips) working at 120 kV.

Results and Discussion

Synthesis and Properties of P₃N₅. Stoichiometric phosphorus nitride has been prepared according to eq 1 in 70% yield as a colorless powder.

Figure 4. X-ray absorption spectra (left) of P_3N_5 and LiPN₂ and Fourier transforms (right).

$$(PNCl_2)_3 + 2NH_4Cl \rightarrow P_3N_5 + 8HCl \qquad (1)$$

Matching a molar ratio of P:N = 3:5 in the starting mixtures is essential in order to obtain this ratio in the solid, too. Otherwise, the yield decreases and other phases ($H_{3x}P_3N_{5+x}$, 0 < x < 1) are obtained. At lower temperatures (<1000 K) amorphous samples were obtained whereas at higher temperatures (>1100 K) decomposition of the desired product led to nonstoichiometric materials. Phosphorus nitride is nonsensitive to air or moisture, insoluble in acids and bases as well as in organic solvents under normal pressure. Thermal degradation starts at temperatures above 1100 K yielding gaseous species like N₂, PN, and P₄.

Spectroscopic Investigations. No hydrogen bonds (N–H or P–H) are left in the solid as can be seen in the infrared spectra (Figure 1). Two broad absorption bands at about 950 and 1350 cm⁻¹, which split off in the crystalline samples, are detected. They are originated from P–N stretching modes¹⁵ as confirmed by the comparison of ¹⁴N– and ¹⁵N–P₃N₅ spectra.

NMR investigations on the phosphorus nucleus ³¹P (Figure 2) show several well-resolved signals between -40 and -70 ppm surrounded by side bands at a distance of 6080 Hz (=rotation frequency). Five signals were detected at -46.0, -48.2, -56.2, -59.7, and -64.8 ppm with an intensity ratio of about 5:5:1:1:4, respectively. In the ¹⁵N solid-state NMR experiments (Figure 3) two groups of signals at 40 and 90 ppm appear beside the signal at 0 ppm which is attributed to ¹⁵NH₄Cl used as an internal standard.

Figure 4 shows the X-ray absorption spectra (left side) and the resulting Fourier transforms (right side) of P_3N_5 and LiPN₂. The onset of the absorption at about 2140 eV (maximum at 2151 eV) as well as the maxima in the Fourier transforms (at about 165 and 290 pm) are very similar in both phosphorus nitrides. Referring to the well-known structure of LiPN₂,¹⁶ the maximum in the absorption spectrum of P_3N_5 is derived from phosphorus atoms in their highest possible oxidation state P^V , those

Table 1. Ratio of 2-fold (N^[2]) to 3-fold (N^[3]) Bonded Nitrogen Atoms in Phosphorus Nitrides

	compound	NH ^[2] :N ^[2] :N ^[3]
general x = 0 x = 1	$\begin{array}{c} H_{3x}P_3N_{5+x}\\ P_3N_5\\ HPN_2 \end{array}$	3x:3:(2-2x) 0:3:2 1:1:0

in the Fourier transform are associated with P-Nbonds (167 pm) and P···P distances (295 pm), respectively. Furthermore, the IR investigation as well as the EXAFS results indicate that stoichiometric phosphorus nitride P₃N₅ consists of a threedimensional network of PN_4 tetrahedra connected by common vertexes. No other than $P^{\rm +V}\,N^{\rm -III}$ bonds were detected (IR, EXAFS) which has qualitatively been postulated by Veprek.⁵ The mean bond length is about 167(5) pm which is in good agreement with theoretical calculations based on bondvalence parameters.¹⁷ From the P···P-distance (295 ppm) a P-N-P-bonding angle of 124° is calculated which is comparable to those found in other ternary phosphorus nitrides.⁴ There are at least five distinguishable, magnetic different phosphorus atoms (³¹P MAS NMR) with a chemical shift at higher field (about -50 ppm) compared to non-cross-linked compounds with tetrahedrally coordinated phosphorus, e.g., $P(NH_2)_4I$: σ = 14.2 ppm.^{18,19} Investigations on the ¹⁵N nucleus show two signal groups with a ratio of 3:2. In contrast to the oxygen atom (maximum coordination number in silicates and phosphates: CN = 2) nitrogen atoms may form one, two, or three covalent bonds to phosphorus. Thus, according to the results of Bunker et al.,²⁰ the signals at 40 and 90 ppm were assigned to nitrogen atoms which are bonded to two (N^[2]) or three phosphorus atoms (N^[3]), respectively. The ratio of 3:2 estimated by quantitative analysis of the NMR spectrum is in good agreement with theoretical considerations (Table 1). The

⁽¹⁷⁾ Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192.
(18) Schnick, W.; Horstmann, S.; Schmidpeter, A. Angew. Chem.,

⁽¹⁶⁾ Schnick, W.; Horstmann, S.; Schnidpeter, A. Angew. Chem. Int. Ed. Engl. **1994**, 33, 785.

Horstmann, S.; Schnick, W., Z. Naturforsch. 1994, B50, 1381.
 Bunker, B. C.; Tallant, D. R.; Balfe, C. A.; Kirkpatrick, R. J.;

Turner, G. L.; Reidmeyer, M. R. J. Am. Ceram. Soc. 1987, 70, 675. (21) Grün, R. Acta Crystallogr. 1979, B35, 800.

⁽²²⁾ Krumeich, F.; Lücke, J.; Schnick, W. Electron Microsc. 1992, 2, 423.

⁽¹⁵⁾ Schnick, W.; Lücke, J. Z. Anorg. Allg. Chem. 1992, 610, 121.
(16) Schnick, W.; Lücke, J. Z. Anorg. Allg. Chem. 1990, 588, 19.

Figure 5. X-ray powder diffraction pattern of P_3N_5 .

Table 2. Structure Units in Polymeric Nitrides

N ^[2]	N ^[3]
only	0
3	2 2
	only
	N ^[2] only 3 1

two different types of nitrogen atoms in $P_3N_5~(N^{[2]}$ and $N^{[3]})$ require different $P\!-\!N$ bond lengths. However, a resolution of this difference by the EXAFS method has not been achieved.

The amount of 3-fold-bonded nitrogen rises from HPN_2 (no $N^{[3]})^{15}$ to P_3N_5 ($N^{[2]}:N^{[3]} = 3:2$), SiPN₃ (1:2),⁷ and Si₃N₄ (only $N^{[3]})$,²¹ as summarized in Table 2.

Determination of Lattice Parameters. The asreceived samples contain only small crystallites (REM $<5 \mu$ m). The X-ray powder diffraction pattern (Figure 5) shows only two strong reflections ($2\theta = 19.5$ and 24.7°) beside several broad ones above $2\theta = 30^{\circ}$. All indexing trials fail due to the low number of resolvable reflections, which could not be increased at higher resolution in the synchrotron experiment.

Nevertheless we succeeded in finding microscopic single crystals suitable for electron microscopy.²² Their thorough examination led to the discovery of two different modifications which we refer to as α - and β -P₃N₅.

Table 3. Observed and Calculated Tilting Angles between Reciprocal Lattice Planes in α -P₃N₅

	-			
zone axis	ϕ	$\Delta \phi(\exp)$	$\Delta \phi$ (calc)	
[10]]*	-61			
[211]*	-48	13	15.6	
[110]*	-32	16	16.5	
[231]*	-16	16	14.8	
[121]*	-5	11	11.9	
[132]*	+11	16	15.7	
[143]*	+20	9	9.1	
[154]*	+26	6	6.5	
[011]*	+47	21	21.6	

Both were characterized concerning their lattice parameters and symmetry using the electron diffraction method.

The lattice parameters of $\alpha\text{-}P_3N_5$ were obtained by analyzing the electron diffraction patterns of a crystal tilted around the [111]* axis:

$$a = 1650(10), \quad b = 580(5), \quad c = 810(6) \text{ pm}$$

 $\alpha = \beta = \gamma = 90^{\circ}$

The observed tilting angles are in good agreement with the calculated ones (Table 3).

Considering the observed systematic extinctions (*hkl*: h + k, h + l, and k + l odd) we conclude that α -P₃N₅ has a face-centered orthorhombic unit cell. Furthermore, the electron diffraction pattern along [010]* (Figure 6) shows reflections only with *h* and *l* even (h + l = 4n for *h*0*l*) indicating a diamond glide plane. These observations lead to the possible space groups *Fdd*² (no. 43) and *Fddd* (no. 70).

Crystallites of the β -phase were easily recognizable by superstructure reflections indicating a unit cell larger (factor 1.5) than that found for α -P₃N₅. A series of diffraction patterns obtained by tilting a crystal around [001]* (Figure 7) enabled the determination of the lattice parameters:

$$a = 913(8), \quad b = 585(5), \quad c = 2170(15) \text{ pm}$$

 $\alpha = \beta = \gamma = 90^{\circ}$

A 6-fold superstructure is clearly visible along $[010]^*$ and other directions $[uvw]^*$ with $v \neq 0$ whereas in the

Figure 6. SAED of α -P₃N₅ along [010]*/[011]*/[110]* (from left to right).

Figure 7. Tilting series of β -P₃N₅.

 bc^* plane only two weak and diffuse spots lay between the main reflections; furthermore, diffuse streaking is observed along [001]* indicating an amount of disorder. Moreover, reflection conditions are observed in the [100]* (k + l = 2n for 0kl) and [010]* diffraction pattern (h = 2n for h0l). These extinctions point out an axial and a diagonal glide plane for β -P₃N₅. Further extinctions may occur in the ab^* plane but have not been observed because of multiple scattering producing forbidden reflections. Thus, the lattice parameters reported in the literature⁹⁻¹² are very contrary to our results and might have been determined on either impure samples regarding the oxygen and hydrogen content or resulted from multiphase powder diffraction data which lead to incorrect parameters.

Relation between α - **and** β -**P**₃**N**₅. By comparison of the two unit cells of both modifications, the remarkable coincidence of the β axes is conspicuous. A metrical relationship between the two cells may be approximated

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}_{\beta - P_{3}N_{5}} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{3}{4} & 0 & -\frac{9}{4} \end{bmatrix} \times \begin{bmatrix} a \\ b \\ c \\ \alpha - P_{3}N \end{bmatrix}$$

In particular, this relationship becomes obvious by examination of the $[1\overline{2}1]^*$ (α -P₃N₅) and $[110]^*$ (β -P₃N₅) zone axes, respectively. The strong reflections of the β phase are located at the same sites in the corresponding electron diffraction pattern as the spots of α -P₃N₅ (Figure 8a). Additionally, in β -P₃N₅ five weaker spots between the strong reflection are observed. The HR-TEM images illustrate the relationship: Using imaging conditions near Scherzer defocus, both phases exhibit lines of bright dots along $[10\overline{1}]^*$ (α -P₃N₅) and $[110]^*$ (β - P_3N_5), respectively; the distance between the dots is equal in [531]* α and [110]* β direction (Figure 8b). Actually, in both phases these lines turned out to be stacked identical sheets (parallel to the ab plane of β -P₃N₅). In α -P₃N₅ an infinite sequence of the dots in $[10\overline{1}]^*\alpha$ direction results, whereas in the β form each three sheets the direction of stacking turns resulting in a zigzag chain of bright dots which gives rise to the 6-fold superstructure along *c* (Figure 8b). The seventh bright dot represents the translation period along the *c* axis. In α -P₃N₅ there is no translation perpendicular to [531]* because of an angle of 87.9° between [531]* and [101]*.

Several crystallites show both kinds of stacking in adjacent areas (Figure 8c). This fact, as well as the difficulty to yield larger amounts of the phases separately, indicates a small difference of energy between both modifications. Furthermore the 6-fold superstructure is scarcely observed in pure form; most crystals exhibit heavy stacking disorder as indicated by disturbed superstructure reflections and diffuse scattering along c^* . The nature of this features becomes obvious from highly resolved TEM images, where several different stacking periods are recognizable (Figure 8c).

Conclusions

Crystalline P_3N_5 is built up by a three-dimensional network structure of corner sharing PN_4 tetrahedra

⊢ 1000 pm

Figure 8. High-resolution images with SAED insets (a) along $[1\overline{2}1]_{\alpha}$ (left), (b) along $[110]_{\beta}$ (middle), and (c) stacking disorder in P_3N_5 (right).

according to ${}^{3}_{m}[P_{3}^{[4]}N_{3}^{[2]}N_{2}^{[3]}]$ (I).

Only the combination of spectroscopical and diffraction methods, especially electron microscopy for structural analysis, enables a detailed structural and crystallographic characterization of P_3N_5 as no conventional single-crystal data for structure determination have been available for this compound.

A representative for an unique binary structure type was found for the first time which combines a tetrahedral structure with the very rare molar ratio of 3:5 for the constituent elements.

Little energetic differences in the stacking variations of P_3N_5 lead to a structural diversity resulting in the

formation of polytypes that remind us of those found in polytypes of SiC.

Consequently, the growth of macroscopic ordered single crystals of P_3N_5 polytypes has to be performed in order to determine the unique structure of this important binary nitride that is currently in progress.

Acknowledgment. The preparative part of this work has been performed at the Institute for Inorganic Chemistry, Bonn University. The authors would like to thank Prof. Dr. M. Jansen for support and Prof. J. Hormes, Physics Institute, Bonn University, for EXAFS measurements. Financial support by the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Deutsche Forschungsgemeinschaft (project Schn377/2-1 and Heisenberg grant for W.S.), as well as the Fonds der Chemischen Ind. is greatfully acknowledged. Helpful discussions and support during the preparation of the manuscript by Stefan Horstmann, University of Bayreuth, is gratefully acknowledged.

CM950385Y