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Cross�sectional Analysis of Longitudinal Data

with Missing Values in the Dependent Variables�

A Comparison of Weighted Estimating Equations

with the Complete Case Analysis

C� Kastner � A� Ziegler ��

August ��� ����

Abstract

Inference for cross�sectional models using longitudinal data can be
drawn with independence estimating equations �Liang and Zeger� ����	

Many studies su�er from missing data
 Robins and coworkers proposed to
use weighted estimating equations �WEE	 in estimating the mean struc�
ture� if missing data are present in dependent variables
 In this paper
the WEE are compared with complete case analyses for binary responses
using simulated data
 Our results are in accordance with the theoretical
�ndings of Robins and coworkers
 The WEE yield consistent estimates�
even if the data are missing at random


Keywords� Correlated Data Analysis� Generalised Estimating Equations� Horvitz�

Thompson Estimation� Marginal Models� Missing Data� Weighted Estimating Equa�

tions

� Introduction

Several approaches for the analysis of cross�sectional models using longitudinal
data have been proposed� Application of these marginal models is very popular
in the literature� The Generalised Estimating Equations �GEE� Liang and Zeger�
��	
� belong to this class of models� The term �generalised indicates that the
association between the responses is modelled in addition to the mean structure
which is of primary interest� If the association between the responses is not
modelled but taken into account� the corresponding Estimating Equations �EE�
are termed Independence Estimating Equations �IEE��

In this paper we restrict our attention to the IEE and do not consider the
GEE because Fitzmaurice ������ and Mancl and Leroux ����
� have shown that
the IEE are as e�cient as GEE in various situations though the association is
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neglected� For example� if only baseline covariates are included so that all
explanatory variables are constant within one observational unit� the IEE are
as e�cient as speci�c GEE� if the true correlation is equal between any two
sample time points�

Furthermore� the GEE underly important implicit assumptions that are re�
quired for the validity of this method� First� the association needs to be correctly
speci�ed� Otherwise� the association parameters involved might be subject to
uncertainty of de�nition which can result in a breakdown of the asymptotic
properties of the estimators �Crowder� ������ Second� the mean structure needs
to be correctly speci�ed as a function of all�probably time point speci�c�
explanatory variables� Otherwise� the resulting estimator might be biased �Pepe
and Anderson� ������ These implicit assumptions do not apply to the IEE�

Standard or advanced statistical methods are designed for complete data
sets� However� many studies su�er from missing or incomplete data so that sta�
tistical analyses become more complicated� This also applies to models that may
be analysed by the IEE� Approaches that ignore systematical di�erences between
complete and incomplete clusters may be biased �Little and Schenker� ������
Two forms of item non�response are commonly distinguished� non�response in
explanatory variables �in the X�� and non�response in dependent variables �in
the y�� In this paper we focus on missing data in dependent variables� Explana�
tory variables of interest are assumed to be completely observed� For simplicity�
we restrict our attention to monotone missing data patterns� that is� once a
subject leaves the study� it will never return�

One approach for solving the IEE in presence of missing dependent data
received considerable attention �Robins� Rotnitzky and Zhao� ����� Robins and
Rotnitzky� ������ The basic idea of this approach is to introduce weighted
estimating equations �WEE�� The weights are inversely proportional to the re�
spective response probabilities� They are estimated by surrogate variables for
the response� Thus� the resulting estimators belong to the class of Horvitz�
Thompson estimators� The WEE may be applied to data missing at random in
Laird�s ���		� sense�

The aim of this paper is a comparison of the WEE approach with the
�classical complete case analyses using the IEE for simulated data� Both
approaches are implemented in the program MAREG �Kastner� Fieger and
Heumann� ������

The paper is organised as follows� In the next section we derive the IEE
assuming complete observations� In section � missing data mechanisms for
dependent variables are discussed� In section � we consider an approach for
estimating the response probabilities� These estimates are used in the WEE of
Robins et al� ������ which are introduced in section � assuming a monotone
missing data mechanism� The use of the IEE and the WEE in the presence of
missing response data is illustrated in section 
� It is especially shown that the
WEE yield consistent parameter estimates� if the non�response is ignorable in
the sense of Laird ���		��

� The Independence Estimating Equations

Let yit be a vector of responses from n clusters with T observations for the ith
cluster� i � �� � � � � n� For each yit several covariates xit are available� The data
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can be summarized to the vector yi and the matrix Xi � �x�i�� � � � �x
�

iT ��� The
method can be easily extended to unequal cluster sizes Ti� The pairs �yi�Xi�
are assumed to be independently identically distributed� We focus on marginal
models so that we do not consider models including state dependence or duration
dependence� Furthermore� we consider cross�sectional models with longitudinal
data� i�e� we assume E�yitjxit� � E�yitjXi�� However� the association within a
cluster needs to be taken into account�

For independent observations� the Generalized Linear Model �GLM� allows
�exibility in modelling mean and variance structures� In GLM� the mean struc�
ture is given by

E�yitjxit� � �it � g�x�it��� ���

where g is a non�linear response function and � is the p�� parameter of interest�
g�� is termed link function� In most GLM mean and variance are functionally
related� vit � V �yitjxit� � h��it�� where h is the variance function� In general�
a distributional assumption motivates the link and the variance function of the
GLM� If yit is a binary variable� the connection between yit and xit may be
established e�g� via the logit link so that �it � E�yitjxit� � logit�x�it��� The
variance function is usually chosen as vit � �it�� � �it� in this situation� The
parameter vector � is estimated by solving the IEE

u��� �
�

n

nX
i��

D�

iV
��
i �i �

�

n
D�V��� � � � ���

where �i � �i��� � g�Xi�� is the vector of the mean structure� Di � ��i���
�

is the diagonal matrix of �rst derivatives� Vi is the diagonal matrix of the
variances Vi � diag�vit� and �i � yi��i� D and � are the stacked Di matrices
and �i vectors� respectively� Finally� V is the �block� diagonal matrix of the Vi�

An analytic solution of ��� exists for the linear model with normal distributed
response variables� In general� ��� are solved iteratively by a Fisher�scoring
algorithm or iterative weighted least squares �IWLS�� If the observations are

indeed independent� the estimator ��IEE is consistent and asymptotically normal
with variance matrix

Cov���IEE� � �D�V��D��� ���

under suitable regularity conditions�
For correlated observations� however� the true variance matrix Cov�yijXi� �

�i �� Vi is not diagonal� Thus� the use of ��� generally leads to biased esti�
mates� Therefore� Zeger� Liang and Self ���	�� proposed to use the sandwich

information matrix which yields consistent estimates of V ���IEE�� even if the
dependent variables within a cluster are correlated

d
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�Di is the estimated Fisher information matrix� The middle ma�
trix on the right hand side of ��� consists of the estimated crossproducts of
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�rst order derivatives� also termed estimated outer product gradient �estimated

OPG�� with ��i � �yi � ��i��yi � ��i�
�� The variance estimator of ��� is also

termed robust variance estimator because it is a strongly consistent estimator
of V �yijXi� regardless of the true variance structure�

� Missing Data Mechanisms

As noted in section �� we assume that the explanatory variables of interest Xi

are observed completely� dependent variables yit may be missing� In di�erent
applications the missing data mechanism can be explained by additional vari�
ables that are not of the investigator�s interest for the mean structure� Suppose
that surrogate variables zit are observed in addition to yit� if yit is observed�

Let wi� � �vec�Xi�
�� yi�� z

�

i��� be comprised of covariates Xi and the ob�
servations of yi� and zi� prior to follow�up� We assume that yi� and zi� are
observed completely� If Xi are not baseline covariates� they either have to be
�xed or their values may not depend on the dependent variables� Furthermore�
we set wit � �yit� z

�

it�
� for t � �� � � � � T� As pointed out by Robins et al� �������

this notation is redundant� if zi� is included in the explanatory variables� Bars
are used to indicate variables including the whole history except the current
observation� For example� �wit � �w�

i��w
�

i�� � � � �w
�

i�t����
��

Let rit denote the missing data indicator� such that rit � �� if the pair
�yit� zit� is observed and rit � �� if �yit� zit� is not observed� In the following we
assume a monotone missing data pattern so that ri�t��� � �� if rit � � for any
t� This yields P �ri�t��� � �jrit � �� �wi�T���� � �� riT � � indicates that the
data of cluster i are completely observed�

We assume that the data are missing at random �MAR� in the sense of Laird
���		�� Then

P �rit � �jri�t��� � �� �wit� yit� � � � � yiT � � P �rit � �jri�t��� � �� �wit� ���

holds for a monotone missing data pattern� Equation ��� implies that the re�
sponse probability at time t only depends on observations prior to t� Further�
more� �wis� s � t does not contain any information on the response probability at
time t� The idea of the approach proposed by Robins and coworkers is similar to
the classical Horvitz�Thompson approach �Horvitz and Thompson� ����� where
the observations are weighted by their inverse inclusion �observation� proba�
bility� Therefore� we assume that the response probabilitiy �it for each study
subject remaining in the study is bounded away from ��

�it � P �rit � �jri�t��� � �� �wit� � 	 � �� t � �� � � � � T �
�

We do not restrict our attention to data that are missing completely at random
�MCAR� in Laird�s ���		� sense which is equivalent to

P �rit � �jri�t��� � �� �wit� yit� � � � � yiT � � P �rit � �jri�t��� � ��Xi� ���

for monotone missing data patterns�

� Estimation of Response Probabilities

The response probabilities �it��� � �it��jri�t���� �wit� may depend on an addi�
tional parameter � that is modelled as a function of �wit and ri�t���� Note that
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�wit includes Xi and �yit� If the response probabilities �it��� are unknown� � has
to be estimated� A natural choice for estimating � is the logit link� For high
response probabilities� however� the compound�log�log link should be preferred�
If no observation is missing at a speci�c time point t� �it need not be estimated�
In this situation� �it � �� If at least one obervation is missing and present�
respectively� for every time point� an estimate �� can be obtained by maximizing
the normed partial Likelihood function L��� � �

n

Qn

i�� Li���� where

Li��� �

TY
t��

�
�it���rit ��� �it��� ��rit

�ri�t���

� �	�

In �	� the contribution of cluster i at time t to the partial Likelihood function
is not a constant� if ri�t��� � �� The maximum is found by solving the EE of a
GLM for binary data u��� � �L������� � �� The contribution of cluster i to
the score vector for � is given by�

ui��� �
� lnLi���

��
�

TX
t��

��it
��

�
�it��� �it�

�
��

�rit � �it���ri�t���� ���

��� can be simpli�ed� if the natural link �it��� � logit�� �k� �wit�� is used for
some known vector function k�

ui��� �
TX
t��

�rit � �it���ri�t��� k� �wit�

If the functional relation between �it and � is correctly speci�ed� the asymptotic
variance matrix of

p
n��� � �� is given by the inverse of V� � V �ui���� �

E�ui���ui������
De�ne �
it � �
it��� � �i���� � � � � � �it��� which may be interpreted as the

conditional probability of observing cluster i at time t given the entirely observed
history �wit� if the data are MAR� These conditional probabilities multiplied with
their observational status are collected in a diagonal matrix �i � �i��� with
elements rit��
it�

� Weighted Estimating Equations

Equations ��� and �
� are the fundamental assumptions required to identify the
marginal mean E�yitjXi�� They imply

E�yitrit��
itjXi� � E�yitjXi�� ����

���� is the key result in order to formulate the WEE� The validity of ���� is easily
shown� if the data are MCAR� In this situation� rit and yit are independent so
that the left hand side of ���� can be factorized to

E�yitrit��
itjXi� � E�yitjXi�E�ritjXi���
it� ����

Finally� E�ritjXi� � �
it because the missing data pattern is monotone� The
more complex case of data that are MAR is discussed in detail by Robins et al�
������� The WEE are similar to the IEE ���� The WEE rest upon the left hand
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side of ����� while the IEE are based on the right hand side of ����� The residuals
�i are weighted by �i���� the inverse observation probability multiplied by the
actual observation status� This weighting implies that unobserved dependent
data have no in�uence in the WEE� Using the notation of section �� an estimator
��WEE is the solution of the WEE

u��� ��� �
�

n

nX
i��

ui��� ��� �
�

n

nX
i��

D�

iV
��
i �i�����i � �� ����

Robins et al� ������ Appendix A� have shown that ��WEE is asymptotically

normal under suitable regularity conditions� The mean of ��WEE is �� Its
variance matrix can be consistently estimated by the positive de�nite variance
matrix d

V ���WEE� � A���� �����C���� ���A���� ������ ����

where

A���� ��� �

nX
i��

�D�

i
�V��
i �i���� �Di

and

C���� ��� �
nX
i��

dresidi dresid
�

i�

�A���� ��� is the estimated Fisher information matrix� It is symmetric because
�Vi and �i���� are �block� diagonal matrices� C���� ��� is similar to the estimated
OPG� However� it is more complex than the estimated OPG of the IEE ���� The

EE ���� depend on an additionally estimated nuisance parameter ��� dresidi �dresid�ui���� ����ui���� is the estimated residual of the linear regression of ui���� ���
on ui�����

dresidi � ui���� ��� �
� nX
i��

ui���� ���ui�����
�� nX

i��

ui���� ���ui���� ����
�
��

ui�����

����

���� can be obtained by application of the chain rule together with standard
Taylor series expansion yields �Robins et al�� ������

Robins and Rotnitzky ������ have shown that prior knowledge concerning
the response probabilites does not provide additional information� if �i� the mean
structure is correctly speci�ed� �ii� the data are MAR and �iii� the response
probabilities are � �� �iii� ensures that �it can be estimated from the actual
data set� This results also implies that the stronger condition for the non�
response process�that is that the data are MCAR�does not provide additional
information�

� Illustration

In a simulation study using binary dependent variables we compare the prop�
erties of the WEE estimator with the IEE estimator that uses the information






of all observations �available case� AV� and the IEE estimator that uses the
information of all clusters without missing data �complete cluster� CC�� The
IEE estimator of the simulated data before generation of missings �full data
estimator� FD� is used as reference�

The simulation proceeds as follows� First� the complete data set without
missing observations is generated� Second� observations are deleted from the
complete simulated data set using pre�speci�ed missing data mechanisms� Sev�
eral approaches for simulating correlated binary data have been proposed �Park�
Park and Shin� ���
� Gange� Linton� Scott� DeMets and Klein� ����� Lee� Scott
and Soo� ����� Emrich and Piedmonte� ������ We do not �x the marginal mo�
ments in our approach but base our simulations on the theoretical work of Fitz�
maurice and Laird ������ which requires speci�cation of conditional log�odds
ratios� Given the conditional log�odds ratios� the joint multinomial distribution
of the response patterns given the explanatory variables can be computed� The
joint distribution is used to determine the marginal moments� Random numbers
are generated using the DRAND�	 generator� which is supplied by SunOS ���
as a C�library function �SunOS� ����� man Pages��C��� The seed is set using the
system time for each experiment� The WEE and IEE are solved by MAREG
�Kastner et al�� ������

We simulate ��� clusters with t � �� � � � � � each� t � � is used as baseline and
is assumed to be always observed� We simulated two di�erent marginal models�
In both models� the response depends on an intercept and a dummy�coded
treatment variable� However� in the �rst model the intercept and the treatment
e�ect are time�constant� while in the second model the treatment e�ect is time�
varying� Furthermore� we used two di�erent models for the dropout�process�
In the �rst model the response probability at time t depends on a constant so
that the data are MCAR� In the second model the response probability at time
t depends on a constant and the reponse at time t � �� This implies that the
data are MAR� In both cases the parameters were chosen so that the dropout
rate was about ��!� ��! and ��! at t � �� � and �� respectively� Missing
data were generated using the logistic function� Finally� two di�erent degrees
of association are used� The �rst yields a small correlation of about ���� while
the second results in a high correlation of about ����

Table � shows mean and standard deviations �in brackets� of the estimated
parameters of the model with time�constant treatment e�ect� The theoretical
parameters are �intercpt � ���� and �treat � �� The drop�out process was
modelled assuming �intercpt � �� if the data are MCAR� For data that are MAR
we used �intercpt � � and �y�t���

� � as parameters�
Table � shows the results in the model with time�varying treatment e�ects�

Here we assumed �intercpt � ����� and �treat � �� ���� � and � at t � �� �� �
and �� respectively� The same parameters as in the cluster�constant case were
chosen for modelling the drop�out process�

Our results are similar to those obtained by Robins et al� ������ and Robins
and Rotnitzky ������ for continuous dependent variables� The bias is not so
pronounced for our simulations that are based on binary response variables com�
pared with the continuous case used for illustration by Robins et al� ������� This
�ndings can be explained by the naturally lower variation of binary variables
compared with continuous data�

As long as the data are MCAR� all approaches yield consistent parameter
estimates� However� if the data are MAR� the IEE estimator using the AV or
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the CC approach yield biased parameter estimates� while the WEE remains con�
sistent� The bias increases with the correlation of the responses� As expected�
the FD estimator has the lowest standard errors across all models� while the CC
estimator has the largest standard errors� Interestingly� the AV estimator and
the CC estimator can lead to quite contrary results� For example� in the model
with time�dependent treatment e�ect and high correlation� the mean parame�
ter estimates of �treat� are ����	 and ��	�� for the AV and the CC approach�
respectively� Here� the AV approach leads to an overestimation� while the CC
approach leads to underestimation of the true treatment e�ect�

Dropout  Parameter FD WEE AV CC

MCAR ��� intercpt ����� ����� ����� ����

���
�� ������ ������ ������

treat ����� ����� ����
 �����
������ ������ ������ ������

MCAR ��� intercpt ����� ����� ����
 �����
������ ������ ������ ���	��

treat ���� ���	 ���� ����

������ ������ ������ ������

MAR ��� intercpt ����� ����� ����� �����
������ ������ ���	
� ����	�

treat ����� ����� ��	� ��
�
������ ���
�� ������ ���	��

MAR ��� intercpt ����� ����� ����� ����
������ ���
�� ������ ������

treat ����� ����� ���� ���

������ ������ ������ ������

Table �� Marginal model with cluster�constant covariates� FD� full data� WEE�
weighted estimating equations� AV� available case� CC� complete clusters

	



Dropout  Parameter FD WEE AV CC

MCAR ��� intercpt ����	 ����
 ����� �����
���
�� ���	�� ���	�� ������

treat� ����� ����� ����	 �����
����
� ������ ������ ������

treat� ���� ���	 ���� ���

������ ������ ������ ������

treat� ����� ����� ����
 �����
����	� ������ ������ ������

treat� ���	 ����� ����� �����
������ ����	� ����	� ������

MCAR ��� intercpt ����� ����	 ����	 ����

������ ������ ������ ���	��

treat� ����� ����� ����� �����
���	�� ����
� ������ ���
��

treat� ���� ���	 ���	 ����
����
� ������ ������ ����	�

treat� ����� ����� ����� ����	
������ ������ ������ ���
��

treat� ����� ����� ����� �����
������ ������ ������ ������

MAR ��� intercpt ����	 ����� ����� �����
������ ����
� ������ ������

treat� ����� ����� ����� ����
������ ���
�� ������ ������

treat� ���� ���
 ���� ����
������ ����	� ������ ����	�

treat� ����� ����� ����� ���
�
������ ����	� ������ ����
�

treat� ����	 ����� ����� �	�

������ ����	� ������ ������

MAR ��� intercpt ����� ����
 ����� ����
������ ���
�� ������ ����	�

treat� ����� ����� ����	 ���
�
���		� ������ ������ ���	��

treat� ���� ���
 ���� ��
	
����
� ������ ������ ���	
�

treat� ����� ����� ����� �����
������ ����
� ���
�� ������

treat� ����� ����� ����	 �	��
���	�� ������ ���	
� ������

Table �� Marginal model with time�varying covariates� FD� full data� WEE�
weighted estimating equations� AV� available case� CC� complete clusters
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