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SUMMARY

We are concerned with the asymptotic theory of semiparametric estimation
equations. We are dealing with estimation equations which have a parametric
component of interest and a functional (nonparametric) nuisance component.
We give sufficient conditions for the existence and the asymptotic normality of
a consistent estimation equation estimator for the parameter of interest. These
conditions concern the asymptotic distribution of the estimation function and of
its derivative as well as the effect of the functional nuisance part in the estima-
tion equation. In order to treat the nonparametric component we introduce a
general differential calculus and a general mean value theorem. For the nonpara-
metric part in the estimation equation we distinguish two cases: the situation of
a (classical) nuisance parameter and the case of a so called working parameter.
As a special case we get regularity conditions for estimation equations with fi-
nite dimensional nuisance or working parameter. As an example we present the
semiparametric linear regression model.

Some key words:  Asymptotic normality; Consistent estimation equation esti-
mator; Hadamard differentiation; Nuisance parameter; Semiparametric estima-
tion equation; Semiparametric linear regression; Working parameter.

1 INTRODUCTION

The starting point of our investigations is an estimation equation of the form
U,(0,a) = 0. It contains a finite dimensional parameter 6 being of primary
interest and a functional parameter a. The latter may play the role of a nui-
sance parameter (in the classical sense) or that of a working parameter (coming
into statistical use with Liang and Zeger, 1986). A nonparametric estimator &,
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is assumed to be given showing a certain kind of limit behaviour, the special
type of the estimator being of no regard. For estimators 0, of 0 which solve
(asymptotically) the estimation equation we will prove consistency and asymp-
totic normality.

A special feature of the present paper is a consequent functionally orientated
approach. The Taylor method—well established for finite dimensional spaces—is
carried out in functional spaces and is employed in proving the asymptotic results.
This program seems to be more direct and flexible than that of Severini and Wong
(1992) and others, but the price are more involved regularity conditions. It bears
some connections with van der Vaart and Wellner (1996, sec. 3.3). To perform
this program an appropriate differential calculus is presented in sec. 2. Hadamard
derivatives—a notion between Fréchet and Gateaux derivatives—turn out to be
most suitable to prove a mean value theorem, which will be our main tool of
analysis. Some probabilistic notations in normed spaces can be found in the
appendix.

A further characteristic of the present approach is the strict separation into
the field of inference on one side and of statistical modelling on the other: The
semiparametric inference in sec. 3 is independent of model assumptions and is
based on conditions on the asymptotic behaviour of U,,, U/ and &,. It is general
enough to allow (i) matrix norming (ii) unequal limit matrices in connection
with U, and U/ (iii) inclusion of external variables (iv) dependencies in the
sequence of observations. The proofs are sketched only, their complete versions
will be given in a future paper by Wellisch.

In sec. 4 we demonstrate how the techniques work in the special case of a
semiparametric linear regression model for possibly dependent response variables.
For more substantial results on the model side we have to refer to a forthcoming
paper. In the case of a finite dimensional working parameter « our technique is

similar to that of Liang and Zeger (1986), Murphy and Li (1995).

2 DIFFERENTIAL CALCULUS IN TOPOLO-
GICAL LINEAR SPACES

2.1 M-derivatives
Let (F,O(FE)), (F,O(F)) be topological R-linear Hausdorff spaces (T'LS),
a € A€O(F)and f: A— F.

Definition: [ is said to be differentiable at a in the direction of x € E if the
limit
fi(e) i= lime [fla + ex) — fa)

exists. If this is the case, we write f € D(a, F;— ) and f/(x) € F will be
called the directional derivative of f at @ in the direction of z. We introduce the



following definition
D(a,F;— E):= () D(a,F;— ).
z€E

Let M be a class of subsets of F such that every singleton belongs to M. Let
L(E, F) denote the continuous and linear mappings from F to F.

Definition:  f is M-differentiable at « if there exists u € L(F, F) such that

lime 'r(f,a,ex) =0

e—0

uniformly with respect to @ € M, for each M C M. The remainder r(f,a,x) is
defined by

r(fya,x) = fla+x) = fla) —u(z).
We write f € Dam(a, F') and the mapping v = f'(a) € L(F,F) is called the
M-derivative of f at a. A mapping f is called M-differentiable in A if it is
M-differentiable for all ¢ € A and we write f € Dp(A, F).

Definition:

(i) When M is the class of all bounded subsets of E, f is said to be Fréchet
differentiable at a. We write f € Dg(a, F).

(i) When M is the class of all sequentially compact subsets of E, f is said to
be Hadamard differentiable at a. We write f € Dg(a, F).

(iii) When M is the class of all single point subsets of £, f is said to be Gateaux
differentiable at a. We write f € Dg(a, F).

Lemma 2.1.1 Dx(a,F)C Dy(a,F) C Dg(a, F) C D(a, F;— E).

2.2 Fundamental properties

Lemma 2.2.1 Assume that £, FF € TLS, a,2 € A€ OF), f€ Dmla,F)
with the M-derivative f’(a) of f at a. Then we have

fal@) = f'(a)(2).
By the lemma we see that the M-derivative is uniquely determined.

Lemma 2.2.2 (chain rule) 1If f € Dy(a, F) and g € Dg(f(a), ) where
g: A — GeTLS and f(a) € Ay € O(F), then

gof € Du(a,G)and (go f)(a) =g'(f(a)) o f'(a).

Fréchet differentiation has the chain rule (composition) property, too, but not
Gateaux differentiation.



Proof:  See Yamamuro (1974, p. 11). O

Definition: (partial derivatives) Let Ey, FEy F € TLS, E = FE; x Es,
a = (a1,az) € A, an open subset of F, and f: A — F. We consider classes M;
of subsets of F; (¢ = 1,2) as in section 2.1 and put M := {M; x My : M; € M,
(:=1,2)}. f is said to be partially M-differentiable at « in the first variable
if the mapping a1 — f(x1,az2) of Ey into F is M;-differentiable at a; and, if
this is the case, the derivative is denoted by 0 f(a1, az). The partial derivative
0>2f(ay,ay) of f at a in the second variable is defined similary.

Note that by definition 0; f(a1,as) € L(F;, F)) (i = 1,2).

Lemma 2.2.3 If f € Dum(a, F) then 0;f(ayr,az2),7 = 1,2, exist and
f/(alv az)(1,x2) = 01 far, az)(x1) + 02 f (a1, az)(x2).

Proof:  See Yamamuro (1974, p. 37). O

2.3 Mean value theorem

For a,b € K we introduce the notation
[a,b] :={x e F:3te[0,1]:x=a+1b—a)}.

Theorem 2.3.1 Assume that £ € TLS, F' € LCS (locally convex Hausdorff
space), [a,a + 2] C A€ O(F) and f € D(A, F;— F). Let F'* be the dual
space of F. Then for any a* € F™* there exists £ € (0,1) such that

v [fla+x) = fla)] = 2"[f'(a + Ew, )],

Proof: ~ We define the mapping

g(&) =2 [f(a+ €x)], [0,1] — R.

A calculation of the ordinary difference quotient shows that the mapping ¢ is
differentiable in [0,1] and that the equation

9'(&) = "[["(a + &, )]
is valid for some ¢ € [0,1]. Applying the mean value theorem for mappings from
R to R to g(1) — g(0) we conclude the proof. O

In our situation of estimation equations we use the mean value theorem in the
following way.

Corollary Let ¥ € TLS, F =R%d e N, [a,a+2] C A€ O(F) and
f € Dm(A, F). Then there exists & € (0,1), 2 =1,...,d such that

[fla+2) = fla))i = [f'(a + &z)(2)]i



for:=1,...,d, where the index ¢ denotes the i-th component of the vector.

Proof:  Using lemma 2.2.1 and the fact that the coordinate projections are ele-
ments of L(R? R) we obtain the corollary directly from the mean value theorem.

U
Notation: Let K € TLS, F=R% & €(0,1) for:=1,...,d. We intro-

duce the abbreviation

Flat€a)(e) = pro fl(ata)(e)+pso flat&a)(@) 4.+ pao [l &ar)(a)
where py,...,ps denote the d coordinate projections, which for ¢ = 1,...,d are
defined by the d x d-matrices

e .o T
pi.—ez‘ei7

with e; the ¢-th unit vector. Obviously, the mapping
d
Flat €)=Y pioflatba): B F 0
=1

is continuous and linear. Further we identify a mapping f € L(R? R9) with its
representing d X d—matrix [’ and write

fley=F-az=f-a. (2)

In particular for f € L(R,R) we write f(x) = f -« and we identify f with a
suitable real number.

3 SEMIPARAMETRIC ESTIMATION EQUA-
TIONS

3.1 Estimation function

Let © be an open subset of R? and A an open subset of 7' € T'LS. We consider
an estimation function

U,:0x A— R (3)

For each (6,a) € © x A the mapping U, (0, ) is a measurable function of n
random elements Xy,..., X,,. With an estimator

an(0;X1,..., X)) =0,:0 = A

we can transform (3) to an estimation function which depends only on the pa-
rameter of interest # € ©® and which is, for every § € 0, a measurable function
of the n random elements Xy,..., X,,. With the sequence

Fi1O 50 x A0 (0,6,00))
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of mappings we obtain the estimation function
(Upofn): 0 — R (4)

For the functional part a € A in the estimation equation we distinguish the case
of a nuisance parameter and the case of a working parameter (cf. Liang and Zeger
(1986)). Both kind of parameters (nuisance or working) are unknown variables in
the estimation equation. A nuisance parameter is connected with the underlying
Xq,...,X,, in the sense that it parametrizes their distribution: we introduce the
notation Py, for the underlying distribution in this case. A working parameter
does not primarily parametrize the underlying distribution, and we write Py. It
is connected with a given sequence &, of estimators (mostly the Pg-limit thereof,

cf. Crowder (1995)).

3.2 Expansion by the mean value theorem

We assume that the estimation function U, and the estimator a, satisfy the
conditions on differentiability

U, € Dg(© x AR, n > 1 (D1)

G, € Dy(0, A),n > 1. (D2)

Theorem 3.2.1 Let 6,60, € © with the property [0, 6] C O. Let o, &, (6o) € A
with [a, @, (00)] C A for n > 1. Then the vector equation

(Un 0 fa)(0) = Un(bo, @)
+ 02U (0o, ;) (@ (6o) — @) (5)
+ [0 (07, an(07) + 02U (07, a0 (67)) 0 @, (67)] - (6 — bo),

where 07 := 0+ (00— 0), & € (0,1) and o] := a,() + & - (a —Ga(0o)), & €
(0,1), is valid. Note that we have used the notation (1) and the interpretation
(2) in the third term of the right hand side of (5).

Proof:  Applying the mean value theorem to the estimation function (4) we get
the vector equation

(Un o fu)(0) = (Un o fu)(00) + (Un 0 f)'(07) - (0 = bo). (6)

Applying the mean value theorem again to the first term of the right hand side
of (6) and lemmata 2.2.2 and 2.2.3 to the second term we obtain the equation

(5). O



3.3 Sufficient conditions for the existence of a consistent
EE-estimator

Definition: A sequence 6, = gn(Xl, ooy Xpn)yn > 1, of d-dimensional random
vectors is said to be a consistent estimation equation estimator (EEE) for 6 of
the estimation equation U, () = 0, if for every § € © C R © open, and every
e > () the convergence

P (

0, — 0] < €,U,(0,) = 0) — 1

holds for n — oc.

Let I', =T1.(0,a),n > 1, be a sequence of regular d x d-matrices with I';, — 0 for
n — oo (each element). With N, () := {’y eRY: ;T (- 0)‘ < 5} ,8 >0,

we denote a neighbourhood of § € 0. In the following we are using the
d x d—matrix

Wo(0;) := WU (07, 6,(07)) + 02U (07, 6,(07)) © @, (6). (7)

cf. (1) and (2).

First we want to consider the case of an estimation equation with a nuisance
parameter. We assume that the conditions (D1) and (D2) on differentiability
are satisfied. Further we present three regularity conditions for the estimation
function U,, and the estimator a,,.

For all (f,0) € © x Aand alln > 1,
[a,(0),a] C A
holds as well as the following:
The sequence I',, U, (0, @), n > 1, is Py ,-stochastically bounded.

There exists an @ > 0 and, for all € > 0 and s > 0, an ny > 1 such that for

all n > nyg

Ps (yT r, w, (HZ)ng < —a, V0 € N,s0),y € R, ly| = 1) > 1 —e

The sequence T', U, (0,a%)(a,(0) — ), n > 1, is Py ,-stochastically
bounded, for all o € [a,(0), a].
Note that in the conditions W and A the notation (1) is used.

Theorem 3.3.1  If the conditions ¢/, W and N are fulfilled, then there exists a
consistent EEE 6,,,n > 1, for § € © , of the estimation equation U, o f, () = 0.

Proof: ~ We are following the proof of Pruscha (1996, p. 222-224), where the
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proof of existence of an EEE is done for an estimation equation without a nuisance
parameter. The new idea in the situation of a functional nuisance parameter is
the expansion by the mean value theorem for Hadamard differentiable mappings.
Due to the nuisance parameter we get the extra term in (7). The additional
regularity condition NV is used to keep the term I',05U, (8, ) (&, (0) — a) small.
O

In the situation of a working parameter we get a similar result. Again we assume
that the conditions on differentiability (D1) and (D2) are satisfied. In addition
to the existence of the estimator &, (f) we assume that there exists some o =
a(f) € A with the following property:
For all # € © and all n > 1,

[, an(0)] C A

holds as well as the regularity conditions U,,, W,, and N,,. Hereby, U,,, W,,, N,
are the same as U, W, N, except that Py, is replaced by P,.
Arguing like in the case of a nuisance parameter, we get the existence result.

Theorem 3.3.2 AIf the conditions U,,, W,, and N,, are fulfilled, then there exists
a consistent EEE 6,,n > 1, for § € O, of the estimation equation U, o f,,(6) = 0.

Remarks:

(i) The proof of existence follows Billingsley (1961), Feigin (1975) and others.
But we are concerned with the more general case of an estimation equation
with functional nuisance or working parameter.

(ii) We can even prove the stronger I'-T-consistency property of the estima-
tor gn: The sequence F;T(gn —0),n > 1, is Py ,-stochastically resp. Pg-
stochastically bounded.

3.4 Sufficient conditions for the asymptotic normality of
a consistent EE-estimator

For the asymptotic normality of a consistent resp. I'-7-consistent EEE 0, we
need stronger conditions than the regularity conditions in section 3.3.

First we want to consider the case of an estimation equation with nuisance pa-
rameter. We assume that there exists an estimator a,(0) for a € A which fulfills
the condition

[an(0),a] C A, forall (§,a) € ©® x A and all n > 1.

Again we suppose that the conditions (D1) and (D2) on differentiability are
satisfied and that the following conditions hold for all (6,«) € © x A and for

n — oQ.



DU (0, 0) =225 A0, 5(6, a)),

where 3(6, ) denotes a positive definit d x d-matrix, which can functionally
depend on the parameter # and «.

LW, (01T 2 B0, o),

for all sequences of d-dimensional random vectors 6% which are I'-7-consistent,
where B(6, ) denotes a positive definit d x d-matrix, which can functionally
depend on the parameter # and «.

Ty 05U (0, %) (@ (8) — ) — 22 0,

for all sequences of random elements ¢ which have the property

ar € la,(0),al for all n > 1.

n

Note that in the conditions W* and A* for every component of the vectors there
can be different arguments 67 resp. o, (cf. notation (1)).

Lemma 3.4.1 The implications
UW=u, wW=w N =N

are valid.

Lemma 3.4.1 and theorem 3.3.1 show that under the conditions &*, W* and N*
there exists a I'T-consistent EEE.

In the following lemma we present sufficient conditions for the regularity condition
N* concerning the estimator &,(#). For that purpose we restrict the space T to
be a normed R-linear space.

Lemma 3.4.2 Let (7, ||.||r) be a normed R-linear space. Fach of the following
two conditions (a) and (b) is sufficient for the condition A™*. It exists a sequence
Jn,n > 1, of a.s. continuous, linear and bijective random mappings from 7" to T
with

(a) a,(0),n > 1, is J~'-consistent
L0500, 0% ) 0 J, —25 0,

Pe,a

(b) S (@n(0) — a) ——

n

and

I,0U.(0,a) 0 J,,n > 1, is P-stochastically bounded.



Theorem 3.4.1  If the conditions &, W* and N are fulfilled, then for a I';7-
consistent EEE 6,,,n > 1, of § € O the convergence in distribution

T=7(9, — 0) —2% 5 A0, B-1(0,0)S(0, 0)B~1(0, )

holds for n — oc.

Proof:  Let 6 > 0 be so small that the neighbourhood Ng(#) lies completely in
©. We introduce the sequence of sets

M, := {0, € Ns(0)},n > 1.

Note that on the sets M, we have [gn, 0] C O, further the convergence

Pe,a
Ly, ——

is valid. The expansion by the mean value theorem, cf. (5), yields the vector
equation

g, (Un 0 fu)(0,) = (8)
Lag, Un (0, ) + 1ag, 02U, (0, 2 ) (60, (0) — @) + 1ag, W, (07) - (0, — 0).

Since the EEE 6, is I'-T-consistent the random sequence 07 is I'-T-consistent,too.
The equation (8) together with the conditions &*, W* and N'* and an argument
of the Crdamer type (cf. Pruscha (1996), Prop. B 3.9., p. 397) completes the proof.
O

For estimation equations with working parameter we can modify the conditions
like we have done in the section 3.3. Again, in addition we have to assume
that there exists a suitable @ = «(f) € A, which now replaces the nuisance
parameter. In this way we get analogous regularity conditions U, W2 and N
and an analogous asymptotic normality result.

Remarks:

(i) Alternatively, theorem 3.4.1 can be formulated with the expression ‘I';T-
consistent’ replaced by the term ‘consistent’. Then in the condition W*
‘T-T-consistent’ has to be replaced by ‘consistent’.

(ii) Finite dimensional nuisance resp. working parameters
aeR® ceN,

can be treated as special cases of our functional approach. The conditions
(D1) and (D2) on differentiability and the derivatives 02U, (8, ) and &/, can
be read with the usual differential calculus. Note that these derivatives can
be identified with suitable matrices and the composition of linear mappings
can be identified with multiplication of matrices.
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(iii) Finite dimensional working parameter are treated in Liang and Zeger (1986),
Crowder (1995), Murphy and Li (1995). Our regularity conditions, together
with condition (a) in lemma 3.4.2, correspond with the conditions given in

Murphy and Li (1995).
(iv) Let us consider the special estimator
ay = an( X1y, Xp)yn > 1, for a € A,

which does not functionally depend on 6 € ©. Here (7) is of the reduced
form

W, (07) = U0, a,).

(v) In the case of a working parameter and of a deterministic sequence a,, = g
of constants, N is trivially fulfilled if we choose a = ay.

(vi) The asymptotic covariance structure of the random vector F;T(gn —0) is in-
fluenced by the nuisance parameter resp. working parameter. Therefore we
get a direct effect of the nuisance resp. working parameter on the efficiency

of the EEE 0,,.

4 LEAST SQUARE ESTIMATION IN SEMI-

PARAMETRIC LINEAR REGRESSION MOD-

ELS

In this section we want to present an example which demonstrates the handling
of the regularity conditions U*, W* and N**. We consider the estimation equa-
tion which is derived from the least square approach in a semiparametric linear
regression model. For this example we compute the expressions of section 3 and
present sufficient conditions for the regularity conditions.

We are concerned with the model
K:Oé(XZ)—I-(QZZ—I-GZ ,izl,...,n,

where a € A denotes an unknown nuisance parameter in some function space and
6 € O C R, O open, denotes the real valued parameter of interest. The regressors
X; and Z; are real valued and possibly stochastic. Let ¢; denote a sequence of
noise variables, typically a sequence of i.i.d. random variables with mean zero.
The least square method yields the estimation function

1.8, a) = —%i(yi —a(X;)—0-7,)?,

11



and differentiation gives the estimation equation U, (8, «) = 0, with

dl(0,0) . | |
e =Y (Yi—alX) =0 2) - 2.

=1

U,(0,0) =

For the computation of the regularity condition A™* we need the partial derivative
QQUH(GO, Oéo) cA—=R

for (6o, ap) € © x A. A simple calculation shows that the mapping
U, (0g,00) : A =R, ar— — ZZi ~a(X;)
=1

fulfills the equation
r(U, (0o, ), ao, €x) = 0,

so the remainder term property (cf. definition in sec. 2.1) is fulfilled. Clearly the
mapping 0uU, (0o, o) is linear. To prove the continuity we have to specify the
function space and its topology.

1.  Let A = Cla,b] endowed with the topology induced by the sup-norm
|||l = max,<i<p |(?)]. In this case the regressors X;,2 = 1,...,n, are supposed to
take a.s. values in the interval [a, b]. Hence the unequality

102U (0o, ao)(@)] < > 1Zi] - [lall,
=1

holds; that gives the boundedness of the mapping 92U, (8o, ), and so the conti-
nuity of the mapping 02U, (6, ) is proved.

2. Let A be the space of all measurable mappings from R to R endowed with
the trace topology induced by the initial topology of the evaluation mappings

o f— f(t),feER tER

Note that this space is a R-linear Hausdorff space, but the space is not normable.
The subset A is open and due to the construction of the topology the functional
02U, (8o, ) is continuous.

For both choices 1. and 2. the condition (D1) on differentiability is fulfilled. Infact
the mapping

Up (B0, 00) < (0,0) = = (Zi - ol X5) + 0+ ZF),
=1
with (6p, ) € @ x A and (0, ) € © x A, is the M-derivative of the mapping

U,(0,0): (0,a) — Zn:(YZ —a(X;)—=0-7)- Z,.

=1

12



Further we assume that there exists a suitable estimator a,,, which satisfies the
condition (D2) on differentiability.

Now we present the regularity conditions and various sufficient conditions. Let
y(n),n > 1, be a norming sequence of real numbers, tending to zero.

ad N*: Condition N* has the form

(1) 32 Z: - (80(0, X:) — a( X)) —2 0, for all (,a) € © x A.

=1

Each of the following conditions (a) and (b) is sufficient for the condition N*.

(a) y(n)>ory | Z;| is Py o-stochastically bounded.
sup [@n(0, Xi) — a(X;)] —22 0.
1<i<n
(b) v(n)? Yr, | Z;| is Py a-stochastically bounded.
sup 3(n) [ (0. X7) — a(X5)| = 0,
1<i<n

ad W*: With interpretation (2) and the notation
o 1= & (02)(1) € A,

(7) can be written as

Wn((%;) = — ZZZQ — ZZZ . Oél(XZ').
=1 =1

Now we can formulate the regularity condition W* as follows:

032 =Y 2 (X)) (0, ),

=1

for all (6, ) € © x A and for all sequences 8%, n > 1, which are v(n)~!-consistent.
Here B(0,«) denotes a positive real number functionally depending on the pa-
rameters § and a.

The following pair of conditions

)PS0 72 2 B0, a), W)

=1

13



Pea

YD 7 (X)) 0 (w;)

is sufficient for W*. Note that in the case of an estimator a, which is functionally
independent of § € © (c.f. remark (iv) in sec. 3.4), the condition (W;) is always
fulfilled.

ad U*: The regularity condition U* takes the following form:

Y(n)>_ Z; - e Do, N(0,%(8,a)), for all (6,a) € O x A.

=1
Here (6, «) denotes a positive real number which is functionally dependent on
the parameter # and a.

Using central limit theorems we present sufficient conditions for the regularity
condition U*.

(UY) (e, Z;),1 > 1, is a sequence of i.i.d. random vectors with E(e; - Z;) =
0 and Var(e; - 7Z;) > 0, for ¢ > 1.

Under this assumption the usual central limit theorem yields the condition U*.
Note that condition (U]) does not cover models with deterministic regressors Z;
and models with autoregressive structure (e.g. Z; = Y;_1). In order to enclose
this kind of models we have to use central limit theorems for martingal difference
sequences.

(U3) (e1,e2,...; Fo=1{0,Q}, F1, Fy,...), with F; := {71, ..., Ziz1, €1, ..., €;} for i >

1, is a martingal difference sequence fulfilling:
o 36> 2 :sup;en E(|e; || Fict) < M ass.,
e Jc>0:0? = Var(e|F,) > cas. VieN,

o v(n)? Y0, 0272 5 %(0, ),

Py o
o maxi<i<, Y(n)|Zi| — %250,

According to a central limit theorem for martingal difference sequences (cf.
Dvoretzky (1970)) the assumption (UJ) is sufficient for *.

Remarks

(i) The following situation is an important special case of the sufficient condi-
tion (U5).

e, € N, is a sequence of independent, centered random variables with
Var(e;) =07 > ¢ > 0 for all 7 € N.

Further ¢; is independent of the random variables 71, ..., Z; for « € N.
Note that within these assumptions models with autoregressive structure
can be treated.

14



(ii) Condition (Uy) covers the case of deterministic regressors Z;.

(iii) For various nonparametric estimators &, in (generalized) linear models the
asymptotic normality of 8, is proved under the i.i.d. assumption by Heck-
man (1986) (spline estimator), Severini and Staniswalis (1994) (weighted

quasi-likelihood), Bickel, Klaassen, Ritov and Wellner (1993) (sec. 4.3),
Mammen and van de Geer (1997) (penalized quasi-likelihood).

5 APPENDIX

Definition: Let (7, ||.||7) be a normed R-linear space and x,, € T,n > 1,
a sequence of random elements with values in 1. The sequence x, € T,n > 1, is
called P-stochastically bounded if and only if

]\/llim limsup P(||z,||[z > M) = 0.

The sequence x,, € T.n > 1, is said to be stochastically convergent to 0 if and

only if
Vez0: lim P(|[z.]| > €) = 0.
Definition: Let T be a normed R-linear space and § € T" an unknown value.

Let gn, n > 1, be an estimator for #. Further let
F,:T—Tn>1,
be a sequence of measurable random mappings. If the sequence
Fo(0, —0),n > 1,
is P-stochastically bounded, the estimator gn, n > 1, is said to be F,-consistent.

Definition:  Let (7, ||.|[r) be a normed R-linear space and f, : T — R% n >
1, a sequence of random mappings which are a.s. linear and continuous. The
sequence f, is said to be stochastically convergent to the zero mapping,

fo =0,

if and only if
Ves 0 lim B(|f] 2 &) =0,

where ||.|| denotes the usual operator norm

[foll = sup{|fu(z)] - @ € T, |||z = 1}.
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