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� Introduction

On�line monitoring of time series becomes more and more important in dierent

areas of application like medicine� biometry and �nance� In medicine� on�

line monitoring of patients after transplantation of renals ��� is an easy and

prominent example� In �nance� fast end reliable recognition of changes in level

and trend of intra�daily stock market prices is of obvious interest for ordering

and purchasing� In this project� we currently consider monitoring of surgical

data like heart�rate� blood pressure and oxygenation�

From a statistical point of view� on�line monitoring can be considered as on�

line detection of changepoints in time series� That means� changepoints have

to be detected in real time as new observations come in� usually in short time

intervals� Retrospective detection of changepoints� after the whole batch of

observations has been recorded� is nice but useless in monitoring patients during

an operation�

There are various statistical approaches conceivable for on�line detection of

changepoints in time series� Dynamic or state space models seem particularly

well suited because ��ltering� has historically been developed exactly for on�line

estimation of the �state� of some system� Our approach is based on a recent

extension of the so�called multi�process Kalman �lter for changepoint detection

���� It turned out� however� that some important issues for adequate and reliable

application have to be considered� in particular the �appropriate� handling of

outliers and� as a central point� adaptive on�line estimation of control� or hyper�

parameters� In this paper� we describe a �lter model that has this features and

can be implemented in such a way that it is useful for real time applications

with high frequency time series data�

Recently� simulation based methods for estimation of non�Gaussian dynamic

models have been proposed that may also be adapted and generalized for the

purpose of changepoint detection� Most of them solve the smoothing problem�

but very recently some proposals have been made that could be useful also for

�ltering and� thus� for on�line monitoring �
� �� ��� If these approaches are a

useful alternative to our development needs a careful comparison in future and

is beyond the scope of this paper�

�



� The Dynamic Linear Model

Throughout this paper we will use the notation as in �	��

��� De�nition of the Dynamic Linear Model

Let Yt � R be the observation at time t � ��� � � � � Tg� Then for each timepoint t

the dynamic linear model is de�ned by

Observation equation� Yt 	 F �
t�t 
 vt � vt � N��� Vt�

System Equation� �t 	 Gt�t�� 
 wt � wt � N���Wt�

where Ft� Gt are known design matrices describing the deterministic part of the

observation process and of the system evolution� Both processes are disturbed

by the Gaussian noise terms v�t� �observation variance� and w�t� �evolution

variance�� which are assumed to be mutually independent with variances Vt

and Wt�

The model is initialized by a known prior for the initial state vector ��� usually

taken to be

���jD�� � N�m�� C���

where generally Dt 	 fYt� � � � � Y�g 	 fYt�Dt��g represents the information set at

time t� such that D� represents the initial information�

The dynamic linear model with design matrices Ft� Gt and variances Vt�Wt may

symbolically be written as Mt 	 fF�G� V�Wgt�

��� Estimating the state vector �t

The following updating equations are used in estimating �t �see also �	���

�a� Given posterior information at time t� �

��t��jDt��� � N �mt��� Ct���

we arrive at the

�b� Prior at time t

��tjDt��� � N �at� Rt� �

�



where at 	 Gtmt�� � Rt 	 GtCt��G
�
t 
Wt�

Next we can forecast Yt� thereby using information up to time t� ��

�c� One�step forecast

�YtjDt��� � N �ft� Qt� �

where ft 	 F �
tat � Qt 	 F �

tRtFt 
 Vt�

Eventually we obtain the

�d� Posterior at time t

��tjDt� � N �mt� Ct� �

where mt 	 at 
Atet � Ct 	 Rt �AtA
�
tQt

with At 	 RtFtQ
��
t � et 	 Yt � ft�

� A Multi�Process Model for the On�line Moni�

toring Problem

Combinations of dierent �lters are called Multi�Process Models� Let A be

some index set and for � � A let Mt��� be the model corresponding to � �for

some F�G� V�W depending on t and ���

In the simplest case there is some �xed �though maybe unknown� � such that

the model Mt��� holds for all t and this is what turns out to be general enough

to handle the on�line problem�

For the estimation of � we use Bayes� theory� Given an initial prior p��jD���

inferences about � can be done sequentially by p��jDt� � p��jDt���p�Ytj��Dt����

Our multi�process model for the on�line monitoring problem�including mul�

tiple changepoints�is based on the dynamic changepoint model developed in

���� covering situations with at most one changepoint� In the following we give

a brief description of the latter model�





��� The dynamic changepoint model

The structural component model of ��� describes a system without a change�

point by a simple random walk� Changepoints are incorporated by a �switch��

which adds at some �xed but unknown time � a �possibly noisy� drift to the

system equation� Thus the observation and system equations are�

Observation equation� Yt 	 �t 
 vt � vt � N��� ��y�

System Equation� �t 	 �t�� 
 z
���
t �t�� 
 w�t � w�t � N��� ����

�t 	 �t�� 
 w�t � w�t � N��� ����

where z���t is an indicator variable with

z
���
t 	

��
�

� � t 	 �

� � t � �

We shall use the following notation� the ����lter� refers to a �lter with z
���
t 	 �

and the ����lter� refers to �lter with z
���
t 	 ��

Every � � f�� �� � � � � Tg de�nes a dierent model� The collection of all these

single�process models labeled by � is called the multi�process model Mt�� ��

In matrix notation�

Yt 	
h
� �

i
� �z �

F �

�t 
 vt

�
� �t

�t

	
A

� �z �
�t

	



� � zt�� �

� �

�


� �z �
G�

t

�
� �t��

�t��

	
A

� �z �
�t��




�
� w�t

w�t

	
A

� �z �
wt

with

V ar�vt� 	� Vt � V ar�wt� 	�Wt

We discuss the problem of choosing Vt and Wt in section 
��� The updating

equations given a changepoint � 	 j are described in section ����

��� The estimation of changepoints

The posterior distributions of the changepoints P �� 	 jjDt� � j 	 ��� � � � � T �� can

be calculated by Bayes with�

�



P �� 	 jjDt� � P �YtjDt��� � 	 j�P �� 	 jjDt���

These probabilities must be initialized� If 
 denotes the probability that a

changepoint occurs until time T� a reasonable initial prior is the uniform prior�

P �� 	 jjD�� 	



T
� j 	 � � � � T

For the estimation of � it is only necessary to consider models up to time t�

since all conditional models with � � t
 � are identical�

P �YtjDt��� � 	 j� 	 P �YtjDt��� � 	 t
 �� � j � t
 ��

Hence the posterior distribution of the changepoint � at time t is given by

P �� 	 jjDt� 	

��
�
ct��yt� f

j
t � Q

j
t� � P �� 	 jjDt��� j � t

ct��yt� f
t��
t � Qt��

t � � P �� 	 jjDt��� t 	 j � T

P �� � T jDt� 	 ct�
�
yt� f

t��
t � Qt��

t

�
� P �� � T jDt���

where f jt 	 E�YtjDt��� � 	 j� and Qj
t 	 V ar�YtjDt��� � 	 j� are the mean and

variance of the one�step forecast density �see section ���� and � is the density

of the normal distribution� ct being the normalization constant�

The dynamic linear changepointmodel seems to be an appropriatemodel� which

allows to detect on�line deviations from an assumed course of a monitored

variable� But there exist still some unsolved problems�

� Outliers can have an important in�uence on the probability of a change�

point�

� Long observation periods entail the need for handling many models simul�

taneously such that the algorithm becomes too slow for real time applica�

tions�

� The original model allows only to detect at most one changepoint during

the observation period�

�



� The variances Vt andWt are in many practically important cases unknown�

The next chapter shows how these problems can be solved�

� Towards an On�line Monitoring Alert System

��� Introduction of a time window for the �� filters

The computational time increases rapidly with the increasing number of ���lters

to be processed such that the speed may easily drop below the limit for real

time applications� To overcome this problem we introduce a window �t � b� t�

for these ���lters� with some positive b depending on the computational power

and the speci�c problem� Then the probabilities for the changepoints are

P �� 	 jjDt� 	

�����
����

ct��yt� f
j
t � Q

j
t� � P �� 	 jjDt��� t� b � j � t

ct��yt� f
t��
t � Qt��

t � � P �� 	 jjDt��� t 	 j � T

� j 	 t� b

P �� � T jDt� 	 ct�
�
yt� f

t��
t � Qt��

t

�
� P �� � T jDt���

Only the ���lter and the t�b�� ���lters are considered in the calculations of the

changepoint probabilities� The result is a constant calculation speed over time�

An additional advantage is that the model is now able to deal with more than

one changepoint� Since a changepoint before time t� b is no longer respected�

we estimate the posterior distribution of the actual changepoint using informa�

tion only from within this time window� However� the window t� b is dynamic�

One � � filter is added for the new observation and in the same moment we

drop the ��filter for observation t� b� Hence� in moving the window over time

we are able to detect sequential changepoints�

��� Hierarchical Multiprocess Models

Let P �M ���
t jDt� be the probability that the model M ���

t � for some � � A� holds

at time t� Then we de�ne a hierarchical model by the probability

P �M ���
t �M

���
t jDt� 	 P �M ���

t jM
���
t �Dt�P �M ���

t jDt��

�



where � � B� and A�B are disjoint parameter sets�

If one is interested in marginal probabilities one may calculate them via

P �M ���
t jDt� 	P

i�B P �M ���
t jM

��i�
t �Dt�P �M ��i�

t jDt��

This de�nition should not be confused with a multiprocess model of class II� in

which one will not distinguish between A and B� A hierarchical model is the

combination of two ore more multiprocess models of class I� So one is able to

follow a decision tree within the set of dierent �lters� We will use it to build

an estimation procedure for the unknown Vt and Wt� as well as for the outlier

detection�

Before we propose the estimation procedures for the unknown variances we

make some basic considerations� Until now we did not distinguish between dif�

ferent �lters and their variances� However� this will become important� when

we are going to estimate this variances on�line� The fundamental approach to

the On�line monitoring problem using the dynamic linear changepoint model

is� that the new observation Yt is explained by two types of models �the �� and

���lters�� A changepoint is detected when the ���lters are better in predicting

Yt with than the �� �lter�

Since the system equations of the �� and ��filters are dierent � �t 	 �t��
w
���
t

for the � � filter and �t 	 �t�� 
 �t�� 
 w
���
t for the � � filters� one will have

dierent evolution variances W ���
t �W

���
t � � 	 �� ��� t�

The only dierence between the �� and � � filters is the slope parameter ��

Hence� in adding a slope parameter to the system equation a part of the evolu�

tion variance estimated for the � � filter� is now explained by the slope itself�

and therefore W ���
t �W

���
t � However� the observation variance Vt� which has the

interpretation of measurement error� is identical for both models� because the

observation equations are identical too�

These considerations lead to the following estimation concept� Since we are not

able to �nd a closed estimation procedure� in terms of a single multiprocess

�lter� to estimate Vt and Wt simultaneously we have to estimate these variances

separately and independent from the estimation of a changepoint� Therefore

we will introduce� for estimation of the unknown variances� a new multiprocess

�



�lter consisting of the ���lter and the ���lter �with � 	 ��� This leads to what

we call a hierarchical on�line estimation procedure�

Online Estimation of the unknown Variances V and W

��� Estimation of V

To estimate the unknown observational variance Vt treated here as constant

over time� we adapted a conjugate sequential updating procedure� described

in West� Harrison ������ ����� Since V becomes now a random quantity

the normal distribution changes into a t�distribution and we will obtain the

following system�

Observation equation� Yt 	 F ��t 
 vt � vt � N��� V �

System Equation� �t 	 G�
t �t�� 
 wt � wt � Tnt��

���Wt�� � � fT 
 �� �g

where Tnt��
��� ��� denotes the noncentral T �distribution with mean �� variance

�� and nt�� degrees of freedom� The expression � � fT 
 �� �g indicates two

�lters� one for the � � filter and one for the � � filter� that started from the

beginning� The updating equations will take now the form�

�a� Posterior at t� �� ��t��jDt��� � � � Tnt��
�mt��� Ct���

�b� Prior at t� ��tjDt��� � � � Tnt��
�at� Rt�

ajt 	 Gj
tm

j
t��

Rj
t 	 Gj

tC
j
t��G

�j
t 
Wt

�c� one�step forecast� �YtjDt��� � � � Tnt��
�ft� Qt�

f jt 	 F �ajt

Qj
t 	 Sj

t�� 
 F �Rj
tF

�d� Posterior at t� ��tjDt� � � � Tnt��
�mt� Ct�

mj
t 	 ajt 
Aj

te
j
t

�



Cj
t 	 Sj

t �S
j
t��

h
Rj

t �Aj
tA

�j
tQ

j
t

i

Sj
t 	

dt
nt

where

nt 	 nt�� 
 �� dt 	 dt�� 
 Sj
t��e

j�
t�Q

j
t and At 	 Rj

tF�Q
j
t

Under the assumption� that the estimated variances V ��� and V ����� are now

known quantities� we can combine the two �lters in a multiprocess model and

use this to get an estimate of V simultaneously�

Using Bayes we get

P �V jjDt� � P �YtjV
j�Dt���P �V jjDt���� j � fT 
 �� �g

and we can get an estimate of V by

�V 	
X
j

V jP �V jjDt��

As initial probabilities P �V jjD�� one can use the probabilities 
� � � 
� which

were used to initialize P �� jD�� in the changepoint estimation procedure� The

single estmates of V j will be passed to the hierarchical changepoint model�

��� Estimating Wt

Similar to the previous section wewill build an estimation procedure to calculate

Wt� In a �rst step we transform the problem of estimatingWt to a problem were

we have to estimate a discounted variance� As proposed by �	� we introduce a

discounting factor � with � 	  � �� By de�nition we can set

Wt 	 Pt�� � ��

with

Pt 	 Gj
tC

j
t��G

�j
t �

One advantage is now that in contrast to Wt�  is scale free� Furthermore 

is related to the signal to noise ratio r 	 Wt�Vt 	 �� � ���� In the literature

values like  	 ��� or ��� are chosen to be �xed and the usual updating equations

��



are used to estimate the state vector �t� Hence� a possible strategy could be

to analyze several data sets with de�ned changepoints and to look for the best

value of � where not more but the maximum of the de�ned changepoints can

be detected� But this would not be an On�line estimation of the evolution

variance Wt� Another possibility is to estimate the unknown discounting factor

 similarly to the observation variance V � Our proposal is to do the following�

As mentioned in the beginning of this chapter we need a  for the ��filter and

the � � filter� So we have to build two dierent multiprocess models� First let

� � fT 
 �� �g� Then

�a� choose a discrete set ��� �� � � � � k� of values for  �k appropriately chosen�

�b� calculate at each step the probabilities of  using

P ����jDt� � P �Ytj
����Dt��� � �P ����jDt��� � �

one may estimate ��� using

���� 	
kX

i��

iP �ijDt� � �

It seems to be natural to use the uniform distribution P �jjD�� 	
�
k
� j 	 �� ��� k for

the initial probabilities� This method appears to be a good estimation strategy

for the unknown ���� Onece again the estimated parameters are passed to the

hierarchical changepoint model�

��	 Respecting Outliers

To detect outliers we used the ideas of ���� An outlier can be interpreted as

a sudden perturbation of the observation equation� To include this possibility

we could enlarge the multiprocess model by an extra �lter for outliers �which

we call �N��lter��� which is exactly the ���lter with an enlarged observation

variance� Since� V and Wt are estimated on�line this will not work� Instead of

including the extra N�filter into the changepoint model we introduce an extra

multiprocess model for outliers� This model will become the �rst level of our

hierarchical multiprocess model� Let

Mt��� � Yt 	 F ��t 
 vt� vt � N��� �V �

�t 	 G
�T���
t �t�� 
 wt� wt � N���Wt��

��



where � is chosen su�ciently large� say � 	 ���� Now we may estimate the

probability of an outlier by

P �OutlierjDt� � P �YtjOutlier�Dt���P �OutlierjDt���

�

��
 Initialization

We show now how the prior distributions of the state vectors must be speci�ed�

We initialize the �� filter and �� filter similar to ��� with a data driven prior�

The variances C���
� follow hereby a diuse prior�

The �� filter ���jD�� T 
 �� � N�m�T���
� � C

�T���
� � is initialized by

m
�T���
� 	 �Y�� ��

� and C
�T���
� 	

�
� V� 
W� �

� �

	
A �

Prior information of the ��filters ���jD�� � � t� � N�m���t�
� � C

���t�
� � is recursively

de�ned by

m
���t�
� 	 �m

���t���
t���� � Yt�� �m

���t���
t���� ���

C
���t�
� 	

�
� C

���t���
� �C

���t���
�

�C
���t���
� C

���t���
� 
 Vt 
Wt

	
A �

Furthermore� we have to specify starting values for the variances V � W and we

have to choose a discrete set for the discounting factor � Since we are going

to estimate all parameters on�line we need a good guess for the signal to noise

ratio r of the underlying process� Otherwise the estimation procedure will not

converge to the true values�

For the approximation of r we will use the �rst �k observations �chose k appro�

priately� and we de�ne the following quantities�

a 	 V �Yi � Yi���� i 	 �� ��� �k�

b 	 V �Yi 
 Y�k�i���� i 	 �� ��� k�

Then

r 	 �
a� b

��k 
 ��b� a
�

��



With this we are able to choose V and W such that r 	 W�V � Furthermore�

we can now choose a discrete set for � Since r 	 �� � ��� it is convenient to

choose a discrete interval of  about r� This interval can then be updated as

new observations are made using the same approximation as before�

� Example

The following data are the ECG measurements� taken every �ve seconds� from

a patient undergoing a skin transplantation� Monitoring did start when the

�rst steps in preparing the patient were �nished and anesthesia was completed�

The �rst window will show the ECG measurements with the �ltered values of

the ��filter� The second window displays the estimated cumulative probability

that a changepoint did occur during the observation window� Furthermore we

will display the probability of an outlier at the actual timepoint�

We see from the �gure� that at observation ��� an alert is given� This coincides

with the beginning of the �rst skin cut� At ��� we did introduce an outlier� who

was detected by the N � filter� At ��� the operation starts� Since the patient

did react to this� the anesthesiologist did intervene� The weak changepoint at

��� was in this stabilization period� From �
� to ��� we have a stable phase�

At ��� we do observe a weak changepoint� This was to the end of the operation

��



and the anesthesiologist did begin the weak up phase� At ��� the patient did

awake�
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