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Spike-frequency adaptation is a prominent feature of neural dynamics. Among other
mechanisms various ionic currents modulating spike generation cause this type of neu-
ral adaptation. Prominent examples are voltage-gated potassium currents (M-type cur-
rents), the interplay of calcium currents and intracellular calcium dynamics with calcium-
gated potassium channels (AHP-type currents), and the slow recovery from inactivation
of the fast sodium current. While recent modeling studies have focused on the effects
of specific adaptation currents, we derive a universal model for the firing-frequency dy-
namics of an adapting neuron which is independent of the specific adaptation process
and spike generator. The model is completely defined by the neuron’s onset f -I-curve,
steady-state f -I-curve, and the time constant of adaptation. For a specific neuron these
parameters can be easily determined from electrophysiological measurements without
any pharmacological manipulations. At the same time, the simplicity of the model
allows one to analyze mathematically how adaptation influences signal processing on
the single-neuron level. In particular, we elucidate the specific nature of high-pass
filter properties caused by spike-frequency adaptation. The model is limited to firing
frequencies higher than the reciprocal adaptation time constant and to moderate fluc-
tuations of the adaptation and the input current. As an extension of the model, we
introduce a framework for combining an arbitrary spike generator with a generalized
adaptation current.
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1 Introduction
Spike-frequency adaptation is a widespread neurobiological phenomenon, exhibited by
almost any type of neuron that generates action potentials. It occurs in vertebrates as
well as in invertebrates, in peripheral as well as in central neurons, and may play an im-
portant role in neural information processing. Within the large variety of mechanisms
responsible for spike-frequency adaptation ionic currents that influence spike genera-
tion are of particular importance. Three main types of such adaptation currents are
known: M-type currents, which are caused by voltage-dependent, high-threshold potas-
sium channels (Brown & Adams, 1980), AHP-type currents, mediated by calcium-
dependent potassium channels (Madison & Nicoll, 1984), and slow recovery from in-
activation of the fast sodium channel (Fleidervish et al., 1996).

Recent computer simulations and analytical studies have focused on specific adap-
tation mechanisms (Cartling, 1996; Wang, 1998; Ermentrout, 1998; Ermentrout et al.,
2001). To complement these approaches we investigate a large group of potential cel-
lular mechanisms. Our goal is to derive a single universal model that is independent of
the biophysical processes underlying adaptation.

Such a framework has various advantages, both from an experimental and a the-
oretical point of view. For example, it is often desirable to quantify spike-frequency
adaptation without performing pharmacological manipulations to characterize specific
adaptation currents (Benda et al., 2001). This is particularly true if these currents have
not yet been identified in detail. Furthermore, a low-dimensional phenomenological
model is well suited for systematic network simulations and may thus help to elucidate
the functional role of cellular adaptation on the systems level.

The phenomenon of spike-frequency adaptation is illustrated in Fig. 1. Let us as-
sume that the investigated neuron is in a fully unadapted state. The initial response to a
step-like stimulus reflects the properties of the non-adapted cell, which are determined
by the fast processes of the spike generator only. The resulting behavior is covered by
the neuron’s onset f -I-curve f0(I) which describes the initial firing frequency f0 as a
function of the stimulus intensity I. Due to adaptation the firing frequency f decays to
some steady-state value f∞. The neuron may even stop spiking after a while. Measuring
f∞ for different inputs I results in the steady-state f -I-curve f∞(I). Electrophysiological
recordings show that the decay of the firing frequency is often approximately exponen-
tial and characterized by some effective adaptation time constant τeff which may range
from tens of milliseconds (Madison & Nicoll, 1984; Stocker et al., 1999) to several sec-
onds (Edman et al., 1987; Sah & Clements, 1999). The model we are going to derive is
completely defined by the onset f -I-curve f0(I), the steady-state f -I-curve f∞(I), and
the effective time constant τeff. These quantities can be easily measured experimentally
and thus allow to quickly characterize the adaptation properties of individual neurons.

The paper is organized as follows. In section 2 we extract generic properties of three
prototypical adaptation mechanisms. This allows us to derive a universal phenomeno-
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Figure 1: The phenomenon of spike-frequency adaptation. A The voltage trace of a modified
Traub-Miles model with mAHP-current (see Appendix for details) evoked by a step-like stim-
ulus (I = 18µA/cm2) as indicated by the solid bar. B The corresponding instantaneous firing
frequency, defined as the reciprocal of the interspike intervals. The response f decays from
its onset value f0 in an approximately exponential manner (dashed line) with an effective time
constant τeff to a steady-state value f∞. C Measuring the onset and steady-state response at dif-
ferent stimulus intensities results in the onset and the steady-state f -I-curves, f0(I) and f∞(I),
respectively. D τeff depends on input intensity I and is much smaller than the time constant τCa
of the calcium removal which determines the dynamics of adaptation in the model used for this
simulation.

logical model in section 3. In section 4 we investigate how the parameters of the model
are related to the neuron’s f -I-curves, and how the adaptation time constant can be es-
timated experimentally. Based on the model we analyze the effect of adaptation on the
neuron’s f -I-curves and quantify signal transmission properties arising from adaptation
in section 5. Section 6 extends our results and shows how the adaptation model can be
combined with models of spike generation. We discuss the model in section 7. A list
of commonly used symbols is given in the Appendix.

To illustrate our results we use a modified Traub-Miles model (Ermentrout, 1998)
as well as the Crook model (Crook et al., 1998). We add either an M-type current or an
mAHP-current to simulate spike-frequency adaptation. The dynamical equations and
parameter values are also summarized in the Appendix.
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2 General characteristics of adaptation currents
In this section we examine three basic types of ionic currents causing spike-frequency
adaptation: M-type currents, mAHP-type currents, and sodium currents with slow re-
covery from inhibition. Our goal is to show that all these different mechanisms can be
described by an effective adaptation current IA:

IA = ḡAmphq ca(V −EA) (1a)

τa(V )
da
dt

= a∞(V )−a . (1b)

As in the following, the time-dependence of dynamical variables has been omitted for
simplicity. ḡa is the current’s maximum conductance and EA is its reversal potential.
The dynamics (1b) of the adaptation gating variable a is a simple relaxation towards
a voltage dependent steady-state variable a∞(V ) with a time constant τa(V ) that could
depend on the membrane potential V . m and h are possible additional voltage gated
variables raised to the integer power p and q, respectively. Both variables — if present
— have to be much faster than the adaptation variable a. The constant c is a proportion-
ality factor for a. In essence, equations (1) are the well known equations for a voltage
gated current as introduced by Hodgkin & Huxley (1952).

2.1 M-type currents
M-type currents are slow voltage dependent potassium currents (Brown & Adams,
1980). Their dynamics is captured by

IM = ḡMa(V −EM) (2a)

τa(V )
da
dt

= a∞(V )−a , (2b)

where ḡM denotes the maximum conductance and EM the reversal potential. The
steady-state variable a∞(V ) is a sigmoidal function of the membrane potential V with
values between zero and one. M-type currents are mainly activated during a spike
(Fig. 2 and Fig. 3). Between spikes, they deactivate slowly as determined by their time
constant τa(V ). Activation of M-type currents causes spike-frequency adaptation, since
as potassium currents they decrease the sensitivity of the spike generator to input cur-
rents. Equations (2) are a simple realization of the general description (1) with a being
the only gating variable and c = 1.

2.2 mAHP-currents
An important adaptation mechanism arises from medium after-hyperpolarization (mAHP)-
currents, which are calcium dependent potassium currents (Madison & Nicoll, 1984).
Three processes are involved in this type of adaptation.



J. Benda & A. V. M. Herz: A Universal Model for Spike-Frequency Adaptation 5

τ a
(V

)
/

m
s

Traub-Miles

Crook

B time constants

V/mV200−20−40−60−80

120

100

80

60

40

20

0

α−
1 (

V
)
/

se
c

1
α(V )

a ∞
(V

)

Traub-Miles

Crook

A steady-state variable
2.5

2

1.5

1

0.5

0
V/mV200−20−40−60−80

1

0.8

0.6

0.4

0.2

0

Figure 2: Properties of M-type-currents. A The dependence of the activation function a∞(V )

on the membrane potential V as defined in the Crook model and the modified Traub-Miles
model. While in the Crook model the M-type current is slightly activated already at rest
(Vrest = −71.4 mV), in the modified Traub-Miles model it is only activated during spikes
(Vrest = −66.5 mV). The dotted line is the inverse rate constant α(V ) of the M-type current
in the Crook model, given in seconds. B The time constant τa(V ) in the Crook model is the
product of a∞(V ) and 1/α(V ) shown in panel A and has a peak within the linear range of a∞(V ).
In the modified Traub-Miles model τa(V ) is assumed to be constant.

First, there are different voltage gated calcium channels (N-, P-, Q-, L- and T-type)
that are rapidly activated by depolarizations (about one millisecond, Jaffe et al., 1994).
Recent calcium imaging studies show that the total calcium influx per spike is approxi-
mately constant (Schiller et al., 1995; Helmchen et al., 1996). Calcium-induced calcium
release may also contribute to spike triggered calcium transients (Sandler & Barbara,
1999). All these processes are very fast. They can be viewed as part of the spike gener-
ator and do not lead to adaptation. In the context of adaptation the only relevant effect
of these currents is that they increase the intracellular calcium concentration.

Second, calcium is removed with a slow time constant τCa. This process is the result
of buffering, diffusion, and calcium pumps and can be described by

τCa
d[Ca2+]

dt
= βICa− [Ca2+] , (3)

i.e. the concentration of intracellular calcium [Ca2+] is increased proportionally to the
calcium influx ICa (Traub et al., 1991). The time constant τCa of the calcium removal
determines the time scale of this type of adaptation. Thus, the calcium dynamics (3) is
equivalent to the dynamics (2b) of the gating variable a of an M-type current.

Finally, a potassium current IAHP is activated depending on the intracellular calcium
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concentration (Brown & Griffith, 1983; Madison & Nicoll, 1984):

IAHP = ḡAHP q(V −EK) (4a)

τq([Ca2+])
dq
dt

= q∞([Ca2+])−q (4b)

This mAHP-current is responsible for spike-frequency adaptation. Due to the slow cal-
cium dynamics (3) q∞([Ca2+]) is also changing slowly. The time constant τq, however,
is much smaller than the time constant τCa of the calcium removal. Thus we can approx-
imate the gating variable q by its steady-state variable q∞([Ca2+]). As the analysis of
various models shows, q∞([Ca2+]) is well captured by a first order Michaelis-Menten-
function and takes only small values (Crook et al., 1998; Ermentrout, 1998). Therefore
we can approximate it by q∞([Ca2+])≈ c · [Ca2+] where c > 0.

With these approximations an mAHP-type current can be summarized as

IAHP ≈ ḡAHP c [Ca2+] (V −EK) (5a)

τCa
d[Ca2+]

dt
= βICa(V )− [Ca2+] . (5b)

Since the calcium currents are fast, the calcium influx ICa has been approximated by a
function directly depending on the membrane potential. The dynamics of mAHP-type
currents are thus formally equal to those of an M-type current.

2.3 Slow recovery from inactivation
Slow recovery from inactivation of fast sodium channels is caused by an additional
inactivation of the sodium current, which is much slower than the Hodgkin-Huxley-
type inactivation h. It induces a use-dependent removal of excitable sodium channels
and results in spike-frequency adaptation (Fleidervish et al., 1996).

Such currents are gated by an activation variable m and inactivation variable h, and
an additional slow inactivation variable s:

INa = ḡNam3hs(V −ENa) (6a)

τm(V )
dm
dt

= m∞(V )−m (6b)

τh(V )
dh
dt

= h∞(V )−h (6c)

τs(V )
ds
dt

= s∞(V )− s . (6d)

The time constant τm of the activation variable m is shorter than one millisecond and
τh is of the order of a few milliseconds (Hodgkin & Huxley, 1952; Martina & Jonas,
1997). In contrast, the time constant τs of the slow inactivation process s ranges from
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a few 100 ms (Martina & Jonas, 1997; Fleidervish et al., 1996) to more than a second
(Edman et al., 1987; French, 1989).

Substituting the term (1−a) for the slow inactivation gating variable s results in

INa = ḡNam3h(V −ENa)− ḡNam3ha(V −ENa) (7a)

τs(V )
da
dt

= 1− s∞(V )−a . (7b)

By this transformation, we have formally split INa into two components. The first one
depends only on the two fast gating variables m and h, and is responsible for spike
initiation only. The second component depends on the two fast gating variables m and
h and on the gating variable a. The time constant τs(V ) of the dynamics (7b) of a is
voltage dependent and much slower than the spike generator. The steady-state variable
1− s∞(V ) is mainly activated at depolarized potentials, i.e. during spikes. Thus, this
second component causes adaptation. It conforms with the general adaptation current
(1a) with c =−1. The dynamics (7b) resembles that of an M-type current (2b).

The adaptation current differs from the spike-initiating component in (7a) by the
factor a. Under realistic conditions a never gets close to its maximum value, which is
unity, since very high sustained firing frequencies would be required to do so. There-
fore, most of the time the adaptation current is smaller than the spike-initiating com-
ponent. Because V stays always below the reversal potential of the sodium current, the
driving force V −ENa is negative so that the second component in (7a) is positive as the
M-type current.

3 Universal phenomenological model
The previous section has shown that three fundamental adaptation mechanisms can be
reduced to a single current (1a) which is gated by a single variable obeying a first order
differential equation (1b). We now go one step further and derive a phenomenological
model for the firing frequency of an adapting neuron, whose parameter are independent
of the specific adaptation process. To achieve this goal we replace the adaptation gating
variable a as well as the adaptation current IA by suitable time averages. All the depen-
dencies on the membrane potential can then be replaced by functions depending on the
firing frequency f . The resulting universal model for spike-frequency adaptation reads

f = f0

(
I−A · [1 + γ( f )]

)
(8a)

τ · [1 + ε( f )]
dA
dt

= A∞( f )−A . (8b)

The adaptation state A generalizes the averaged adaptation gating variable a and decays
with the adaptation time constant τ towards the steady-state adaptation strength A∞
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which depends on the current firing frequency f . The averaged adaptation current
A · [1+ γ( f )] depends linearly on A and may be influenced by f through γ( f ). The term
ε( f ) covers a potential dependence of τ on f . The input current I minus the averaged
adaptation current is mapped trough the neuron’s onset f -I-curve f0(I) to result in the
firing frequency f .

In the next subsection we first motivate equation (8a). We then derive the simplified
adaptation current and its dynamics (8b) from the general adaptation current (1).

3.1 Spike generator and firing frequency
Let us first consider a spiking neuron which does not adapt at all. The neuron only
contains fast ion channels responsible for spike generation. The membrane potential V
at the neuron’s spike initiating zone evolves according to

C
dV
dt

=−∑
i

gi(V −Ei) + I . (9)

The parameter C is the membrane capacitance. Ionic currents of type i are characterized
by a reversal potential Ei and a conductance gi, whose dynamics is described by further
differential equations (Hodgkin & Huxley, 1952; Johnston & Wu, 1997). The input
current I can be viewed as a dendritic current, a synaptic current, or as a current injected
through a microelectrode.

In general the membrane equation (9) cannot be solved analytically. However, we
do not need to know the exact time course of the membrane potential, because we are
only interested in times at which spikes occur. For strong enough input the neuron fires
repetitively with firing frequency f (Hodgkin, 1948). For constant or slowly varying
stimulus I(t), this is captured by the neuron’s f -I-curve

f (t) = f0(I(t)) , (10)

the most simple transformation of an input current into spikes. In the following we use
(10) to indicate that the spike generator transforms the input signal into a sequence of
spikes from which a firing frequency f (t) can be computed. We discuss this process
and the validity of (10) in more detail in section 6. The main advantage of using the
neuron’s f -I-curve to characterize its encoding properties is that for real neurons the
f -I-curve can be easily obtained from electrophysiological recordings.

Adding an adaptation current (1a) can be viewed as adding a second input current.
Formally, the firing frequency of the neuron is then given by

f = f0(I− IA) = f0(I− ḡAmphqca(V −EA)) . (11)

This provides a first hint that the main effect of an adaptation current may be a shift of
the neuron’s f -I-curve in the direction of higher input currents I.
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Equation (11) is, however, insufficient for a model that involves firing frequency
only, since it still contains m, h, and V . As a next step we show how the adaptation
current can be replaced by a suitable average which no longer depends on the spike
generator.

3.2 Averaging the adaptation current
Since the overall evolution of the adaptation gating-variable a is slow compared to
spike generation (see for example Fig. 3C), we may try to separate both sub-systems
and replace a by its running average 〈a〉T over one period T of the fast sub-system

a(t)≈ 〈a〉T (t) :=
1

T (t)

t+T (t)/2Z

t−T (t)/2

a(t ′)dt ′ (12)

where T (t) denotes the time-dependent interspike interval (ISI). To allow this distinc-
tion between a fast and a slow dynamics, T (t) has to be short compared to the time con-
stant of the adaptation processes, which is true for sufficiently high firing frequencies.
This key assumption implies that the spike generator is operating in its super-threshold
regime.

We next aim at replacing the adaptation current IA in (1a) by a suitable average

〈IA〉T,w =

Z T

0
w(t)IA(t)dt , (13)

where the normalized weight function w(t),
R T

0 wdt = 1, is chosen such that 〈IA〉T,w
does not change the effect on the resulting firing frequency. Inserting the general adap-
tation current (1a) and replacing a by its time average (12) we obtain

〈IA〉T,w = 〈ḡAmphq c 〈a〉T (V −EA)〉T,w (14)

where we can move ḡAc〈a〉T out of the average. Then (14) represents an average over
the variables V , m, and h of the spike generator only.

If the effect of the adaptation current on the time course of these variables is approx-
imately independent of the specific value of 〈a〉T , then there exists a weight function
which is independent of adaptation, i.e. the weight is solely a property of the spike
generator. This is the second assumption needed for the separation of the fast spiking
and the slow adaptation dynamics. It implies that the adaptation current simply reduces
the input current and that fluctuations of the adaptation current have a negligible effect
on the time course of the spike generator. This assumption amounts to a weak coupling
between the adaptation current and the spike generator. Its validity depends on the par-
ticular dynamics of the spike generator and on the strength of the adaptation current as
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Figure 3: The dynamics of an adaptation current. Shown is a simulation of the Crook model
stimulated with a constant current I = 4µA/cm2 starting at t = 0. Only the sodium, potassium
and calcium currents are included in the membrane equation so that the firing frequency is
constant and does not adapt. To illustrate the generic behavior of adaptation currents, panels B
– E display the dynamical variables of an M-type current activated by the voltage trace shown in
A. The steady-state variable a∞(V ) and the time constant τa(V ) used to model the M-type current
are shown in Fig. 2. A The voltage trace. The dotted straight line marks the potential above
which a∞(V ) is activated. B The time course of a∞(V ) resulting from the voltage trace in A. C Due
to the fast deflections of a∞(V ) the adaptation gating-variable a increases rapidly during spikes.
Between the spikes a decays with the time constant τa(V ) shown in E. The time course of a can
be well approximated by its running average 〈a〉T , which is roughly exponential (dashed line)
with a time constant of 61 ms in this simulation. D The adaptation current IM = ḡMa(V −EM).
Note its large fluctuations caused by the spike activity. E The time constant τa(V ) also fluctuates
strongly during the spikes. The dotted line denotes the value of the time constant corresponding
to the mean gating variable in C.
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Figure 4: Averaging the membrane potential. A Time course of the membrane potential V (t)
during interspike intervals for different firing frequencies f = 40, 80, 120, 160, 200, 240, and
280 Hz. Shown are results from the modified Traub-Miles model with mAHP-type current. For
low firing frequencies the membrane potential stays longer near about −70 mV. With increasing
firing frequency more time is spent at more hyperpolarized potentials. B According to equation
(15), the averaged driving force 〈V −EK〉T,w is a function of the firing frequency (for simplicity
we used the response function of the θ-neuron z(t) = 1− cos(2πt/T ) (Ermentrout, 1996) for
the weight w to generate the data shown in the plot). Its absolute value ρ is larger than the
f -dependent term ργ( f ).

stronger adaptation currents will also have stronger fluctuations. The potential depen-
dence of the γ( f )-term in (8a) on A can be used to verify this assumption (see section
4).

In the Appendix we show that for small adaptation strength the weight w in (13) is
directly related to the neuron’s normalized response function. Response functions are
typically small during spikes and deviate strongly from zero between spikes (Reyes &
Fetz, 1993; Hansel et al., 1995; Ermentrout, 1996). Strong fluctuations of the adaptation
current during a spike and during the refractory period, as in Fig. 3D, have almost no
effect on the firing behavior. What really matters for spike generation is the time course
of the adaptation current once the neuron has recovered from the last action potential.

Since in (14) we average over the variables V , m, and h of the fast spike-generating
dynamics the detailed time course of these fast variables is no longer important. Due
to the weak coupling assumption their time course is independent of adaptation and
thus is uniquely characterized by the resulting firing frequency, since usually the super-
threshold part of f -I-curves is strictly monotonic. We can therefore replace the remain-
ing term 〈mphq(V −EA)〉T,w from averaging (1a) by some function ρ̃( f ):

〈mphq(V −EA)〉T,w ≈ ρ̃( f ) . (15)

The example shown in Fig. 4A illustrates how the time course of the voltage trace
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may depend on f . Similar graphs from experimental data can be found in the literature,
see e.g. Schwindt (1973). To emphasize the functional form of ρ̃( f ) we rewrite this
term as ρ · [1+γ( f )], where ρ is a constant and γ( f ) captures the frequency dependence
(Fig. 4B).

The adaptation current can thus be approximated by a function only depending on
f :

IA ≈ ḡAc〈a〉T ρ · [1 + γ( f )] . (16)

For adaptation based on potassium currents (M-type and mAHP-type currents) both ρ,
which equals 〈V −EK〉T,w, and c are positive. For slow recovery from inactivation of
sodium currents where c < 0 the membrane potential stays always below the reversal
potential ENa resulting in a negative ρ. Thus cρ is again positive. Defining

A := ḡMc〈a〉T ρ (17)

as the adaptation state A and inserting (16) into (11) we finally obtain (8a). Adaptation
shifts the onset f -I-curve f0(I), as expected from equation (11). The γ( f )-term adds a
complication in that it distorts the f -I-curve.

3.3 Averaging the adaptation dynamics
It remains to show how the dynamics (8b) for the adaptation state A can be derived
from the dynamics (1b) of the adaptation variable a. To do so we average (1b) over one
ISI to get an equation for 〈a〉T , which by definition (17) is proportional to A.

The possibleV -dependence of τa(V ) introduces a complication. If we average equa-
tion (1b) directly we have to factorize 〈τa(V )da/dt〉T into the product of 〈τa(V )〉T and
〈da/dt〉T to isolate 〈a〉T . However, this is poses a problem as τa(V ) and da/dt co-
vary: According to the Hodgkin-Huxley formalism, τa(V ) is given by a∞(V ) divided
by the corresponding rate constant α(V ) of the transition of the channels from their
closed to their open state (Johnston & Wu, 1997). Typically, α(V ) increases monoton-
ically and a∞(V ) is a sigmoidal function whose linear range is located above the cell’s
resting potential and τa(V ) takes its maximum above but close to the resting potential
(see also Fig. 2). This results in a brief but strong negative deflection of τa(V ) from
its mean value during an action potential, as visible in Fig. 3E. At the same time, a(t)
increases in a step like manner when a spike occurs. This implies that τa(V ) and da/dt
are strongly anti-correlated. For example, for the Crook model displayed in Fig. 3, the
correlation is r = −0.79. Thus we cannot average equation (1b) directly and have to
search for an alternative approach.

To isolate 〈a〉T , we divide both sides of (1b) by τa(V ) and then average over one
ISI: 〈

da
dt

〉

T
=

〈
a∞(V )

τa(V )

〉

T
−
〈

a
τa(V )

〉

T
. (18)
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In general, the length of the averaging window T (t) depends on time t, so that
〈

da
dt

〉

T
=

d〈a〉T
dt
− dT/dt

T

(
a(t + T/2) + a(t−T/2)

2
−〈a〉T

)
. (19)

Since we assume that a changes little during one ISI, we can neglect the last term in
parentheses and obtain 〈

da
dt

〉

T
≈ d〈a〉T

dt
. (20)

We still have to replace the term 〈a/τa(V )〉T by an appropriate factorization. This is
possible because the fast fluctuations of τa(t) during a spike strongly reduce a possi-
ble correlation between a(t) and 1/τa(t). In the simulation shown in Fig. 3 this cor-
relation is less than 0.15. The term 〈a/τa(V )〉T may therefore be approximated by
〈a〉T 〈1/τa(V )〉T .

Dividing (18) by 〈1/τa(V )〉T then results in the desired dynamics for 〈a〉T :

1
〈1/τa(V )〉T

d〈a〉T
dt

=
1

〈1/τa(V )〉T

〈
a∞(V )

τa(V )

〉

T
−〈a〉T . (21)

As shown for equation (15), we can approximate averages of functions depending on
V by functions depending on the firing frequency f . Doing so, we obtain the time
constant

τ̃( f )≈ 1
〈1/τa(V )〉T

(22)

and steady-state variable

κ( f )≈ 1
〈1/τa(V )〉T

〈
a∞(V )

τa(V )

〉

T
. (23)

With these abbreviations (21) reads

τ̃( f )
d〈a〉T

dt
= κ( f )−〈a〉T . (24)

Both κ( f ) and τ̃( f ) can be obtained from either the time course of the adaptation
gating variable a (Fig. 3C), or by the averages (22) and (23) over a single ISI. Both
methods agree well as illustrated in Fig. 5 for the modified Traub-Miles model and the
Crook model with M-type currents. It is worthwhile to compare τ̃( f ) with the time
constant governing 〈IA〉T,w. Fig. 5A shows that these two functions agree well, too.
Thus, at least for these two models and slowly-varying input currents the approxima-
tions involved in the averaging procedure are valid.

As suggested by Fig. 5A variations of τ̃( f ) might be small compared to its absolute
value. Therefore we rewrite τ̃( f ) as τ[1 + ε( f )] where τ is a constant and ε( f ) cap-
tures the dependence on the firing frequency. Multiplying (24) with ḡAcρ and setting
A∞( f ) = ḡAcρκ( f ), we finally obtain the differential equation (8b) for A = ḡAcρ〈a〉
(17).
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Figure 5: Averaging the dynamics of M-type current gating-variables. Carrying out the same
simulation as in Fig. 3 (M-type current not included in the membrane equation) allows us to
measure the adaptation time constant τ̃( f ) and the steady-state variable κ( f ) as a function of
the firing frequency f from the time course of the gating variable a. Alternatively, these two
quantities can be determined as the averages given in (22) and (23). The graphs show simula-
tions of the modified Traub-Miles model and the Crook model. A The adaptation time constant
as the average τ̃( f ) = 1/〈1/τa(V )〉T over a single interspike interval (solid lines), fitted from
the time course of the adaptation gating-variable a(t) (dashed lines, see also Fig. 3C), and fitted
from the time course of the resulting adaptation current IM (dotted lines, Fig. 3D). All three
measures agree well, thus confirming the averaging procedures. B The steady-state adapta-
tion variable as the average κ( f ) = 1/〈1/τa〉T 〈a∞/τa〉T over a single interspike interval (solid
lines), measured from the time course of the adaptation gating-variable a(t) (dashed lines), and
as A∞( f )/ḡAρ determined from the onset and steady-state f -I-curve of the models with the M-
type current included using (26) (dashed-dotted lines). The factor ḡAρ and the necessary offset
were chosen to fit κ( f ). This resulted for the modified Traub-Miles model in ρ = 29 mV and
for the Crook model in ρ = 1.7 mV. Again, all three measures agree well. For comparison, the
best fitting straight lines g( f ) = m f +b for low firing frequencies are also plotted (dotted lines).
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4 Parameters of the adaptation model
With the exception of the onset f -I-curve f0(I) all parameters of the model rely on
microscopic properties of a specific adaptation mechanism through averages over the
adaptation gating variable or the membrane potential. We next show how the model
parameters can be obtained from macroscopic measurements.

4.1 Steady-state strength of adaptation
In steady state the firing frequency is given by f∞(I) and the adaptation state A equals
A∞. Solving the equation for the adapted firing frequency (8a) for A∞ results in

A∞( f∞) =
I− f−1

0 ( f∞)

1 + γ( f∞)
, (25)

where f−1
0 is the inverse function of the onset f -I-curve f0. In steady state the input I

obeys I = f−1
∞ ( f∞), so that

A∞( f ) =
f−1
∞ ( f )− f−1

0 ( f )

1 + γ( f )
. (26)

In Fig. 5B A∞( f ) is compared with the averaged steady-state gating variable κ( f ).
What functional behavior do we expect for A∞( f )? Recall that A∞( f ) is propor-

tional to κ( f ). To understand the dependence of κ( f ) on f we decompose the time
course of a∞(V (t)) during one ISI into a stereotypical waveform aS(t) reflecting the
spike (with duration TS) and aISI(t) describing the non-spike related part of a∞(V ). As-
suming τa(V ) to be constant the average (23) reads

κ( f )≈
〈
a∞(V )

〉
T =

1
T

(Z TS

0
aS(t)dt +

Z T

0
aISI(t)dt

)
. (27)

The first integral is a constant since the spike waveform is usually independent of firing
frequency. The second integral is small compared to the first one since a∞(V ) is not
significantly activated by the low membrane potentials between spikes. We therefore
expect κ( f ) and thus A∞( f ) to be proportional to f = 1/T . Deviations from this behav-
ior are caused by an activation of adaptation channels between spikes, or by frequency
dependent spike deformations.

For the modified Traub-Miles model A∞( f ) is indeed proportional to f , (Fig. 5B),
because the M-type current of this model is activated during spikes only (Fig. 2A). In
the Crook model, however, the current is already activated at lower potentials. This
causes a nonlinear κ( f ) and a positive offset at f = 0. The offset can be removed by
adding the spike independent part of the M-type current to the membrane equation (9).
Doing so, κ( f ) becomes approximately proportional to f for small firing frequencies.
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4.2 The γ( f ) - term
The γ( f )-term describes the frequency dependence of the averaged adaptation current
(16). To determine this term at least one adapted f -I-curve f (I;A) of the neuron being at
a certain constant adaptation state A is needed. γ( f ) can then be derived from equation
(8a),

γ( f ) =
I− f−1

0 ( f (I;A))

A
−1 . (28)

In this equation A is the distance between the onset f -I-curve f0(I) and the adapted
f -I-curve f (I;A) at some firing frequency. Note that γ( f ) is small in a region around
this firing frequency. It can therefore be neglected for small fluctuations of the input I.
In Fig. 6 an example of γ( f ) is shown, together with information about how to measure
f (I;A).

Can we neglect the γ( f )-term if the input has larger fluctuations? Let us decompose
the time course of the membrane potential into a stereotypical spike waveform VS(t)
of duration TS and a second term VISI(t) describing the non-spike related part of V .
Similarly to (27) the average (15) with p = q = 0 then reads

ρ̃( f ) = 〈V −EA〉T,w =
1
T

(Z TS

0
w̃(t)VS(t)dt +

Z T

0
w̃(t)VISI(t)dt

)
−EA . (29)

As a simplifying hypothesis, let us further assume that VISI(t) as well as the weight
function w(t) obey a scale invariance such that VISI(t) = V̂ISI(t f ) and w(t) = ŵ(t f ).
Substituting x for t f we get

ρ̃( f )≈ 1
T

Z TS

0
w(t)VS(t)dt +

Z 1

0
ŵ(x)V̂ISI(x)dx−EA . (30)

The first integral covers spike-related phenomena and can be neglected because w(t) is
small during the spike and usually TS � T . According to our assumption, the second
integral is independent of f , so that ρ̃( f ) is constant. Thus, for this scenario the γ( f )-
term vanishes. A non-zero γ( f )-term most likely results from a dependence of VISI(t)
on f which does not scale with f . Fig. 4 gives one example.

Note that the γ( f )-term should be independent of A (inset in Fig. 6B). If this is not
the case then the weak coupling assumption of the model is invalid.

4.3 Time constants of adaptation
In addition to the onset f -I-curve, the steady-state f -I-curve, and the γ( f )-term, we still
need to know how to measure the adaptation time constant τ in equation (8b) in order
to apply the adaptation model to experimental data. To address this issue we explore
the relation between τ and the effective time constant τeff describing the decay of the
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Figure 6: Adapted f -I-curves. A Comparison of some adapted f -I-curves f (I;A) with the onset
f -I-curve f0(I)≡ f (I;0) and the steady-state f -I-curve f∞(I) for the modified Traub-Miles with
mAHP-current. B The adapted f -I-curves shifted on top of the onset f -I-curve so that they
align at f = 230 Hz. As expected, all these f -I-curves are similar in shape. The inset shows
the corresponding γ( f )-terms which were computed using (28) and A set to the distance of the
f -I-curves at f = 230 Hz. The γ( f )-terms are very similar, thus verifying the weak coupling
assumption of the universal model. Above a firing frequency of approximately 50 Hz the γ( f )-
term is small (less than 6 %). The deviations of the f -I-curves and thus the high (negative)
values of the γ( f )-term below 50 Hz may arise due to the difficulties to measure the adapted f -I-
curves. C Firing frequencies evoked by the protocol for measuring an adapted f -I-curve (inset).
In this example the neuron is first adapted to I0 = 12 (conditioning stimulus, −300 ms < t < 0).
Then the input is stepped to different test stimuli I (t > 0) to measure the initial response of
the adapted neuron at these intensities (dots). The responses to higher test intensities show
sharp peaks which decay back to a new steady-state. Lower test intensities result in decreased
responses, which increase due to recovery from adaptation to the corresponding steady-state
values. D A closer look at some of the responses in C reveals that the initial responses for
stimulus intensities below the conditioning stimulus are not well defined. Since the neuron
responds with repetitive firing to the conditioning stimulus, there might be a spike at t = 0 or
shortly before. Thus, the lowest firing frequency that can be measured before a spike at time t is
f ≈ 1/t (dotted line). As a consequence, firing frequencies (dots) measured below the 1/t-line
overestimate the real response. This results in the tails of the adapted f -I-curves in A.
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firing frequency during constant stimulation (see Fig. 1B). First we discuss why these
two time constants differ in general. Then we investigate how the time course of the
adaptation state can be measured and used to estimate τ. Finally, we linearize the model
(8) to give a direct relation between τ and τeff.

The different estimates of τ are illustrated in Fig. 7. For simplicity the ε( f )-term
introducing a dependence of the adaptation time constant on the firing frequency is
neglected in the following analysis. We justify this in the last paragraph of this section.

In general the adaptation time constant τ is not identical with the effective time
constant τeff (see Fig. 1D). The main reason for this is that the steady-state strength of
adaptation A∞ depends on the actual firing frequency. Thus A∞ is not constant and A(t)
is not necessarily an exponential function with time constant τ. The time constant τA,
which we obtain by fitting a single exponential to the time course of A(t), may therefore
differ from τ. A possible discrepancy between τ and τeff may also be due to the onset
f -I-curve and the γ( f )-term. Both determine how A influences f . If γ( f ) is non-zero
or the onset f -I-curve is non-linear, τeff differs from τA and thus from τ.

Knowing f0(I) and γ( f ) enables one to calculate the time course of A from (8a):

A =
I− f−1

0 ( f )

1 + γ( f )
(31)

Using this equation the time evolution of A can be computed without any knowledge
about the adaptation time constant and mechanism, provided f−1

0 (I) exists. This is
guaranteed if f0(I) is strictly monotone in the region of interest but excludes the sub-
threshold region where f0(I) vanishes. From the decay of A for constant I, the corre-
sponding time constant τA can be obtained by fitting a single exponential on A(t).

The dependence of A∞ on f still causes τA to differ from τ. However, for sub-
threshold stimuli, f is zero and so is A∞. Equation (8b) reduces to τdA/dt = −A, an
exponential recovery of A with time constant τ. Since f = 0, we cannot compute the
time course of A directly from (31). Instead, we have to probe A(t) by applying short
test stimuli with given intensity I at different times after the offset of an adaptation
stimulus. From the onset firing frequencies evoked by these stimuli we can infer A(t)
through (31). By fitting a single exponential on A(t) we finally obtain τ. Note, however,
that with this method we violate the assumption of high firing frequencies. For V
dependent time constants τa(V ), like the one of the M-type current in the Crook model
(Fig. 2B), this method measures the value of the time constant at resting potential which
can be much smaller than τ for the super-threshold regime.

A simple method to estimate τ for the super-threshold regime is to calculate it di-
rectly from τeff. Eliminating A in (8b) using (8a) and (26), and expanding the f -I-curves
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Figure 7: Adaptation time constants. A The onset f -I-curve and the steady-state f -I-curve
used for the simulation of time constants shown in C. The choice f0(I) = 60

√
I reproduces

the shape of a typical f -I-curve of a type-I neuron (Ermentrout, 1996) and the corresponding
steady-state f -I-curve f∞(I) = 60

√
I + 0.12602/4− 0.1 ·602/2 results from linear adaptation

of medium strength with A∞( f ) = 0.1 · f . B The f -I-curves of the modified Traub-Miles model
with M-type current as a more realistic example for estimating the adaptation time constant. C
Time constants calculated from f (t) simulated with the model (8) using the f -I-curves shown
in A and τ = 100 ms. D Time constants resulting from simulations with the Traub-Miles model
where τ = 100 ms (horizontal dotted line). C & D For sub-threshold stimuli (I < 0), the time
constants were derived from recovery from adaptation as explained in the main text. For super-
threshold stimuli τeff is directly measured from f (t) by means of an exponential fit. For sub-
and especially super-threshold stimuli τeff is smaller than τ. The time constant τA of the decay
of A(t) was computed from the response f (t) using (31). For super-threshold stimuli τA differs
clearly from τ. The correction of τeff with f ′0( f−1

0 ( f∞(I)))/ f ′∞(I) overestimates τ whereas the
correction with f ′0(I)/ f ′∞( f−1

∞ ( f0(I))) results in values much closer to τ. An alternative way
to estimate τ is to fit f (t) computed with the model (8) to the measured f (t) with τ as the fit
parameter. This gives the best estimate τ f of the true τ. For sub-threshold stimulus intensities
τA reveals a good estimate of τ, too. D Note that for low firing frequencies (at about I < 4) the
model assumption f � 1/τ is not fulfilled.
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around f∞(I)

f−1
∞ ( f ) ≈ I +

d f−1
∞

d f

∣∣∣∣
f = f∞(I)

·( f − f∞(I)) (32a)

f−1
0 ( f ) ≈ f−1

0 ( f∞(I)) +
d f−1

0
d f

∣∣∣∣∣
f = f∞(I)

·( f − f∞(I)) (32b)

results in a linear differential equation for f

τeff(I)
d f
dt

= f∞(I) + τeff(I) f ′0( f−1
0 ( f∞(I)))

dI
dt
− f . (33)

In this equation, τeff is the decay constant of the firing frequency f which is given by

τeff(I) = τ
f ′∞(I)

f ′0( f−1
0 ( f∞(I)))

. (34)

Thus τ is scaled by the slopes of the f -I-curves at the steady-state frequency f∞(I).
This approximation is correct for small deviations of f from f∞(I). However, τeff

is usually measured by applying a constant stimulus to the unadapted neuron, as in
Fig. 1. In this case the initial response deviates significantly from the steady state and
dominates the estimate of τeff. It might therefore be better to expand the f -I-curves at
f0(I) instead of f∞(I). Doing so we get

τeff(I) = τ
f ′∞( f−1

∞ ( f0(I)))
f ′0(I)

(35)

which generalizes the results of Ermentrout (1998) to arbitrary f -I-curves. Especially
slightly above the firing threshold of the onset f -I-curve f0(I), its slope is much larger
than that of the steady-state f -I-curve. This causes τeff to be smaller than at higher input
intensities. However, the time constant resulting from the M-type current of the Crook
model (Fig. 5A) increases for small f , thus counteracting the effect of the f -I-curves.
Inverting (35) allows us to estimate the adaptation time constant τ from the measured
τeff as illustrated in Fig. 7.

An alternative and more precise method to estimate τ is to fit f (t) computed with
the model (8) to the measured f (t) with τ as the fit parameter. If the resulting τ depends
strongly on the input, one might consider the possible dependence of the time constant
on f , i.e. ε( f ) may not be negligible.

How strongly might τ̃( f ) depend on f ? By definition (22) the answer is determined
by how V (t) depends on f . This is similar to the f dependence arising from averaging
the driving force V −EA (15) discussed earlier (equation (30), see also Fig. 4) with the
difference that now the average is not weighted by w. Since spikes are short compared
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to the remaining ISI, the main contribution of a possible dependence of τ̃( f ) on f
results from changes of the time course of VISI(t) which cannot be explained by a simple
scaling in time by f . Thus, we expect τ̃( f ) to depend only weakly on f . The Crook
model (Fig. 5A) confirms this expectation. For firing frequencies higher than 100 Hz it
reaches a constant value. However, for lower firing frequencies it depends on f . On
the other hand, the time constant of the modified Traub-Miles model is constant by
definition.

5 Signal-transmission properties
Using the phenomenological model (8) we may now quantify the influence of adapta-
tion on the signal transmission properties of a neuron based solely on the knowledge of
its f -I-curves and adaptation time constant. Formulating filter properties of a neuron in
terms of f -I-curves has the important advantage that they can easily be measured with
standard current injection techniques. This allows to quantify functional properties of
individual neurons with low experimental effort.

There are two different types of f -I-curves which have to be distinguished when
discussing the signal-transmission properties of a neuron that exhibits adaptation: the
adapted f -I-curves f (I;A) including the onset f -I-curve f0(I) = f (I;0) as a special
case on the one hand, and the steady-state f -I-curve f∞(I) on the other hand. In
Fig. 6A these different f -I-curves are illustrated for the modified Traub-Miles model.
The adapted f -I-curves describe the instantaneous response of a neuron in a given and
fixed adaptation state A. They are important for the transmission of stimulus compo-
nents which are faster than the adaptation dynamics, since only for such stimuli the
adaptation state can be considered to be fixed (for more details see section 5.3). Sec-
ond, there is the steady-state f -I-curve f∞(I). It describes the response of the neuron
when it is fully adapted to the applied fixed stimulus intensity, and is therefore the rele-
vant f -I-curve for the transmission of stimulus components slower than the adaptation
dynamics.

5.1 Adapted f -I-curves
What do the f -I-curves f (I;A) look like? Neglecting the γ( f )-term, equation (8a)
simplifies to f = f0(I−A). For fixed A the adapted f -I-curves are thus obtained by
shifting the onset f -I-curve by A. Adapted f -I-curves of the modified Traub-Miles
model (Fig. 6A) indeed align on top of the onset f -I-curve (Fig. 6B).

We measure adapted f -I-curves by first applying a constant stimulus I0 to prepare
the neuron in a specific adaptation state A. We then use different test intensities I and
construct the adapted f -I-curve from the evoked onset firing frequencies (Fig. 6C & D).
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Figure 8: Linearization of the steady-state f -I-curve. The effect of adaptation on an onset
f -I-curve given by f0(I) = 60

√
I is shown for γ( f ) = 0 and η(A) = A. A Linear adaptation

A∞( f ) = m · f linearizes and compresses the steady-state f -I-curve. The steady-state f -I-curve
is approximately linear as long as the firing frequency is so small that the onset f -I-curve is
close to a vertical line. Adaptation maps each point of the onset f -I-curve to the steady-state f -
I-curve by shifting it by the adaptation strength A∞( f ) to higher input values as sketched by the
arrow. B With quadratic adaptation A∞( f ) = c · f 2 the steady-state f -I-curves are down-scaled
versions of the onset f -I-curve. This type of adaptation therefore does not linearize f∞(I).

5.2 Linear steady-state f -I-curves and linear adaptation
Alternatively, we can ask which functional form the steady-state f -I-curve f∞(I) has,
given a specific dependence of A∞ on f . As shown by Ermentrout (1998) adaptation
linearizes the f∞(I)-curve. We now generalize his analysis.

In steady state f equals f∞(I) and A = A∞. From (8a) we obtain the implicit equation

f∞(I) = f0

(
I−A∞( f∞(I)) · [1 + γ( f∞(I))]

)
. (36)

This equation can be generalized if A acts through a function η(A). For example,
an AHP-type current may depend non-linearly on the calcium concentration, which
represents the adaptation state. The implicit equation for f∞(I) then reads

f∞(I) = f0

(
I−η(A∞( f∞(I))) · [1 + γ( f∞(I))]

)
=: f0

(
I− ĨA( f∞(I))

)
. (37)

ĨA( f ) := η(A∞( f )) · [1+ γ( f )] generalizes the averaged steady-state adaptation current.
Differentiating both sides of (37) yields

d f∞(I)
dI

= f ′0
(

I− ĨA( f∞(I))
)
·
(

1− Ĩ′A( f∞(I))
d f∞(I)

dI

)
, (38)
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Figure 9: Influence of the γ( f )-term on f -I-curves. A With linear γ( f ) = 0.02 f and increasing
adaptation A = 2, 4, 6, 8, 10, 12, the adapted f -I-curves f (I;A) are linearized and compressed.
B The linearizing effect of linear adaptation A∞( f ) = 0.1 f on the steady-state f -I-curve f∞(I)
is destroyed by a linear γ( f )-term (γ( f ) = γ̃ f , γ̃ = 0, 0.02, 0.2).

where the prime denotes a derivative with respect to the argument. We obtain

Ĩ′A( f∞(I)) =
1

f ′∞(I)
− 1

f ′0(I− ĨA( f∞(I)))
. (39)

There are two possibilities to obtain such a linear steady-state f -I-curve.
First, the derivative of the onset f -I-curve is either constant or infinity. The latter

is true for type-I neurons, whose onset f -I-curve is a square-root function near their
threshold (Ermentrout, 1996). The derivative of ĨA then also has to be constant. This
implies that ĨA is only allowed to vary linearly with f . This is the case if γ( f ) vanishes
and if η(A∞( f )) depends linearly on f . Since most likely A∞ is already proportional to
the firing frequency (Fig. 5B), η(A) has to equal A. We thus obtain

ĨA( f∞) = m · f∞ , (40)

where m is a proportionality constant. We refer to this set of conditions as “linear
adaptation”, since if they are satisfied, ĨA as well as A∞ depend linearly on f . Thus,
linear adaptation guarantees a linear steady-state f -I-curve for a linear or very steep
onset f -I-curve. See Fig. 8 and Fig. 9B for illustrations.

The second possibility is that the derivative of the onset f -I-curve is neither constant
nor infinity. A linear steady-state f -I-curve then can still arise if the ĨA fulfills (39) with
f ′∞(I) = const and f ′0(I) calculated from the observed onset f -I-curve. We conclude
that adaptation may (but need not) linearize the steady-state f -I-curve.

In the same manner, we can examine the influence of the γ( f )-term on the adapted
f -I-curves. Since A is fixed, the only term introducing an f -dependence is γ( f ):

f (I;A) = f0

(
I−A · [1 + γ( f )]

)
. (41)
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Taking derivatives of both sides of this equation and rearranging terms results in

γ′( f )A =
1

f ′(I;A)
− 1

f ′0
(

I−A · [1 + γ( f )]
) . (42)

Analogous to the situation for f∞(I) (39), there are two cases for getting a linear adapted
f -I-curve. First, if the onset f -I-curve is either a straight line or has an infinite slope at
threshold then γ( f ) must depend linearly on f (see Fig. 9). Note that in this scenario
linear steady-state f -I-curves are not possible. Second, if the onset f -I-curve is neither
a straight line nor has an infinite slope, then the γ( f )-term must depend appropriately
on f according to (42) with f ′(I;A) only depending on A. In this case linear steady-
state f -I-curves are unlikely since at the same time γ( f ) and ĨA have to satisfy equation
(42) and equation (39), respectively.

From a different point of view, we may summarize these findings as follows, given
a type-I or linear onset f -I-curve. Observing a linearized steady-state f -I-curve im-
plies that γ( f ) can be neglected and that the averaged adaptation current ĨA( f ) depends
linearly on f . A nonlinear steady-state f -I-curve implies a nontrivial γ( f )-term or a
nonlinear ĨA( f ). If the adapted f -I-curves are shifted versions of the onset f -I-curve,
the γ( f )-term can be ruled out, and the nonlinear steady-state f -I-curve is caused by
a nonlinear ĨA( f ). Note, however, that if the slope of the onset f -I-curve is neither
constant nor infinity, such general statements cannot be made.

5.3 High-pass filter properties due to adaptation
Spike-frequency adaptation is responsible for high-pass filter properties, since adapta-
tion currents resemble an inhibitory feedback. By means of the model (8) we can easily
quantify these filter properties for a specific neuron from the knowledge of its onset and
steady-state f -I-curve, and its adaptation time constant.

In essence the model (8) involves linear dynamics. The only nonlinearities are in-
troduced by the f -I-curves and the γ( f )-term. Consider a stimulus I(t) with sufficiently
small fluctuations so that the f -I-curves can be linearized around the steady-state firing
frequency and the γ( f )-term can be neglected. We then obtain (33), which is linear in
f and we can calculate its transfer function H f (ω) by means of Fourier-transformation.

|H f (ω)|= f ′∞

√√√√1 +
(
ωτeff f ′0/ f ′∞

)2

1 + ω2τ2
eff

(43)

is the gain for each frequency component ω/2π of the stimulus. Gain and phase shift
of H f are plotted in Fig. 10A & B.

Mean and low-frequency components of the stimulus up to ωτeff ≈ 0.2 are trans-
mitted via the slope of the steady-state f -I-curve (|H f (0)|= f ′∞). Fast fluctuations with
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Figure 10: Transfer functions. A Gain and B phase shift of the transfer function for the firing
frequency f (t). The gain (43) is plotted as multiples of the slope f ′∞ of the steady-state f -I-
curve. At negative phase shifts the output firing frequency advances the input. C Gain and D
phase shift of the transfer function for the adaptation state A(t) (44). The gain and the frequency
axis are plotted logarithmically. For τeff≈ 160 ms the values of the frequency axis correspond to
frequency components measured in Hertz. The dotted vertical line marks the cut-off frequency
at ωτeff = 1. The labels indicate the ratios f ′0/ f ′∞ of the slopes of the f -I-curves.

ωτeff > 2 are transmitted much better by the slope of the onset f -I-curve
(limωτeff→∞ |H f (ω)| = f ′0). In between at around ωcτeff = 1 the firing frequency re-
sponse shows the strongest phase advance.

This high-pass frequency property of adaptation can be best understood by the dy-
namics (8b) of the adaptation variable A. Substituting f in equation (26) for A∞ by (8a),
setting γ( f ) = 0 and linearizing at f = f∞(I) results in

τeff
dA
dt

= I(1− f ′∞/ f ′0)−A . (44)

The transfer function HA(ω) of this low-pass filter is shown in Fig. 10C & D. The adap-
tation A follows directly the low frequency components (ωτeff < 0.2) of the stimulus,
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thus shifting the onset f -I-curve appropriately towards the corresponding values of the
steady-state f -I-curve. As a consequence, these slow components are transmitted via
the steady-state f -I-curve. High frequency components (ωτeff > 2) have almost no ef-
fect on A. Thus, fast components are transmitted via an adapted f -I-curve, which is
the onset f -I-curve shifted to higher input intensities because of low frequency compo-
nents. The shift of the onset f -I-curve compensates for the mean value of the stimulus
and optimizes the transmission of fast fluctuations, generating a special high-pass filter.

Note that the transfer functions of both f and A depend on the effective time con-
stant τeff and not on the adaptation time constant τ. τeff usually is a function of the input
I, as shown in the context of Fig. 7. This may result in cut-off frequencies much higher
than expected from the value of the adaptation time constant. The dynamical behavior
of an adapting neuron is therefore determined by the combined effects of the relative
slopes of the onset and steady-state f -I-curves and the adaptation time constant τ.

6 Combining adaptation and spike-generation
The model (8) simply maps the stimulus I(t) through the onset f -I-curve f0(I) into a
firing frequency f (t) for a description of the spike generator. This approach is valid as
long as the input current I(t) is approximately constant during an interspike interval.

As a consequence of this simple mapping, f (t) fluctuates as fast as I(t) does. How-
ever, the transformation of a stimulus into a sequence of spikes acts like a low-pass
filter: Given the spikes only, fluctuations of the stimulus I(t) between two succeeding
spikes cannot be observed. Thus, the firing frequency ν(t) measured from the spikes as
the reciprocal of the interspike intervals is in general different and varies more slowly
than the model’s f (t). Only for stimuli which are approximately constant between two
spikes f (t) approaches ν(t).

For more rapidly varying stimuli, f (t) has to be fed into a model generating spikes
from which a firing frequency ν(t) can be calculated and compared with the firing
frequency measured experimentally.

The simplest way to do this is to use a non-leaky phase oscillator. This is the canon-
ical model of dynamical systems having a stable limit cycle, just as a spike generator
in its super-threshold regime for constant stimuli (Hoppensteadt & Izhikevich, 1997).
Here we apply it to time-dependent stimuli:

dϕ
dt

= f (t) ; ϕ< 1

ϕ = 0 ; ϕ = 1 → spike
(45)

The activity f (t) = f0(I−A[1 + γ( f )]) from the adaptation model (8) is the velocity of
the phase angle ϕ. Every time ϕ reaches unity a cycle is completed and a spike elicited.

We can also use the phase oscillator (45) to compute a continuous firing frequency
ν(t). At each time t we integrate the activity f symmetrically both back- and forward
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in time until the integral reaches the value one:

t+ 1
2 T (t)Z

t− 1
2 T (t)

f (t ′) dt ′ = 1 . (46)

The reciprocal of the required integration time T is the desired firing frequency ν(t).
Dividing this equation by T results in an implicit equation for ν(t) as a running average
with variable time window T (t) = 1/ν(t):

ν(t) =
1

T (t)

t+ 1
2 T (t)Z

t− 1
2 T (t)

f (t ′) dt ′ . (47)

Computing ν(t) using (46) captures a large fraction of the low-pass properties of a
spiking neuron, but of course this is only a simple sketch of a real spike generator.

To extend our general approach to lower firing frequencies and stronger adaptation
currents, it is necessary to incorporate the interaction between adaptation and spike
generation. Let

d~x
dt

=~g(~x, I(t)) (48)

be the dynamics of a specific spike generator, i.e. a N-dimensional system of differen-
tial equations, which is driven by the input current I(t). Whenever one of the variables
~x(t) (e.g. the membrane potential, or a phase angle) crosses a threshold, there is a spike
and this variable may be reset. This is a general formulation of conductance-based mod-
els (9), integrate-and-fire models and phase oscillators (45). For the θ-model (Ermen-
trout, 1996), for example,~x = θ and ~g(~x, I(t)) = q(1− cosθ) + (1 + cosθ)c(I(t)− I∗),
where q and c are constants and I∗ is the input intensity at which the bifurcation from
quiescence to repetitive firing occurs. Whenever the phase angle θ crosses π there is a
spike and θ is reset to −π. In order to use the adaptation model (8) in conjunction with
(48) we need to go back to the general adaptation current (1) by undoing the averages
but keeping the parameterization.

An intermediate approach for moderate adaptation currents is

d~x
dt

= ~g
(
~x, I(t)−A(t) ·[1 + γ(ν)]

)
(49a)

τ · [1 + ε(ν)]
dA
dt

=
A∞(ν)

ν
δ(t− ti)−A , (49b)

where δ(t− ti) is Dirac’s delta-function, ti is the time of the last spike, and ν = 1/(ti−
ti−1) is the instantaneous firing frequency. For the θ-model example this equation reads
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dθ
dt

= q(1− cosθ) + (1 + cosθ)c
(

I−A− I∗
)

(50a)

τ
dA
dt

= sδ(t− ti)−A , (50b)

where we set γ(ν) = 0, ε(ν) = 0, and A∞(ν)/ν = s = const to emphasize the linear
character of such an adaptation current. All parameters γ, τ, ε, and A∞ of the adaptation
current in (49) and (50) are equal to those of the universal model (8) and thus can be
easily measured. However, a model like (49) is still limited to adaptation that is weakly
coupled to the spike generator.

To overcome this limitation we have to give up the independence of the adaptation
model from microscopic properties of specific adaptation mechanisms. Consider

d~x
dt

= ~g
(
~x, I(t)− y · ρ̃(~x)

)
(51a)

τ · [1 + ε(ν)]
dy
dt

=
y∞(ν)

ν
δ(t− ti)− y . (51b)

The adaptation variable y = ḡAca is proportional to the adaptation gating variable a.
ρ̃(~x) = mphq(V−EA) covers the coupling of the adaptation current on the variables~x =
(V,m,h, . . .) of the spike generator. This term is no longer independent of the adaptation
mechanism. If adaptation is caused by slow recovery from inactivation then p > 0 or
q> 0. For all other adaptation mechanisms p = q = 0. The adaptation reversal potential
EA is an additional free parameter. Future studies will show which phenomenological
quantities measure this parameter.

The parameterization with macroscopically measurable quantities makes (49) and
probably (51) superior to using a standard adaptation current like the M-type current,
since all parameters can be estimated from measurements of the firing frequency with-
out the knowledge of the specific adaptation mechanism.

7 Discussion
Based on a thorough mathematical analysis of several basic spike adaptation mecha-
nisms, a universal phenomenological adaptation model (8) has been introduced in this
paper. Our approach combines three important aspects: biophysics of ionic currents,
electrophysiology, and the theory of signal processing. First, the model is derived from
well known biophysical kinetics. Second, the model is completely defined by macro-
scopic quantities such as the neuron’s f -I-curves and the adaptation time constant.
These can be measured easily with standard recording techniques. In particular, neither
pharmacological nor voltage-clamp methods are needed, as demonstrated by a recent
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study on the dynamics of insect auditory receptor cells (Benda et al., 2001). Third,
the simplicity of the model framework allows quantitative predictions about the signal
transmission properties of specific neurons arising from spike-frequency adaptation.

7.1 Comparison with other adaptation models
Most modeling studies concerned with spike-frequency adaptation rely on a specific
adaptation mechanism. Among these mechanisms the mAHP-current has been inves-
tigated intensively. Wang (1998) analyzed a conductance-based model with calcium
dynamics and an mAHP-current. He recognized the important difference between the
time constant of the calcium removal and the effective time constant as measured from
the exponential decay of the firing frequency. However, since a linear model is used,
the relation between these two time constants depends on the f -I-curves at a given in-
tensity (“percentage adaptation of firing frequency”). This neglects the fact that the
investigated type of adaptation depends on the firing frequency and not on input inten-
sity. In a more general investigation, Ermentrout (1998) observed the linearization of
steady-state f -I-curves in type-I neurons. He compared this result with simulations of a
conductance based model with both M-type and mAHP-currents. For f -I-curves of the
form f0(I) = c

√
I he derived a relation between τ and τeff in agreement with the more

general equation (35). Adaptation in integrate & fire models often has been introduced
by an adaptive threshold (MacGregor & Oliver, 1974; Liu & Wang, 2001). However,
such thresholds may result in divisive adaptation instead of the subtractive character-
istic of (8a). Quantitative differences between an adaptive threshold and an adaptation
current were studied by Liu & Wang (2001) in leaky integrate & fire neurons.

The adaptation model introduced by Izhikevich (2000) is a specific implementation
of equation (49) for the θ-neuron, which is upto a different scaling of variables identi-
cal to the example (50). It assumes a constant adaptation time constant, a steady-state
adaptation strength that is proportional to the firing frequency, and a constant driving
force, which is independent of the model’s phase variable. This model represents the
essential properties of moderate adaptation within the canonical model for type-I neu-
rons (Ermentrout, 1996). Thus, it is well suited to investigate adaptation effects for
interspike-intervals that are similar to or even longer than the adaptation time constant.

In the model (8) presented here the γ( f ) and the ε( f )-terms introduce a novel fre-
quency dependence of the averaged adaptation current and time constant, respectively.

7.2 Model assumptions
The basic assumption behind the model (8) is that the firing frequency is high compared
to the inverse adaptation time constant. This is important for separating adaptation from
spike generation (Cartling, 1996; Wang, 1998). Since typical adaptation time constants
are larger than 50 ms, the corresponding critical firing frequency is at most 20 Hz. For
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peripheral neurons and regular spiking cells in the cortex (Connors & Gutnick, 1990)
this is not a critical restriction. However, many central neurons fire only rarely so that
the interplay of the adaptation current with the spike generator becomes crucial. Both
processes have to be analyzed in combination, for example based on the framework
of (49) and (51), and specific properties of the spike generator have to be taken into
account.

The second main assumption is that fluctuations of the adaptation current do not
strongly influence the time course of the spike dynamics. This allows one to replace
the adaptation current and the adaptation time-constant and steady-state variable by
averages (16), (22), and (23), respectively, only depending on firing frequency. The va-
lidity of this weak coupling assumption depends on the properties of the specific spike
generator, and is confirmed if the γ( f )-term does not vary strongly with the adaptation
state.

This assumption does not interfere with the switch from type-I to type-II dynamics
induced by activation of M-type currents at low potentials, as pointed out by Ermentrout
et al. (2001). Our description of the unadapted neuron in terms of its onset f -I-curve
already includes this effect. In fact, since the gating variable of the M-type current
obeys a linear differential equation and enters the current linearly, we can replace it by
a sum of two variables. One variable covers the M-type current activated by the low
potentials at rest and between spikes, while the other variable is activated during spikes
only. The first current is part of the spike generator, contributes to the onset f -I-curve
and the offset of ρ̃( f ) of the Crook-model, as shown in Fig. 5B, and may alter a type-I
neuron into a type-II. Only the second variable induces spike-frequency adaptation.

Following Kirchoff’s law, ionic currents are additive in the membrane equation (9).
Therefore adaptation caused by ionic currents is subtractive, i.e. the adapted f -I-curves
are shifted versions of the onset f -I-curve. Adaptation may involve separate currents
like M-type or AHP-type currents which obviously are additive in the membrane equa-
tion. Mechanisms acting via additional gating variables, like the slow inactivation of
the sodium current, result also in an additive current, provided the other gating vari-
ables involved operate on a faster time scale. The situation is different if an adaptation
process modulates the dynamics of an ionic current. For example, the level of intracel-
lular calcium influences gene expression, and could thus slowly modulate ionic currents
and eventually change the shape of the f -I-curve (Shin et al., 1999; Stemmler & Koch,
1999).

We have shown that averaging the driving force of the adaptation current results in
a constant term ρ plus higher order terms γ( f ) in the firing frequency f . This finding is
independent of using Ohm’s law, the Goldman-Hodgkin-Katz equation, or other models
for membrane currents (Johnston & Wu, 1997), since we have only exploited the fact
that the driving force depends on the membrane potential.

We have also assumed that the adaptation current is linearly scaled by the adaptation
variable. Unlike the Hodgkin-Huxley channels, all models of the kinetics of voltage-
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gated adaptation currents are indeed linear (Edman et al., 1987; Fleidervish et al., 1996;
Crook et al., 1998; Delord et al., 2000). However, the steady-state mAHP-current may
depend non-linearly on the intracellular calcium concentration, as discussed below.

In principle, adaptation could be influenced by all biophysical processes present in
the investigated cell. In many cases, however, one process is dominant. A single dif-
ferential equation may then be used to capture the adaptation phenomena. Faster pro-
cesses can be included into the spike generator, slower processes can be neglected, and
processes with similar time scales can often be combined with this single differential
equation. However, it is quite common that the time scales of the adaptation mecha-
nisms depend on the membrane potential or calcium concentration. A single differential
equation might then no longer be sufficient to describe adaptation. To our knowledge,
no single current with two similar time constants exist (Hille, 1992). However, regard-
ing adaptation due to AHP-type currents several differential equations might indeed
be involved. Another likely possibility is that several adaptation currents with similar
time constants are jointly responsible for the macroscopically observed spike-frequency
adaptation (Madison & Nicoll, 1984; Köhler et al., 1996; Xia et al., 1998; Stocker et al.,
1999). Their time constants could depend in different ways on the firing frequency, and
exclude a description in terms of a single differential equation.

7.3 Specific biophysical mechanisms
Channels carrying M-type currents are composed out of KCNQ2, KCNQ3 and KCNQ5
subunits (Wang et al., 1998; Schroeder et al., 2000). It is likely that different combi-
nations of these subunits coexist in a single neuron and that they differ in quantitative
aspects of their kinetics, especially in their time constants. This could make more then
one differential equation necessary for modeling the resulting spike-frequency adapta-
tion.

The mAHP-type current is a prominent current used for modeling studies (Cartling,
1996; Ermentrout, 1998; Wang, 1998; Liu & Wang, 2001), and serves as an example for
linear adaptation, governed by a single differential equation with fixed time constant.
However, in contrast to M-type currents and slow recovery from inactivation various
assumptions have to be made to fit mAHP-type currents into this picture.

First, there is a possible nonlinear dependence of the mAHP-current on calcium
concentration. As a consequence the adaptation current (mAHP-current) would not be
proportional to the adaptation state (calcium concentration). While Ermentrout (1998)
and Wang (1998) do not consider this possibility, Engel et al. (1999) argue for an im-
portant role of such nonlinearity. As shown by Fig. 8, the shape of the steady-state
f -I-curves of type-I neurons can be linearized only if adaptation is linear; a nonlinear
steady-state f -I-curve must result from a nonlinear adaptation and/or the γ( f )-term.
Numerous experimental data from type-I neurons are in agreement with linearized
steady-state f -I-curves (Koike et al., 1970; Gustafsson & Wigström, 1981) and suggest
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a linear dependence of the adaptation current on its gating variable. However, a distinct
linearizing effect requires the steady-state adaptation current to be strong enough. For
experimental f -I-curves it is sometimes difficult to distinguish whether the steady-state
f -I-curve is nonlinear due to weak adaptation or due to a true nonlinear adaptation
(see, for example, Madison & Nicoll, 1984; Lanthorn et al., 1984). Thus, in general a
nonlinear dependence of the adaptation current on the adaptation state cannot be ruled
out.

Second, the mAHP-gating variable is assumed to be fast enough so that it can be
replaced by its steady-state variable. Based on mAHP-channel gating data the study of
Hirschberg et al. (1998) hints at long time constants (> 40 ms) of this current at low cal-
cium concentrations. Its dynamics cannot be neglected if this time constant exceeds the
time constant of the calcium dynamics, and could dominate the adaptation dynamics at
low calcium levels. At higher calcium levels, calcium removal would be the prominent
component. This could result in a dependence of the macroscopically observed effec-
tive adaptation time constant on the firing frequency, and may even require a second
differential equation for the gating variable of the mAHP-current.

Third, the time constant of calcium removal could depend on firing frequency. Cal-
cium imaging shows a decreasing time constant of the mean intracellular calcium level
with increasing firing frequency (Schiller et al., 1995; Helmchen et al., 1996). This
effect seems to be reproduced by detailed models of the calcium dynamics that in-
clude diffusion, pumps and buffering (Engel et al., 1999; Schutter & Smolen, 1998),
and might be important for studies how adaptation influences the spike pattern at firing
frequencies similar to the adaptation time constant.

Forth, channels mediating the calcium influx during spikes can inactivate on a time
scale of several 10 to 100 ms (Jaffe et al., 1994; Yamada et al., 1998). This inactiva-
tion reduces the calcium influx per spike and thus also the strength of spike-frequency
adaptation. Therefore a further differential equation could be necessary to incorporate
this process, which would act on the steady-state adaptation strength A∞( f ).

Besides the mAHP-current there exist a slow sAHP-current, which induces after-
hyperpolarizations and adaptation on time scales of more than one second (Sah &
Clements, 1999; Stocker et al., 1999). There is an ongoing debate about the biophysical
processes responsible (Sah & Clements, 1999). If the slow kinetics of the channels me-
diating the sAHP-current is the dominating process, an additional differential equation
for the gating of the sAHP-current would be needed.

Slow recovery from inactivation has been observed for many different ionic cur-
rents. In sodium currents it causes spike-frequency adaptation, whereas in potassium
currents it results in spike-frequency facilitation (Edman et al., 1987; Delord et al.,
2000). In contrast to the M-type currents and mAHP-currents, slow inactivation oper-
ates on longer time scales of about one second and more (French, 1989; Edman et al.,
1987; Fleidervish et al., 1996; Martina & Jonas, 1997; Delord et al., 2000). From a
mechanistic point of view the only difference between spike-frequency adaptation and
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facilitation is that the adaptation state increases the effective input current instead of
decreasing it.

Currents such as IQ or Ih are activated by hyperpolarization (Halliwell & Adams,
1982; Maccaferri et al., 1993). With depolarizing inputs these currents deactivate and
contribute to spike-frequency adaptation. Their dynamics could be treated in a similar
fashion as the dynamics of slow recovery from inactivation.

Sanchez-Vives et al. (2000) report a Na+-activated K+-current. This current in-
duces spike-frequency adaptation on a long time scale (about 3 to 10 seconds). Since
no details about the kinetics of this current are known, it remains unclear if it can be
described by the adaptation model (8). The situation might be similar to that of the
sAHP-current.

Finally, electrogenic pumps have to be considered as another cause of slow adap-
tation (Sanchez-Vives et al., 2000). Their currents act subtractively on the input and,
in their simplest form, obey a single linear differential equation. It is, therefore, likely
that such currents are also in agreement with the adaptation model.

In summary, many adaptation currents involved in spike generation fit into our
phenomenological approach. Specific cases of adaptation due to mAHP-currents and
sAHP-currents might be an exception. Several processes with potentially different time
scales are involved in these two types of adaptation, possibly requiring more than one
differential equation for a precise description of the resulting spike-frequency adapta-
tion.

7.4 Functional role of adaptation
The shape of a neuron’s f -I-curve is important for its signal-transmission properties.
Stimuli below the firing threshold Ith are not transmitted at all, and the slope of the f -
I-curve limits the resolution of input modulations. In adapting neurons the f -I-curve is
not fixed. As we have shown the onset f -I-curve is shifted dynamically by the stimulus.
This shift partially compensates for the slow frequency components of the stimulus.
Therefore adaptation turns a neuron into a high-pass filter. It is the value of the effective
time constant of adaptation (35) and not the time constant of the adaptation dynamics
(8b) which separates slow and fast stimulus components. The latter are transmitted via
the adapted f -I-curves. Since these are often shifted versions of the onset f -I-curve,
the shape of the onset f -I-curve determines the transmission of fast components. Slow
components are transmitted via the steady-state f -I-curve.

In this context, it should be noted that the observation that adaptation “makes the
transfer function of neurons logarithmic” (Engel et al., 1999) refers to the steady-state
f -I-curve, which is only important for the slow stimulus components. The same holds
for the linearizing effect of adaptation on f -I-curves discussed by Ermentrout (1998).

The high-pass filter characteristics of adaptation make the response of a neuron ap-
proximately independent of the mean stimulus intensity, which is removed by shifting
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the f -I-curve. Thus, subtractive adaptation implements intensity invariance. Its fidelity
depends strongly on the steady-state f -I-curve. For vanishing steady-state activity the
intensity invariance is achieved best. Note also that subtractive adaptation does not
adapt the neuron’s f -I-curve to higher order statistics of the stimulus (Brenner et al.,
2000).

In order to study neural information transfer (Bialek et al., 1991), broad-band fil-
tered white-noise stimuli with cut-off frequencies > 50 Hz are widely used. Since ef-
fective time constants of spike-frequency adaptation are usually larger than 10 ms, the
cut-off frequency of the neuron’s transfer function is well below 16 Hz. Thus, most of
the stimulus power is above the cut-off frequency of adaptation. After the stimulus on-
set, the neuron adapts and shortly afterwards the adaptation state stays approximately
constant. Therefore using such stimuli does not test adaptation. This could explain a re-
sult of French et al. (2001), who explored paired spider mechanoreceptor neurons. One
of these neurons is phasic, the other phasic-tonic. Surprisingly, the information transfer
measured for these two types of neurons was nearly identical. However, both neurons
may differ in their steady-state f -I-curve while having similar onset f -I-curves. For
the broad-band stimuli used in this experiment, only properties of the onset f -I-curve
contribute to the signal transmission. Therefore the differences in the steady-state f -I-
curves were not tested by the stimuli, which may have resulted in the reported informa-
tion rates.

Knowing the neuron’s firing threshold is essential for improving stimulus recon-
struction (Machens et al., 2001). For stimuli with strong low-frequency components
the resulting varying shift of the f -I-curve and its firing threshold due to adaptation
would deteriorate the reconstruction. Information about the actual f -I-curve as pro-
vided by the adaptation model (8) could eliminate these effects.

Let us finally note that recent studies show that shunting synaptic input results in
a shift of f -I-curves. This corresponds formally to an adaptation current with a fixed
adaptation state. However, the noisy nature of (balanced) synaptic input counteracts
this shift and adds a strong divisive component on the resulting f -I-curve (Chance
et al., 2002).
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Appendix

List of symbols
(parentheses denote defining equations)

V membrane potential
IX = gX(V −EX) ionic current of type X with conductance gX and reversal po-

tential EX
a gating variable of an adaptation current
T interspike interval (ISI)
f = 1/T firing frequency
I input current
f0(I) onset f -I-curve of the unadapted neuron
f∞(I) steady-state f -I-curve
A adaptation state (17)
f (I;A) adapted f -I-curve for a given adaptation state A
ρ̃( f ) = ρ · [1 + γ( f )] averaged driving force (15) of the adaptation current
τ̃( f ) = τ · [1 + ε( f )] averaged time constant of the adaptation gating variable (22)
κ( f ) averaged steady-state adaptation variable a∞(V ) (23)
A∞( f ) = ḡAcρκ( f ) steady-state adaptation strength (26)
τeff effective adaptation time constant measured from the decay of

the firing frequency evoked by a step-like stimulus
τA time constant measured from the time evolution of A

The neuron’s weight function for small adaptation currents
The super-threshold dynamics of a spike generator may be captured by a one-dimensional
phase model. The phase-angle ϕ describes the movement along a limit cycle, as deter-
mined by some function g(ϕ; I)> 0 that depends on the phase angle and input I:

dϕ
dt

= g(ϕ; I) . (52)

Each time the system has cycled once around the limit cycle a spike is elicited. (52)
can be expanded at some constant value I0 and transformed to a new phase variable ψ
via dϕ/dψ = g(ϕ; I0)

dψ
dt

= 1 + z(ψ; I0)∆I(ψ, t) , (53)

where ∆I(ψ, t) = I(ϕ(ψ), t)− I0 is a small perturbation. The term

z(ψ; I0) =

∂g(ϕ(ψ);I)
∂I

∣∣∣
I=I0

g(ϕ(ψ); I0)
(54)
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is the neuron’s response function (Ermentrout, 1996).
Let T be the period of the perturbed phase oscillator (∆I 6= 0) and T0 the period of

the unperturbed phase oscillator (∆I = 0). Integrating (53) over one complete cycle of
ψ (0≤ ψ≤ T0) and expanding the integrand to first order yields

T ≈ T0−
T0Z

0

z(ψ; I0)∆I(ψ, t)dψ , (55)

provided |z(ψ; I0)∆I(ψ, t)|� 1.
In the context of averaging the adaptation current (13) I0 = I−〈IA〉T,w and T = T0.

We want to show that T is not changed by replacing the original ∆IA = IA−〈IA〉T,w by
its weighted average 〈∆IA〉T,w. This is true if the integral of the right-hand side of (55)
does not change if we replace ∆I = ∆IA by 〈∆IA〉T,w:

TZ

0

z(ψ; I0)∆IA(ψ)dψ !
=

TZ

0

z(ψ; I0)〈∆IA(ψ)〉T,w dψ (56)

Since the average 〈∆IA〉T,w is constant during one period T we obtain

〈∆IA〉T,w =

R T
0 z(ψ; I0)∆IA(ψ)dψ
R T

0 z(ψ; I0)dψ
=:
Z T

0
z̃(ψ; I0)∆IA(ψ)dψ . (57)

This shows that replacing ∆IA by the weighted average 〈∆IA〉T,w has no effect on T if
the weight w is given by the neuron’s normalized response function z̃. The weight w(t)
in (13) is then given by z̃(ψ(t)) ·dψ(t)/dt.

Note that because of the assumption |z(ψ; I0)∆IA(ϕ, t)|� 1 this finding is true in the
limit for small adaptation currents only. Numerical simulations of z ·∆I for the models
used in this paper result in values which are larger than one. For such strong adaptation
currents the weight w in (13) does not equal z̃, since z̃ applies to small perturbations
only. However, the appropriate weight w might still reflect the main qualitative proper-
ties of the neuron’s response function.

Specification of the conductance-based models
Modified Traub-Miles model

The modified Traub-Miles model was introduced by Ermentrout (1998). It is a single
compartment model with one sodium, potassium, and calcium current. We added either
an M-type current or an mAHP-current to induce spike-frequency adaptation.

C
dV
dt

=−INa− IK− ICa− IL− IM− ImAHP + I
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C = 1µF/cm2.
Sodium current: INa = ḡNam3h(V −ENa), ḡNa = 100 mS/cm2, ENa = +50 mV,
dm/dt = αm(V )(1−m)−βm(V )m, αm(V ) = 0.32(V + 54)/(1− exp(−(V + 54)/4)),
βm(V ) = 0.28(V + 27)/(exp((V + 27)/5)−1), dh/dt = αh(V )(1−h)−βh(V )h,
αh(V ) = 0.128exp(−(V + 50)/18), βh(V ) = 4/(1 + exp(−(V + 27)/5)).
Potassium delayed-rectifier current: IK = ḡKn4(V −EK), ḡK = 80 mS/cm2,
EK =−100 mV, dn/dt = αn(V )(1−n)−βn(V )n,
αn(V ) = 0.032(V + 52)/(1− exp(−(V + 52)/5)), βn(V ) = 0.5exp(−(V + 57)/40).
Calcium current: ICa = ḡCas∞(V )(V −ECa), ḡCa = 5 mS/cm2, ECa = 120 mV,
s∞(V ) = 1/(1 + exp(−(V + 25)/5)).
Leakage current: IL = ḡL(V −EL), ḡL = 0.1 mS/cm2, EL =−67 mV.
M-type current: IM = ḡMw(V −EM), ḡM = 8 mS/cm2, EM =−100 mV,
τw(V )dw/dt = w∞(V )−w, τw(V ) = 100 ms, w∞(V ) = 1/(1 + exp(−(V + 20)/5)).
mAHP-current and calcium dynamics: ImAHP = ḡmAHPq(V −EmAHP),
ḡmAHP = 4 mS/cm2, EmAHP =−100 mV, q = [Ca]/(30 + [Ca]),
d[Ca]/dt =−0.002ICa−0.0125[Ca].

Crook model

We used the model of Crook et al. (1998) with only the M-type current as an additional
example of an adapting neuron. It is a two-compartment model. One compartment
corresponds to the soma and is modeled by the membrane equation for the potential Vs
of the soma. It contains all the voltage dependent currents for the generation of spikes
and possible adaptation currents. The other compartment captures the whole dendritic
tree, and is described by a linear membrane equation. The potential of the second
compartment is denoted by Vd . Both compartments are coupled by the coupling current
IC. Note that the input current I is injected into the soma. Therefore the adaptation
currents are still additive to the input current. The resting potential of the Crook model
is at −77 mV.

C
dVs

dt
= −INa− IK− ICa− ILS− IM− IC/P+ I/P

C
dVd

dt
= −ILD + IC/(1−P)

C = 0.8µF/cm2, P = 0.05.
Sodium current: INa = ḡNam2h(Vs−ENa), ḡNa = 221 mS/cm2, ENa = +55 mV,
dm/dt = αm(V )(1−m)−βm(V )m,
αm(V ) = 0.32(−47.1−Vs)/(exp(0.25(−47.1−Vs))−1),
βm(V ) = 0.28(Vs + 20.1)/(exp((Vs + 20.1)/5)−1), dh/dt = αh(V )(1−h)−βh(V )h,
αh(V ) = 0.128exp((−43−Vs)/18), βh(V ) = 4/(exp((−20−Vs)/5) + 1).
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Potassium delayed-rectifier current: IK = ḡKn(Vs−EK), ḡK = 47 mS/cm2,
EK =−90 mV, dn/dt = αn(V )(1−n)−βn(V )n,
αn(V ) = 0.59(−25.1−Vs)/(exp((−25.1−Vs)/5)−1),
βn(V ) = 0.925exp(0.925−0.025(Vs + 77)).
Calcium current: ICa = ḡCas2r(Vs−ECa), ḡCa = 8.5 mS/cm2, ECa = +120 mV,
ds/dt = αs(V )(1− s)−βs(V )s, αs(V ) = 0.912/(exp(−0.072(Vs−5)) + 1),
βs(V ) = 0.0114(Vs + 8.9)/(exp((Vs + 8.9)/5)−1), τr(V )dr/dt = r∞(V )− r,
r∞(V ) = min(exp(−(Vs + 60)/20),1), τr(V ) = 200 ms.
Soma leakage-current: ILS = ḡLS(Vs−ELS), ḡLS = 2 mS/cm2, ELS =−70 mV.
M-type current: IM = ḡMw(Vs−EK), ḡM = 10 mS/cm2, EK =−90 mV,
τw(V )dw

dt = w∞(V )−w, w∞(V ) = 1/(exp(−(Vs + 35)/10) + 1),
τw(V ) = 92exp(−(Vs + 35)/20)/(1 + 0.3exp(−(Vs + 35)/10)).
Dendrite leakage-current: ILD = ḡLD(Vd−ELD), ḡLD = 0.05 mS/cm2, ELD =−70 mV.
Coupling current: IC = ḡC(Vs−Vd), ḡC = 1.1 mS/cm2.
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