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Summary

This paper discusses marginal regression for repeated ordinal measurements that
are isotonic over time. Such data are often observed in longitudinal studies on
healing processes where, due to recovery, the status of patients only improves or
stays the same. We show how this prior information can be used to construct
appropriate and parsimoniously parametrized marginal models. As a second as-
pect, we also incorporate nonparametric fitting of covariate effects via a penalized
quasi-likelihood or GEE approach. We illustrate our methods by an application

to injuries from sporting activities.

Keywords: marginal regression, isotonic ordinal repeated measurements, non-
parametric predictors, penalized generalized estimating equations, iterative pro-

portional fitting.

1 Introduction

Marginal regression models for repeated or clustered ordinal measurements have
recently been proposed by several authors, e.g. Heagerty and Zeger (1996), Molen-
berghs and Lesaffre (1994), Fahrmeir and Pritscher (1996). Here, we consider the
case where observed response categories are isotonic over time, that is Y;; does
not have higher rank than Yj; for s < ¢ and each individual 2. This situation
is not uncommon in longitudinal studies on healing processes. Our development

has been motivated by a clinical trial conducted at the Technical University of
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Figure 1: Distribution of ”pain from pressure” for both groups.

Munich. The goal in this study was to assess the effect of an antiinflammatory
drug on injuries from sporting activities, mostly on legs, compared to placebo.
The drug was applied as a spray, containing 10% Ibuprofen, while the placebo
was the same spray without Ibuprofen. Altogether 140 patients took part in this
double-blind randomized study, 70 patients in each treatment arm. They had
visits to the physician prior to the treatment (baseline) and after 3, 7 and 10
days. At all visits, the severity of injuries and the healing process were assessed
by several indicators, with ”pain from pressure” as the variable of primary inter-
est. It was measured in 5 ordered categories by pressing increasing weights on
the injured spot, until it became too painful for the patient. In addition to this
response variable, the variables gender, age, height and weight were available.
For our analysis, we aggregated the response variable into the three categories
"mild pain” (= 1), "moderate pain” (= 2) and "distinct pain” (= 3). We also
deleted 13 patients with missing values. All results are therefore based on 127
patients, with 64 patients in the drug group and 63 in the placebo group. Figure
1 shows the distribution of severity of injuries, measured by the response, say Y,

”pain from pressure” for both groups.



Figure 1 indicates a global positive healing effect of the therapy compared to
placebo as well as an increase of this effect over time. Since the goal of the study
was a confirmatory analysis of drug effects, a marginal regression model appears
to be an appropriate choice to estimate and test the effect of the therapy.

However, direct application of existing methods for repeated ordinal measure-
ments becomes problematic because of the particular data structure: There is no
patient in the sample with increasing “pain from pressure” between two succes-
sive visits. The two-dimensional contingency tables below contain corresponding
data for responses Yy (baseline), Y7 (visit 1) and Y3 (visit 2), Y5 (visit 3):

Vi Ys
1 2 3 1 2 3
1128 0 0] 28 1147 0 0 | 47
Yo 215 22 027 Yo 2021 18 0 | 39
313 19 50| 72 3102 7 32] 41
36 41 50| 127 70 25 32127

The same pattern appears for all pairs (Y5, Y;) with s <t and, consequently, for
data stratified by covariates. Without taking care of that special data structure,
marginal modelling becomes problematic because probabilities corresponding to
zeros in contingency tables will either be badly fitted or, if they are correctly
estimated close to or by zero, association measures like global or local odds ratios
will tend to infinity. This implies serious numerical problems concerning existence
and convergence of parameter estimates. In this situation it seems reasonable to
assume the same structure for probability tables of pairs (Y5, Y;), s < t: entries in
the northeast corner are assumed to be zero as in Figure 2a, or at least so close to
zero that they are better neglected for parsimoniously parametrized modelling.
In the following we develop a marginal regression approach that is tailored to this
problem.

We will discuss ideas in the context of the concrete study under consideration,
but extensions to other and more general settings are obvious. Since the scien-
tific goal was analysis of the marginal response probabilities with association as
a nuisance, we also restrict discussion to a GEE1 approach. However, extensions
to GEE2 or full likelihood analysis can surely be reasonable in other cases. As

an additional feature, we incorporate the possibility of nonparametric modelling
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Figure 2: Pairwise 3 x 3 probability tables: a) Joint probabilities, b) Repara-

metrized table.

and fitting of components in the predictors for mean or (working) association
structures via a penalty approach (see Gieger, 1997). Compared to purely para-
metric modelling, this allows a refined and more flexible specification of the mean
structure and a gain in efficiency due to improved working associations. Wild
and Yee (1996) presented an additive extension of generalized estimating equa-
tion methods for correlated binary data. Semiparametric modelling of predictors

in estimating equations based on local regression has recently been considered by

Carroll, Ruppert and Welsh (1997).

2 Regression models

For a GEE1 approach, we have to specity two generalized estimating equations:
one for the mean structure, that is for marginal probabilities, and a second for
pairwise associations. Reparametrization of joint probabilities in Figure 2a by
marginal probabilities and remaining joint probabilities as in Figure 2b shows
that a marginal model for 7y = pr(Y; = 1), | = 1,2, and 7y, = pr(Y: = r),
r = 1,2, has to be supplemented only by a model for the joint probability my; =
pr(Ys; =2,Y; = 1) or a corresponding measure of pairwise association.

Preliminary data analysis indicated a positive and time-varying effect of the ther-
apy and a possibly nonlinear effect of age on the patients’ status. Effects of other
covariates appeared to be negligible in comparison. We first considered the cu-

mulative logistic main effects model
logit pr(Yee < 1) = b+ HTHY + BT HE + B THE + (A, (1)
r=1,2,t=0,...,3, for the mean structure. The time-varying threshold param-
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eters model the trend of the healing process in the placebo group. The indicator

variables TH, j = 1,2,3 are defined by

1, therapy is applied and t = j,

THU — {
0, else,

and are included to account for the additional possibly time-varying effects 31, 32,

B3 of therapy compared to placebo. The effect of age A is incorporated additively

in form of an unknown smooth function f that will be fitted nonparametrically by

a natural cubic smoothing spline. In a further step, we extended this generalized

additive model (see Hastie and Tibshirani, 1990) to a varying coefficient model
(see Hastie and Tibshirani, 1993) of the form

logit pr(Yy <r) = 0, + A(ATHD + f{ATH® + f(ATHS + f,(A), (2)

r=1,21¢t=0,...,3. Compared to (1) it additionally allows for interactions
between therapy and age in form of nonlinear functions fi(A), fa(A) and f3(A)
that are also fitted nonparametrically by cubic smoothing splines. A general form

for the marginal mean structure is
logit pr(Yie < r) =}, 8+ wiy, f(v), (3)

where 3 is the vector of fixed effects, f(v) = (fi(v1), f(va),...) is a vector of

unknown smooth functions of covariates vy, v, ..., and ., u;, are design vectors

constructed from basic covariates.

As a measure of pairwise association, we take the (local) odds ratio

:PI’(YSZQ,Yt:UPI’(Ys:&YtZQ):77217732‘ (4)
PI’(YSZQ,YtZQ)PI’(Ys:gaYt:U T2 T31

77Z)5t

Together with marginal probabilities this provides an appropriate reparametriza-
tion of pairwise joint probabilities.

In our application, we will work with a so—called unspecified working association
assumption

log ¥t = e, v=1,...,n, s <t.
This is a special case of usual linear parametric models
log st = *%;'stav (5)

with a vector a of association parameters and a design vector Z;5. Similarly as in

3), an additive nonparametric component @', g(v) could be included in (5). see
9 p p zst.g 9
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Gieger (1997) and, for a related idea, Heagerty and Zeger (1997). However, we
do not make use of this possibility here and restrict discussion to the parametric
model (5).

Semiparametric estimation of the mean structure is based on penalized gener-
alized estimating equations (PGEE; Gieger, 1997). In the following, y; is the
vector of indicator variables y;» = I(Y;; = r) for observed categories at visit
t, 7; = mi(3, f) is the corresponding vector of probabilities m;.; = pr(yi: = 1)
derived from model (3), and f is a generic symbol for the vector of function

evaluations or spline basis coefficients. The PGEE is
> DV yi — mi) — APy =0, (6)

where v = (', f')’. The first term has the usual form of GEE’s, where D; =
D;(B, f) is the first derivative of m;(f, f) with respect to (3, f) and V; is a
working covariance matrix, with elements depending on marginal probabilities
as well as on odds ratios and thus on (f3, f) as well as on a. The second term is
the first derivative of the quadratic penalty term Ay'P~, known from penalized
(quasi-)likelihood estimation for cubic smoothing splines. The diagonal matrix A
contains smoothing parameters and P is a diagonal penalty matrix with a zero
on the diagonal if the corresponding parameter is not penalized, e.g. for a fixed

effect. To estimate association parameters « together with 3 and f, we augment

(6) as usual by a GEE
N
> CUT (wi — ) =0, (7)
i=1

for association parameters. In (7) w; is the vector of centered products w;s =
(Yizs — Ti2s)(Yire — mi1e) and v; the vector of corresponding expectations E w;q =
Vist = Tia1,st — TizsTie- Note that we get a very parsimonious parametrization
compared to full parametrized model. The joint probability =215 = pr(Vis =
2,Y,; = 1) is related to log 15 by (4) and (5). Therefore v; is a function of 3, f
and «. The matrix C; is the first derivative of v; with respect to a and U; is a
further working covariance matrix. As in the binary case (Prentice, 1988) simple
but useful choices are U; = I and U; = diag(var(w;s)).

The algorithm for computing estimates (B, f, &) of this PGEEI approach can be

summarized as follows:

1. Obtain initial values (3, f© (). One can use (3, f(9)) resulting from

a regression assuming independence and o(®) = 0.
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2. Use a modified version of the iterative proportional fitting algorithm (IPF),
which was originally introduced by Deming and Stephan (1940) and has
also been used by Heagerty and Zeger (1996) and others, to obtain the
joint probabilities in the bivariate marginal tables. That is, get the current

estimates of the local odds ratios, ;/)Z(ft), from the current estimate o¥) and
construct bivariate tables having this odds ratios. In our special case one

can use e.g.

Y,
1 2 3
v ! Pl 0 0
T2 Pl B o
3| Py e )

with pgft) = 1/(5—|—;/)2(ft)) as initial tables. Then apply IPF to get tables with

marginal probabilities according to the current estimate (3%, f#)). IPF in

general preserves the local odds ratios and automatically accounts for the

structural zeros, also in more general cases than the one considered here.

The resulting bivariate probabilities can now be used to obtain Vi(k), Ui(k)
(k)

7

and v

3. Take a (quasi-) Fisher scoring step for v = (', f')"

N /N
S04 00 S (DY D)+ AP) (Z DV i — ) — pr) .
=1 =1
4. Take a (quasi-) Fisher scoring step for a:
N /N
Oé(k+1) = Oé(k) + Z (CZUZ_ICZ/) (Z CZ'UZ»_I(U)Z' — Z/Z)) .
=1 =1

5. Iterate, until a specified convergence criterion is fulfilled.

To get a robust approximation for the covariance matrix of the final estimate

(3, f) we use a nonparametric version of the well-known sandwich matrix.



main effects model varying coefficient model

independence H unspecified association unspecified association
estim. | standard errors estim. | standard errors estim. | standard errors
naive ‘ robust naive | robust naive | robust

010 | -1.1342 | 0.2209 | 0.2198 || -1.2153 | 0.2250 | 0.2228 || -1.2135 | 0.2221 | 0.2208
020 | -0.0780 | 0.1875 | 0.1964 || -0.0814 | 0.1931 | 0.1924 || -0.0958 | 0.1909 | 0.1901
011 | -1.0501 | 0.2723 | 0.2747 || -0.9717 | 0.2243 | 0.2420 || -0.9763 | 0.2206 | 0.2401
021 | 0.3978 | 0.2513 | 0.2577 || 0.4473 | 0.2101 | 0.2122 || 0.4198 | 0.2072 | 0.2078
012 | -0.7902 | 0.2644 | 0.2738 || -0.7186 | 0.2216 | 0.2527 || -0.7056 | 0.2180 | 0.2441
025 | 0.5789 | 0.2528 | 0.2633 || 0.6006 | 0.2155 | 0.2203 || 0.5642 | 0.2122 | 0.2166
015 | -0.3058 | 0.2579 | 0.2538 || -0.2534 | 0.2254 | 0.2340 || -0.2506 | 0.2224 | 0.2298
023 | 0.7130 | 0.2589 | 0.2583 || 0.7997 | 0.2264 | 0.2276 || 0.7620 | 0.2234 | 0.2238
B1 | 0.4940 | 0.3347 | 0.3366 || 0.3525 | 0.1809 | 0.1881
B2 | 0.7735 | 0.3373 | 0.3415 || 0.6818 | 0.2099 | 0.2239
B3 | 1.4180 | 0.3686 | 0.3685 || 1.1555 | 0.2625 | 0.2661

o1 0.7341 0.9897
a2 1.8711 1.7607
g3 0.7728 0.6616
a1 0.8527 1.6178
o3 3.3064 3.3922
Qa3 4.1806 3.3268

Table 1: Estimated fixed effects.

3 Results

After exploratory data analysis, we first considered the semiparametric main ef-
fects model (1). Table 1 shows estimation results for time—varying thresholds 6,+,
r=1,2,t=0,...,3 and therapy effects 5;, t = 1,2, 3 obtained from the PGEE
(6) under a working independence assumption and under the unspecified working
association assumption log ;s = ag. Estimates and standard errors for thresh-
olds are in quite close agreement under both association models and show the
expected results: Thresholds and, as a consequence, corresponding cumulative
probabilities for the status of the healing process increase with time. Estimates
for time-varying effects 31, 2 and s provide clear evidence of an acceleration
of the healing process for the therapy group. However, results for both mod-

els differ more distinctly from each other: Point estimates of these effects have



Figure 3: Main effects model: Estimated effect of age, naive standard error —

dashed lines, robust standard error — boundary of shaded region.

smaller values under the unspecified association model. Also, standard errors are
smaller due to gain of efficiency. As a consequence, the effect 8y, which is clearly
nonsignificant under the independence assumption, becomes on the border to sig-
nificance for the unspecified association model. A look at the estimates of the
association parameters shows that it also seems to be important to allow for time—
dependence of association parameters. A simple exchangeable association model
would lead to loss of efficiency. We also experimented with association models
stratified by covariates as in (5), but this did not result in any improvement.

The estimated effect f(A) of age is plotted in Figure 3. The curve indicates that
younger and older persons react less sensitive to pain from pressure than others.
At first sight, this seems to be somewhat surprising. Therefore, in a second step,
let us take a closer look at the influence of age by the varying coefficient model
(2). In this model, possible interactions of age with the therapy can be explored.
Table 1 and Figure 4 show that estimated thresholds and the main effect of age
are still in good agreement with estimates obtained for the main effects model.
Figure 5 compares the constant effects 3y, 2 and 3 of the therapy at t =1,2,3
to corresponding effects fi(A), f2(A) and f3(A) varying over age. We see that
refined analysis under the extended model provides additional information: The

effects of therapy for younger persons, up to about 25 years, exhibit more variation



Figure 4: Varying coefficient model: Estimated main effect of age, naive standard

error — dashed lines, robust standard error — boundary of shaded region.

over time than for older persons. For the young ones, the effect is still positive
but still smaller at ¢ = 1. However, it also increases more distinctly with time
and is higher at ¢ = 3. On the other side, for older patients, the effects at ¢t = 1
and ¢t = 2 are more or less of the same magnitude and lie between 3 and Jy,
while the effect at £ = 3 is at about the same level as 3. It seems that younger
persons react more sensible to the therapy than others.

These results provide evidence for the fact that the three age groups young, middle
and old show different reactions on pressure from pain in general and under the
therapy. It is not clear if this is mainly caused by different subjective sensation

of pain or if there is some physiological explanation.
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Figure 5: Effect of therapy: constant — dashed lines, varying over age — solid

lines.

4 Conclusions

Inclusion of structural restrictions in bivariate or higher—order associations is an
important aspect for adequate modelling in marginal regression. We discussed
this for the problem at hand, but extensions to other settings are conceptually

immediate. In particular, more general categorical responses, GEE2 and full like-
lihood approaches (see e.g. Molenberghs and Lesaffre, 1995, Heumann, 1996,1997)

are interesting topics.
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