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SUMMARY

We are concerned with the asymptotic theory of semiparametric estimation
equations� We are dealing with estimation equations which have a parametric
component of interest and a functional �nonparametric� nuisance component�
We give su�cient conditions for the existence and the asymptotic normality of
a consistent estimation equation estimator for the parameter of interest� These
conditions concern the asymptotic distribution of the estimation function and of
its derivative as well as the e�ect of the functional nuisance part in the estima�
tion equation� In order to treat the nonparametric component we introduce a
general di�erential calculus and a general mean value theorem� For the nonpara�
metric part in the estimation equation we distinguish two cases� the situation of
a �classical� nuisance parameter and the case of a so called working parameter�
As a special case we get regularity conditions for estimation equations with 	�
nite dimensional nuisance or working parameter� As an example we present the
semiparametric linear regression model�

Some key words� Asymptotic normality
 Consistent estimation equation esti�
mator
 Hadamard di�erentiation
 Nuisance parameter
 Semiparametric estima�
tion equation
 Semiparametric linear regression
 Working parameter�

� INTRODUCTION

The starting point of our investigations is an estimation equation of the form
Un��� �� � �� It contains a 	nite dimensional parameter � being of primary
interest and a functional parameter �� The latter may play the role of a nui�
sance parameter �in the classical sense� or that of a working parameter �coming
into statistical use with Liang and Zeger ������ A nonparametric estimator ��n
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is assumed to be given showing a certain kind of limit behaviour the special
type of the estimator being of no regard� For estimators ��n of � which solve
�asymptotically� the estimation equation we will prove consistency and asymp�
totic normality�

A special feature of the present paper is a consequent functionally orientated
approach� The Taylor method�well established for 	nite dimensional spaces�is
carried out in functional spaces and is employed in proving the asymptotic results�
This program seems to be more direct and �exible than that of Severini and Wong
������ and others but the price are more involved regularity conditions� It bears
some connections with van der Vaart and Wellner ����� sec� ����� To perform
this program an appropriate di�erential calculus is presented in sec� �� Hadamard
derivatives�a notion between Fr�echet and G�ateaux derivatives�turn out to be
most suitable to prove a mean value theorem which will be our main tool of
analysis� Some probabilistic notations in normed spaces can be found in the
appendix�

A further characteristic of the present approach is the strict separation into
the 	eld of inference on one side and of statistical modelling on the other� The
semiparametric inference in sec� � is independent of model assumptions and is
based on conditions on the asymptotic behaviour of Un U �n and ��n� It is general
enough to allow �i� matrix norming �ii� unequal limit matrices in connection
with Un and U �n �iii� inclusion of external variables �iv� dependencies in the
sequence of observations� The proofs are sketched only their complete versions
will be given in a future paper by Wellisch�

In sec� � we demonstrate how the techniques work in the special case of a
semiparametric linear regression model for possibly dependent response variables�
For more substantial results on the model side we have to refer to a forthcoming
paper� In the case of a 	nite dimensional working parameter � our technique is
similar to that of Liang and Zeger ������ Murphy and Li �������

� DIFFERENTIAL CALCULUS IN TOPOLO�

GICAL LINEAR SPACES

��� M�derivatives

Let �E�O�E�� �F�O�F �� be topological R�linear Hausdor� spaces �TLS�
a � A � O�E� and f � A� F�

De�nition� f is said to be di�erentiable at a in the direction of x � E if the
limit

f �a�x� �� lim
���

����f�a� �x�� f�a��

exists� If this is the case we write f � D�a� F 
� x� and f �a�x� � F will be
called the directional derivative of f at a in the direction of x� We introduce the

�



following de	nition

D�a� F 
� E� ��
�
x�E

D�a� F 
� x��

Let M be a class of subsets of E such that every singleton belongs to M� Let
L�E�F � denote the continuous and linear mappings from E to F�

De�nition� f isM�di�erentiable at a if there exists u � L�E�F � such that

lim
���

���r�f� a� �x� � �

uniformly with respect to x � M� for each M � M� The remainder r�f� a� x� is
de	ned by

r�f� a� x� �� f�a� x�� f�a�� u�x��

We write f � DM�a� F � and the mapping u � f ��a� � L�E�F � is called the
M�derivative of f at a� A mapping f is called M�di�erentiable in A if it is
M�di�erentiable for all a � A and we write f � DM�A�F ��

De�nition�

�i� When M is the class of all bounded subsets of E f is said to be Fr�echet
di�erentiable at a� We write f � DF �a� F ��

�ii� When M is the class of all sequentially compact subsets of E f is said to
be Hadamard di�erentiable at a� We write f � DH�a� F ��

�iii� WhenM is the class of all single point subsets of E f is said to be G�ateaux
di�erentiable at a� We write f � DG�a� F ��

Lemma ����� DF �a� F � � DH�a� F � � DG�a� F � � D�a� F 
� E��

��� Fundamental properties

Lemma ����� Assume that E�F � TLS� a� x � A � O�E�� f � DM�a� F �
with theM�derivative f ��a� of f at a� Then we have

f �a�x� � f ��a��x��

By the lemma we see that theM�derivative is uniquely determined�

Lemma ����� �chain rule� If f � DH�a� F � and g � DH�f�a�� G� where
g � A� � G � TLS and f�a� � A� � O�F � then

g � f � DH�a�G� and �g � f�
��a� � g��f�a�� � f ��a��

Fr�echet di�erentiation has the chain rule �composition� property too but not
G�ateaux di�erentiation�
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Proof� See Yamamuro ����� p� ���� �

De�nition� �partial derivatives� Let E�� E�� F � TLS� E � E� � E��

a � �a�� a�� � A an open subset of E and f � A � F� We consider classes Mi

of subsets of Ei �i � �� �� as in section ��� and put M �� fM� �M� �Mi � Mi

�i � �� ��g � f is said to be partially M�di�erentiable at a in the 	rst variable
if the mapping x� �� f�x�� a�� of E� into F is M��di�erentiable at a� and if
this is the case the derivative is denoted by ��f�a�� a��� The partial derivative
��f�a�� a�� of f at a in the second variable is de	ned similary�
Note that by de	nition �if�a�� a�� � L�Ei� F � �i � �� ���

Lemma ����� If f � DM�a� F � then �if�a�� a��� i � �� �� exist and

f ��a�� a���x�� x�� � ��f�a�� a���x�� � ��f�a�� a���x���

Proof� See Yamamuro ����� p� ���� �

��� Mean value theorem

For a� b � E we introduce the notation

�a� b� �� fx � E � 	t � ��� �� � x � a� t�b� a�g�

Theorem ����� Assume that E � TLS F � LCS �locally convex Hausdor�
space� �a� a � x� � A � O�E� and f � D�A�F 
� E�� Let F � be the dual
space of F� Then for any x� � F � there exists � � ��� �� such that

x��f�a� x�� f�a�� � x��f ��a� �x� x���

Proof� We de	ne the mapping

g��� �� x��f�a� �x��� ��� ��� R�

A calculation of the ordinary di�erence quotient shows that the mapping g is
di�erentiable in ���� and that the equation

g���� � x��f ��a� �x� x��

is valid for some � � ��� ��� Applying the mean value theorem for mappings from
R to R to g���� g��� we conclude the proof� �

In our situation of estimation equations we use the mean value theorem in the
following way�

Corollary Let E � TLS� F � R
d� d � N� �a� a � x� � A � O�E� and

f � DM�A�F �� Then there exists �i � ��� ��� i � �� � � � � d such that

�f�a� x�� f�a��i � �f ��a� �ix��x��i
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for i � �� � � � � d� where the index i denotes the i�th component of the vector�

Proof� Using lemma ����� and the fact that the coordinate projections are ele�
ments of L�Rd�R� we obtain the corollary directly from the mean value theorem�
�

Notation� Let E � TLS� F � R
d� �i � ��� �� for i � �� � � � � d� We intro�

duce the abbreviation
f ��a���x��x� �� p� �f ��a���x��x��p� �f ��a���x��x�� � � ��pd �f ��a��dx��x��
where p�� � � � � pd denote the d coordinate projections which for i � �� ���� d are
de	ned by the d� d�matrices

pi �� ei 
 e
T
i �

with ei the i�th unit vector� Obviously the mapping

f ��a� ��x� ��
dX

i��

pi � f
��a� �ix� � E � F ���

is continuous and linear� Further we identify a mapping f � L�Rd�Rd� with its
representing d � d�matrix F and write

f�x� � F 
 x � f 
 x� ���

In particular for f � L�R�R� we write f�x� � f 
 x and we identify f with a
suitable real number�

� SEMIPARAMETRIC ESTIMATION EQUA�

TIONS

��� Estimation function

Let � be an open subset of Rd and A an open subset of T � TLS� We consider
an estimation function

Un � ��A� R
d� ���

For each ��� �� � � � A the mapping Un��� �� is a measurable function of n
random elements X�� � � � �Xn� With an estimator

b�n��
X�� � � � �Xn� � b�n � �� A

we can transform ��� to an estimation function which depends only on the pa�
rameter of interest � � � and which is for every � � �� a measurable function
of the n random elements X�� � � � �Xn� With the sequence

fn � �� ��A� � �� ��� b�n����
�



of mappings we obtain the estimation function

�Un � fn� � �� R
d� ���

For the functional part � � A in the estimation equation we distinguish the case
of a nuisance parameter and the case of a working parameter �cf� Liang and Zeger
�������� Both kind of parameters �nuisance or working� are unknown variables in
the estimation equation� A nuisance parameter is connected with the underlying
X�� � � � �Xn� in the sense that it parametrizes their distribution� we introduce the
notation P��� for the underlying distribution in this case� A working parameter
does not primarily parametrize the underlying distribution and we write P�� It
is connected with a given sequence b�n of estimators �mostly the P��limit thereof
cf� Crowder ��������

��� Expansion by the mean value theorem

We assume that the estimation function Un and the estimator b�n satisfy the
conditions on di�erentiability

Un � DH���A�Rd�� n � � �D��

b�n � DH��� A�� n � �� �D��

Theorem ����� Let �� �� � � with the property ��� ��� � �� Let �� b�n���� � A

with ��� b�n����� � A for n � �� Then the vector equation

�Un � fn���� � Un���� ��

� ��Un���� �
�
n��b�n����� �� ���

� ���Un��
�
n� b�n���n�� � ��Un��

�
n� b�n���n�� � b��n���n�� 
 �� � ����

where ��n �� �� ��n 
 ���� ��� ��n � ��� �� and ��n �� b�n����� ���n 
 ��� b�n������ ���n �
��� ��� is valid� Note that we have used the notation ��� and the interpretation
��� in the third term of the right hand side of ����

Proof� Applying the mean value theorem to the estimation function ��� we get
the vector equation

�Un � fn���� � �Un � fn����� � �Un � fn�
����n� 
 �� � ���� ���

Applying the mean value theorem again to the 	rst term of the right hand side
of ��� and lemmata ����� and ����� to the second term we obtain the equation
���� �
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��� Su�cient conditions for the existence of a consistent

EE�estimator

De�nition� A sequence b�n � b�n�X�� � � � �Xn�� n � �� of d�dimensional random
vectors is said to be a consistent estimation equation estimator �EEE� for � of
the estimation equation Un��� � �� if for every � � � � R

d�� open and every
� 	 � the convergence

P

����b�n � �
��� � �� Un�b�n� � �

�
� �

holds for n��

Let  n �  n��� ��� n � �� be a sequence of regular d�d�matrices with  n � � for

n �  �each element�� With Nn�s��� ��
n

 � Rd �

��� �Tn 
 �
 � ��
��� � s

o
� s 	 ��

we denote a neighbourhood of � � �� In the following we are using the
d� d�matrix

Wn��
�
n� �� ��Un��

�
n� b�n���n�� � ��Un��

�
n� b�n���n�� � b��

n��
�
n�� ���

cf� ��� and ����
First we want to consider the case of an estimation equation with a nuisance
parameter� We assume that the conditions �D�� and �D�� on di�erentiability
are satis	ed� Further we present three regularity conditions for the estimation
function Un and the estimator b�n�
For all ��� �� � ��A and all n � ��

�b�n���� �� � A

holds as well as the following�

U The sequence  n Un��� �� n � � is P����stochastically bounded�

W There exists an a 	 � and for all � 	 � and s 	 � an n� � � such that for
all n � n�

P���

�
yT  nWn ��

�
n�  

T
n y � �a� � ��n � Nn�s���� y � R

d� jyj � �
�
� �� ��

N The sequence  n ��Un��� ��n��b�n��� � �� n � � is P����stochastically
bounded for all ��n � �b�n���� ���

Note that in the conditions W and N the notation ��� is used�

Theorem ����� If the conditions U W and N are ful	lled then there exists a
consistent EEE b�n� n � �� for � � �  of the estimation equation Un � fn��� � ��

Proof� We are following the proof of Pruscha ����� p� �������� where the
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proof of existence of an EEE is done for an estimation equation without a nuisance
parameter� The new idea in the situation of a functional nuisance parameter is
the expansion by the mean value theorem for Hadamard di�erentiable mappings�
Due to the nuisance parameter we get the extra term in ���� The additional
regularity condition N is used to keep the term  n��Un��� ��n��b�n���� �� small�
�

In the situation of a working parameter we get a similar result� Again we assume
that the conditions on di�erentiability �D�� and �D�� are satis	ed� In addition
to the existence of the estimator b�n��� we assume that there exists some � �
���� � A with the following property�
For all � � � and all n � ��

��� b�n���� � A

holds as well as the regularity conditions Uw Ww and Nw� Hereby Uw Ww Nw

are the same as U  W N � except that P��� is replaced by P��

Arguing like in the case of a nuisance parameter we get the existence result�

Theorem ����� If the conditions UwWw andNw are ful	lled then there exists
a consistent EEE b�n� n � �� for � � �� of the estimation equation Un � fn��� � ��

Remarks�

�i� The proof of existence follows Billingsley ������ Feigin ������ and others�
But we are concerned with the more general case of an estimation equation
with functional nuisance or working parameter�

�ii� We can even prove the stronger  �Tn �consistency property of the estima�
tor b�n� The sequence  �Tn �b�n � ��� n � �� is P����stochastically resp� P��
stochastically bounded�

��� Su�cient conditions for the asymptotic normality of

a consistent EE�estimator

For the asymptotic normality of a consistent resp�  �Tn �consistent EEE b�n we
need stronger conditions than the regularity conditions in section ����
First we want to consider the case of an estimation equation with nuisance pa�
rameter� We assume that there exists an estimator b�n��� for � � A which ful	lls
the condition

�b�n���� �� � A� for all ��� �� � ��A and all n � ��

Again we suppose that the conditions �D�� and �D�� on di�erentiability are
satis	ed and that the following conditions hold for all ��� �� � � � A and for
n��
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U�  nUn��� ��
D���

����� Nd���!��� ����

where !��� �� denotes a positive de	nit d�d�matrix which can functionally
depend on the parameter � and ��

W�  nWn��
�
n� 

T
n

P���
����� �B��� ���

for all sequences of d�dimensional random vectors ��n which are  
�T
n �consistent

where B��� �� denotes a positive de	nit d�d�matrix which can functionally
depend on the parameter � and ��

N �  n ��Un��� ��n��b�n���� ��
P���

����� ��

for all sequences of random elements ��n which have the property

��n � �b�n���� �� for all n � ��

Note that in the conditions W� and N � for every component of the vectors there
can be di�erent arguments ��n resp� �

�
n �cf� notation �����

Lemma ����� The implications

U� � U � W� �W� N � � N

are valid�

Lemma ����� and theorem ����� show that under the conditions U��W� and N �

there exists a  �Tn �consistent EEE�

In the following lemmawe present su�cient conditions for the regularity condition
N � concerning the estimator b�n���� For that purpose we restrict the space T to
be a normed R�linear space�

Lemma ����� Let �T� k�kT� be a normed R�linear space� Each of the following
two conditions �a� and �b� is su�cient for the condition N �� It exists a sequence
Jn� n � �� of a�s� continuous linear and bijective random mappings from T to T
with

�a� b�n���� n � �� is J��n �consistent

and

 n��Un��� �
�
n� � Jn

P���
����� ��

�b� J��n �b�n���� ��
P���

����� �

and
 n��Un��� �

�
n� � Jn� n � �� is P�stochastically bounded�
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Theorem ����� If the conditions U��W� and N � are ful	lled then for a  �Tn �
consistent EEE b�n� n � �� of � � � the convergence in distribution

 �Tn �b�n � ��
D���

����� Nd��� B
����� ��!��� ��B����� ���

holds for n��

Proof� Let � 	 � be so small that the neighbourhood N���� lies completely in
�� We introduce the sequence of sets

Mn �� fb�n � N����g� n � ��

Note that on the sets Mn we have �b�n� �� � �� further the convergence

�Mn

P���
����� �

is valid� The expansion by the mean value theorem cf� ��� yields the vector
equation

�Mn�Un � fn��b�n� � ���

�MnUn��� �� � �Mn��Un��� ��n��b�n���� �� � �MnWn���n� 
 �
b�n � ���

Since the EEE b�n is  �Tn �consistent the random sequence ��n is  
�T
n �consistenttoo�

The equation ��� together with the conditions U��W� and N � and an argument
of the Cr�amer type �cf� Pruscha ������ Prop� B ���� p� ���� completes the proof�
�

For estimation equations with working parameter we can modify the conditions
like we have done in the section ���� Again in addition we have to assume
that there exists a suitable � � ���� � A which now replaces the nuisance
parameter� In this way we get analogous regularity conditions U�w�W

�
w and N �

w

and an analogous asymptotic normality result�

Remarks�

�i� Alternatively theorem ����� can be formulated with the expression " �Tn �
consistent# replaced by the term "consistent#� Then in the condition W�

" �Tn �consistent# has to be replaced by "consistent#�

�ii� Finite dimensional nuisance resp� working parameters

� � Rc � c � N�

can be treated as special cases of our functional approach� The conditions
�D�� and �D�� on di�erentiability and the derivatives ��Un��� �� and b��n can
be read with the usual di�erential calculus� Note that these derivatives can
be identi	ed with suitable matrices and the composition of linear mappings
can be identi	ed with multiplication of matrices�
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�iii� Finite dimensional working parameter are treated in Liang and Zeger ������
Crowder ������ Murphy and Li ������� Our regularity conditions together
with condition �a� in lemma ����� correspond with the conditions given in
Murphy and Li �������

�iv� Let us consider the special estimator

b�n � b�n�X�� ����Xn�� n � �� for � � A�

which does not functionally depend on � � �� Here ��� is of the reduced
form

Wn��
�
n� � ��Un��

�
n� b�n��

�v� In the case of a working parameter and of a deterministic sequence b�n � ��
of constants N �

w is trivially ful	lled if we choose � � ���

�vi� The asymptotic covariance structure of the random vector  �Tn �b�n��� is in�
�uenced by the nuisance parameter resp� working parameter� Therefore we
get a direct e�ect of the nuisance resp� working parameter on the e�ciency
of the EEE b�n�

� LEAST SQUARE ESTIMATION IN SEMI�

PARAMETRIC LINEAR REGRESSIONMOD�

ELS

In this section we want to present an example which demonstrates the handling
of the regularity conditions U��W� and N �� We consider the estimation equa�
tion which is derived from the least square approach in a semiparametric linear
regression model� For this example we compute the expressions of section � and
present su�cient conditions for the regularity conditions�

We are concerned with the model

Yi � ��Xi� � � 
 Zi � ei � i � �� ���� n�

where � � A denotes an unknown nuisance parameter in some function space and
� � � � R�� open denotes the real valued parameter of interest� The regressors
Xi and Zi are real valued and possibly stochastic� Let ei denote a sequence of
noise variables typically a sequence of i�i�d� random variables with mean zero�
The least square method yields the estimation function

ln��� �� � �
�

�

nX
i��

�Yi � ��Xi�� � 
 Zi�
��

��



and di�erentiation gives the estimation equation Un��� �� � �� with

Un��� �� �
d ln��� ��

d �
�

nX
i��

�Yi � ��Xi�� � 
 Zi� 
 Zi�

For the computation of the regularity conditionN � we need the partial derivative

��Un���� ��� � A� R

for ���� ��� � ��A� A simple calculation shows that the mapping

��Un���� ��� � A� R� � �� �
nX
i��

Zi 
 ��Xi�

ful	lls the equation
r�Un���� 
�� ��� �x� � ��

so the remainder term property �cf� de	nition in sec� ���� is ful	lled� Clearly the
mapping ��Un���� ��� is linear� To prove the continuity we have to specify the
function space and its topology�

�� Let A � C�a� b� endowed with the topology induced by the sup�norm
k�k � maxa�t�b j��t�j� In this case the regressors Xi� i � �� ���� n� are supposed to
take a�s� values in the interval �a� b�� Hence the unequality

j��Un���� ������j �
nX
i��

jZij 
 k�k�

holds
 that gives the boundedness of the mapping ��Un���� ���� and so the conti�
nuity of the mapping ��Un���� ��� is proved�

�� Let A be the space of all measurable mappings from R to R endowed with
the trace topology induced by the initial topology of the evaluation mappings

�t � f �� f�t�� f � RR� t � R�

Note that this space is a R�linear Hausdor� space but the space is not normable�
The subset A is open and due to the construction of the topology the functional
��Un���� ��� is continuous�

For both choices �� and �� the condition �D�� on di�erentiability is ful	lled� Infact
the mapping

U �n���� ��� � ��� �� �� �
nX
i��

�Zi 
 ��Xi� � � 
 Z�

i ��

with ���� ��� � ��A and ��� �� � ��A� is theM�derivative of the mapping

Un��� �� � ��� �� ��
nX
i��

�Yi � ��Xi�� � 
 Zi� 
 Zi�

��



Further we assume that there exists a suitable estimator b�n which satis	es the
condition �D�� on di�erentiability�
Now we present the regularity conditions and various su�cient conditions� Let

�n�� n � �� be a norming sequence of real numbers tending to zero�

ad N �� Condition N � has the form

�
�n�
nX
i��

Zi 
 �b�n���Xi�� ��Xi��
P���

����� �� for all ��� �� � ��A�

Each of the following conditions �a� and �b� is su�cient for the condition N ��

�a� 
�n�
Pn

i�� jZij is P����stochastically bounded�

sup
��i�n

jb�n���Xi�� ��Xi�j
P���

����� ��

�b� 
�n��
Pn

i�� jZij is P����stochastically bounded�

sup
��i�n


�n���jb�n���Xi�� ��Xi�j
P���

����� ��

ad W�� With interpretation ��� and the notation

�� �� b��n���n���� � A�

��� can be written as

Wn��
�
n� �� �

nX
i��

Z�

i �
nX
i��

Zi 
 ���Xi��

Now we can formulate the regularity condition W� as follows�

�
�n��
nX
i��

Z�

i � 
�n��
nX
i��

Zi 
 ���Xi�
P���

����� �B��� ���

for all ��� �� � ��A and for all sequences ��n� n � �� which are 
�n����consistent�
Here B��� �� denotes a positive real number functionally depending on the pa�
rameters � and ��

The following pair of conditions


�n��
nX
i��

Z�

i

P���
����� B��� ��� �W �

�
�

��




�n��
nX
i��

Zi 
 ���Xi�
P���

����� � �W �
� �

is su�cient forW�� Note that in the case of an estimator b�n which is functionally
independent of � � � �c�f� remark �iv� in sec� ���� the condition �W �

�
� is always

ful	lled�

ad U�� The regularity condition U� takes the following form�


�n�
nX
i��

Zi 
 ei
D���

����� N ���!��� ���� for all ��� �� � ��A�

Here !��� �� denotes a positive real number which is functionally dependent on
the parameter � and ��
Using central limit theorems we present su�cient conditions for the regularity
condition U��

�U�
�
� �ei� Zi�� i � �� is a sequence of i�i�d� random vectors with E�ei 
 Zi� �
� and Var�ei 
 Zi� 	 �� for i � ��

Under this assumption the usual central limit theorem yields the condition U��
Note that condition �U�

�
� does not cover models with deterministic regressors Zi

and models with autoregressive structure �e�g� Zi � Yi���� In order to enclose
this kind of models we have to use central limit theorems for martingal di�erence
sequences�

�U�� � �e�� e�� ���
F� � f��$g�F��F�� ����� with Fi �� fZ�� ���� Zi��� e�� ���� eig for i �
�� is a martingal di�erence sequence ful	lling�

� 	� 	 � � supi�NE�jeij
�jFi��� �M a�s��

� 	c 	 � � �i � Var�eijFi� � c a�s� �i � N�

� 
�n��
Pn

i�� 
�
i Z

�
i

P���
����� !��� ���

� max��i�n 
�n�jZij
P���

����� ��

According to a central limit theorem for martingal di�erence sequences �cf�
Dvoretzky ������� the assumption �U�

�
� is su�cient for U��

Remarks

�i� The following situation is an important special case of the su�cient condi�
tion �U�

�
��

ei� i � N� is a sequence of independent centered random variables with

Var�ei� � �i � c 	 � for all i � N�

Further ei is independent of the random variables Z�� ���� Zi for i � N�
Note that within these assumptions models with autoregressive structure
can be treated�

��



�ii� Condition �U�
�
� covers the case of deterministic regressors Zi�

�iii� For various nonparametric estimators b�n in �generalized� linear models the
asymptotic normality of b�n is proved under the i�i�d� assumption by Heck�
man ������ �spline estimator� Severini and Staniswalis ������ �weighted
quasi�likelihood� Bickel Klaassen Ritov and Wellner ������ �sec� ����
Mammen and van de Geer ������ �penalized quasi�likelihood��

� APPENDIX

De�nition� Let �T� k�kT � be a normed R�linear space and xn � T� n � ��
a sequence of random elements with values in T � The sequence xn � T� n � �� is
called P�stochastically bounded if and only if

lim
M��

lim sup
n��

P�kxnkT �M� � ��

The sequence xn � T� n � �� is said to be stochastically convergent to � if and
only if

�� � � � lim
n��

P�kxnk 	 �� � ��

De�nition� Let T be a normed R�linear space and � � T an unknown value�
Let b�n� n � �� be an estimator for �� Further let

Fn � T � T� n � ��

be a sequence of measurable random mappings� If the sequence

Fn�b�n � ��� n � ��

is P�stochastically bounded the estimator b�n� n � �� is said to be Fn�consistent�

De�nition� Let �T� k�kT � be a normed R�linear space and fn � T � R
d� n �

�� a sequence of random mappings which are a�s� linear and continuous� The
sequence fn is said to be stochastically convergent to the zero mapping

fn
P��� ��

if and only if
�� 	 � � lim

n��
P�kfnk � �� � ��

where k�k denotes the usual operator norm

kfnk �� supfjfn�x�j � x � T� kxkT � �g�
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