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Summary

The linear regression model by Aalen for failure time analysis allows the

inclusion of time�dependent covariates as well as the variation of covariate

e�ects over time� For estimation Aalen considers cumulative hazard func�

tions and derives estimates by applying counting process theory� Since

often hazard functions themselves are of primary interest rather than cu�

mulative hazard functions� in this paper we consider kernel estimation of

the hazard functions� particularly in the presence of time�dependent co�

variates� Di�erent kinds of bandwidths and kernel functions are discussed�

A comparison of the considered methods is illustrated by data from the

Stanford Heart Transplant Study�

Keywords� choice of bandwidth� survival analysis� kernel smoothing�

linear hazard regression model� tail problem� time�dependent covariates�

time�varying e�ects�

�

� Introduction

In survival analysis the nonparametric linear regression model by Aalen

	
���
 is an alternative to Cox�s proportional hazards model� The lat�

ter one is a standard tool for regression analysis of survival data� since

it is easy to apply and to interpret� A drawback of the method is the

assumption of proportional hazards� which is not always valid� For the

situation of time�dependent covariates the so�called time�dependent Cox

model is an extension of Cox�s proportional hazards model� see e�g� Alt�

man and De Stavola 	
���
 and Aydemir� Aydemir and Dirschedl 	
���b
�

But a weakness both of the proportional hazards model and the extended

model consists in the assumption of constant covariate e�ects� Unlike�

Aalen�s model allows both time�dependent covariates and the covariate

e�ects to vary over time by introducing a time�varying hazard function

for each covariate e�ect� For estimation Aalen considers cumulative haz�

ard functions and derives estimates by applying counting process theory�

Since often primary interest lies on the hazard functions themselves and

not on the cumulative hazard functions� one has to look at the slope of

the estimated cumulative function to get information about the covariate

e�ects� However� for an easier interpretation of the results a direct es�

timation of the hazard functions would be desirable� such as the kernel

estimate of the Nelson�Aalen�estimator in Ramlau�Hansen 	
���
 and

Keiding and Andersen 	
���
� Hu�er and McKeague 	
��

 suggested

kernel estimates for the linear regression model of Aalen to derive weights

for a weighted least squares estimate of cumulative hazard functions� For

better illustration we give some results for survival times 	in days
 of pa�

tients with carcinoma of the oropharynx� analysed already by Aalen 	
���

and 
���
� Figure 
�
 	a
 shows the estimated cumulative regression func�

tion A�	t
 for the covariate condition of the patient at time of diagnosis

	
�no disability� ��restricted work� ��requires assistance with self care�

��con�ned to bed
� The in�uence of the covariate condition on survival

of patients has to be deduced from the slope of the function A�	t
� which

shows a very slight increase from the beginning to about time t � ��� and

then a clearer increase to about t � ���� That means there is a positive

e�ect of condition till time t � ��� with maximum between t � ��� and

t � ���� Figure 
�
 	b
 shows similar results from the direct approach

with kernel estimation of the slope ��	t
� Here we immediately recognize

a slightly positive e�ect at the beginning with a slight increase at about

t � �� and then the maximum at t � ���� After t � ��� the in�uence

seems to disappear� since here the pointwise con�dence band includes the



�

	a

	b


Figure 
�
� Estimated cumulative regression function 	a
 and kernel esti�

mate of the slope 	b
� each with pointwise �� standard errors�

zero line�

In this paper we consider kernel estimation of the linear regression

model corresponding to the suggestions of Aalen 	
���
� particularly in the

presence of time�dependent covariates� For kernel smoothing of survival

data there exist some problems� In survival analysis the density of the

data often decreases as observation time increases� The use of a constant

bandwidth as in Aalen 	
���
 therefore causes unexpected noise of the

kernel estimates when data gets sparse� The kernel estimate in Figure 
�


	b
 shows such an e�ect from about time t � ���� To solve this problem

we examine variable bandwidths increasing with time� Another problem

of kernel smoothing in event history analysis is the so�called tail problem�

which results from the fact� that the observation interval is bounded at the

tails� Therefore we consider kernel functions dealing with the boundedness

of the left tail�

The paper is organized as follows� In Section � we introduce the linear

regression model following Aalen 	
���
� For an application to time�

�

dependent covariates see Aydemir� Aydemir and Dirschedl 	
���a
� Sec�

tion � presents the kernel estimation of the linear regression model� Here

we also discuss di�erent choices of bandwidths and the tail problem� In

Section � we discuss and compare the considered methods using data of

the Stanford Heart Transplant Study� Concluding remarks are given in

Section ��

� The linear regression model

Interest lies in the occurrence of a certain event� for example the death of

a patient� so we observe n individuals over some period of time� For some

individuals the event is observed within the observation period� while for

the others we only know� that the duration time to the event exceeds a

certain point of time� but the exact value is not known� This feature is

denoted as right censoring� For each individual additionally we observe r

covariates whose values possibly vary over time�

Let �i	t
 denote the intensity of the occurrence of the event at time

t for individual i� i�e�� �i	t
dt is the probability that the event occurs in

interval �t� t�dt� given that no event occurred before� The n�dimensional

vector �	t
 of intensities �i	t
� i � 
� � � � � n� is modelled in dependence of

the possibly time�varying covariates in the linear form

�	t
 � Y 	t
�	t
�

The �rst component of the 	r�

�dimensional vector �	t
 � 	��	t
� ��	t
�

� � � � �r	t


� is de�ned as the baseline e�ect� while the regression function

�j	t
 measures the in�uence of covariate j � 
� � � � � r� The n � 	r � 



design matrix Y 	t
 contains for each individual i an intercept and the

values of the covariates measured at time t� If individual i is under risk at

time t� i�e�� the event has not occurred and the individual is not censored�

then row i of Y 	t
 is de�ned as

Zi	t
 � 	
� Zi
�	t
� � � � � Z

i
r	t

�

where Zi
j	t
� j � 
� � � � � r� denote the covariate values of individual i at

time t� Otherwise� if individual i is not under risk at time t� row i of

matrix Y 	t
 consists only of zeros�

Two additional assumptions regarding the structure of the matrix Y 	t


are required� First� the sample functions are left continuous� what means

that the value of Y 	t
 is known immediately before an event time� Second�

the value of Y 	t
 depends only on the past� not on the future�



�

For non�parametric statistical analysis� Aalen 	
���
 considers cumu�

lative regression functions A	t
 � 	A�	t
� A�	t
� � � � � Ar	t


�� with

Aj	t
 �
Z t

�

�j	s
ds� j � �� 
� � � � � r�

instead of the regression functions �j	t
 themselves� Let T� � T� � � � �

denote the ordered observed event times� i�e�� the censored observations

are not considered� We assume that there are no tied event times� oth�

erwise we add a random number between � and 
 to each event time�

see Aalen 	
���
� Section �� The estimator of the cumulative regression

functions is given by

A�	t
 �

X
Tk�t

X	Tk
Ik� 	��



where summation takes place over all observed event times Tk less or

equal to time t� The matrix X	t
 is a generalized inverse of Y 	t
� where

usually the least squares inverse X	t
 � 	Y 	t
�Y 	t

��Y 	t
� is used� Ik

is a n�dimensional vector of zeros except for a one corresponding to the

individual who experiences an event at time Tk�

The estimator A�	t
� only de�ned as long as Y 	t
 has full rank� is

asymptotically normal with covariance matrix

��	t
 � cov	A�	t

 �

X
Tk�t

X	Tk
I
D
k X	Tk


�� 	���


where IDk is a 	n� n
 diagonal matrix with Ik as diagonal�

Plotting the estimated cumulative regression function A�j 	t
� j � 
�

against time� the slope of this function describes the in�uence of covariate

j over time�

Within the framework of the linear regression model it is also possible

to examine whether a covariate has any in�uence on the survival of indi�

viduals� The test can be formulated by the following null hypothesis for

covariate j � f
� � � � � rg�
Hj � �j	t
 � � for all t� 	���


With the diagonal weight matrix

K	t
 �
�

diag
��

Y 	t
�Y 	t

���
����

�

Aalen 	
���
 suggests to use the jth element Uj of the vector test statistic

U �
X

Tk
K	Tk
X	Tk
Ik 	���


as a test statistic for the null hypothesis Hj � which only can be tested over

the time interval where Y 	t
 has full rank� Aalen 	
���
 points out� that

these test statistics are only suitable for alternatives where departure of

the regression function from zero is either only in the positive direction

or only in the negative direction� The test statistic U is asymptotically

multivariate normal distributed with estimated covariance matrix

V �dcov	U
 �
X

Tk
K	Tk
X	Tk
I

D
k X	Tk


�K	Tk
�

If only the in�uence of one covariate is to be tested with null hypothesis

Hj � we use the test statistic
z � UjV
����

jj � 	���


which is asymptotically standard normal distributed under the null hy�

pothesis�

For further details on inference and goodness of �t in the linear re�

gression model see Aalen 	
���
�

� Kernel smoothing

In this section we derive a kernel estimate for �	t
 based on the estimate

A�	t
 of the cumulative regression functions� Similar to Ramlau�Hansen

	
���
� we de�ne the kernel estimate for the intensity vector �	t
 as

��	t
 �



b
Z �

�

K
�
t� s

b

	
dA�	s
� 	��



where the positive parameter b denotes the bandwidth and K is a kernel

function which satis�es the condition
R�

��

K	x
dx � 
� for example the

Epanechnikov kernel
K	x
 � ����	
� x�
 for jxj � 
� 	���


Since the jump times of A�	t
 are the event times T� � T� � � � � � the

kernel estimate 	��

 may be written as

��	t
 �



b
X

Tk
K

�
t� Tk

b

	
dA�	Tk
�



�

With

dA�	Tk
 � A�	Tk
�A�	Tk��


�

X
Tj�Tk

X	Tj
Ij �

X
Tj�Tk��

X	Tj
Ij

� X	Tk
Ik

we get the kernel estimate

��	t
 �



b
X

Tk
K

�
t� Tk

b

	
X	Tk
Ik � 	���


An estimator for the covariance matrix is given by the diagonal of the

weighted sum of the terms of the covariance matrix 	���
 of A�	t
�

cov	��	t

 � diag





b�

X
Tk

K
�
�
t� Tk

b

	
X	Tk
I

D
k X	Tk


�
�

�

This result holds� since the increments of the cumulative regression es�

timator are uncorrelated 	a consequence of the martingale property� see

Aalen� 
��� and 
���
�

For kernel smoothing in event history analysis there exist two prob�

lems� the choice of the bandwidth b and the tail problem� Both are

explained in detail below�

Choice of bandwidth

In survival analysis the amount of data decreases as observation time

increases� Hence also the number of the data used for each time t to

compute ��	t
 decreases as t increases� when we use a constant bandwidth

b� This results in unexpected noise of the estimates ��	t
 at the end of

the observation period� Here we propose two methods dealing with this

problem�

The �rst method� described in Fahrmeir and Tutz 	
���
� Section

������ uses the size nt of the set of individuals at risk at time t� which

decreases with time� With a constant b� to be chosen the bandwidth is

de�ned as

b�	t
 �
b�n

nt
� 	���


and increases as nt decreases with time�

�

The second method� the kth nearest neighbour method 	see Silverman�


���
� controls the degree of smoothing by the distance dk	t
 of t to the

k�nearest uncensored observed event time Tj � Here the bandwidth� also

increasing with time� is de�ned as

b�	t
 � dk	t
� 	���


where we have to choose the integer k� Here for each t the same number

k of observations is used for smoothing of �	t
�

The constant part of the bandwidth� i�e�� b itself� b� or k 	depend�

ing on the used bandwidth
� still has to be chosen� There exist data

driven methods with certain optimality criterions 	see e�g� Keiding and

Andersen� 
���
� but these methods may cause oversmoothing and do not

work well for each data� Therefore in the example below we choose the

constants b� b� and k subjectively�

Tail problem

In kernel smoothing generally symmetric kernelsK	x
 are used� that inte�

grate to one over their support ��
� 
�� as the Epanechnikov kernel men�

tioned above� See Figure ��
 for the shape of the Epanechnikov kernel

	solid line
� Due to this symmetric de�nition all observations s with the

same absolute distance from t get the same weight K		t� s
�b
 in build�

ing the integral for the estimate 	��

� For t � �b� T�n� � b�� with T�n�

the maximum of the observed event times Tk� integration in 	��

 takes

place over all s from the interval �t � b� t � b�� or� considering the term

x � 	t�s
�b� over the whole support ��
� 
� of the kernel K	x
� For t � b

	and similarly for t � T�n� � b
 the integral is not over the whole support

��
� 
�� but only over the interval ��
� q�� with q � t�b � 
� For t � b

	and t � T�n� � b
 the estimates ��	t
 therefore have less weight and are

nearer to zero than for t � �b� T�n� � b��

To deal with that problem� Keiding and Andersen 	
���
 de�ne a

smooth family of nonsymmetric kernels Kq	x
 with support ��
� q� and

use these kernels for t � b instead of the symmetric kernelK	x
� Following

Gasser and M�uller 	
���
 K	x
 is multiplied by a linear function� i�e��

Kq	x
 � K	x
 	�q � 	qx
� 	���


requiring that the new kernel Kq	x
 has integral one and mean zero over

��
� q�� Z q
��

Kq	x
dx � 
�

Z q
��

xKq	x
dx � ��



�

Figure ��
� Epanechnikov kernel K	x
 	��
� unsymmetric kernel Kq	x


	� � �
 and kernel KI�q�	x
 	� � � �
 for q � ����

With the Epanechnikov kernel K	x
 Andersen� Borgan� Gill and Keiding

	
���
 derive from these equations the coe�cients

�q �
�
�


�
�

q�
�

�
q�

�
	


q� 	q �
	
� q�
�
q

�

with


q �
�

�
��
�


�
�

q�
�

�
q�

�
	�
�

�
� q �

q�
�

	
�




�

	
� q�
�
���

�

They point out that Kq	�x
 is identical to the  Optimal 
 kernel quoted

by Gasser and M�uller 	
���
� Figure ��
 shows the unsymmetric kernel

Kq	x
 	long dashes
 in comparsion to the Epanechnikov kernelK	x
 	solid

line
 for q � ���� The third kernel function KI�q�	x
 is de�ned below�

From the picture we recognize that for small t 	i�e�� q near zero
 the

unsymmetric kernel Kq	x
 gives too much weight to observations s near

zero 	i�e�� x � 	t�s
�b near q
� This often leads to too big estimates of �	t


for small t� as we show in the example in Section �� It also is unsatisfactory

that observations s near to t have lower weights than observations which

are more distant to t but which are near to ��

For that reason for t � b we intuitively de�ne another kernel with

support ��
� q� and integral one over that interval� However� we do not


�

prove any optimality for that kernel� With

I	q
 �
Z q

��
K	x
dx

we de�ne

KI�q�	x
 �
K	x


I	q


for x � ��
� q� 	���


and KI�q�	x
 � � otherwise� As we see in Figure ��
 the kernel KI�q�	x


	short dashes
 gives maximum weight to observations near and around t

and is symmetric in the interval ��q� q��

The kernelsKq	x
 andKI�q�	x
 are only de�ned at the left tail 	t � b
�

At the right tail 	t � T�n� � b
 we do not consider the tail problem� since

data here generally is too sparse for reasonable estimates�

� Example� Heart Transplant Data

To discuss and compare the methods we use data of the Stanford Heart

Transplant Study 	Kalb�eisch and Prentice� 
���
� The data includes the

survival times of 
�� potential heart transplant recipients� Within the

observation period �� of the patients received a new heart and �� died�

Besides the right censored survival times 	in days
 the following covariates

were observed�

age of the patient in years

previous surgery 
 � yes� � � no

transplant status 
 � transplanted� � � not transplanted

waiting time to transplant in days

year of acceptance in the study

All covariates except the transplant were observed at the baseline time

t � �� The transplant� which can be observed only for some patients

during the observation period� is a time�varying covariate with only one

possible switch of the value� and the waiting time to transplant di�ers from

patient to patient� For transplanted patients additionally three mismatch

variables and a mismatch score were observed� measuring the degree to

which donor and recipient are mismatched for tissue type� In our analy�

ses we will not take into consideration these mismatch variables� but we

include the three time�constant covariates age� surgery� acceptance and

the time�varying covariate transplant� as a combination of the covariates

transplant status and waiting time to transplant�







The signi�cance tests for the covariates with null hypotheses 	���
 and

test statistics 	���
 yield following results�

covariate test statistic

age ����

surgery �����

acceptance �
���

transplant �����

The covariate surgery shows the strongest 	and negative
 in�uence on the

intensity� That means� a previous surgery has a positive e�ect on survival

of patients� Also the covariate age has a remarkable and positive in�uence�

whereas the e�ect of acceptance on the intensity is only modest� The

results for the time�varying covariate transplant indicate that a transplant

has no in�uence on the survival of patients�

Since data get sparse with increasing time� the estimated cumulative

regression functions A�	t
 and the kernel estimates ��	t
 have no inter�

pretable e�ects at the end of the observation period� Therefore time axes

of all �gures below are shown only up to time t � ���� At this time the

risk set of the Heart Transplant Data contains only �� patients�

We �rst discuss the di�erent kernel functions considered in Section �

to solve the tail problem� Then we compare the di�erent choices for the

bandwidth�

Tail problem

To compare the di�erent kernel functions 	���
� 	���
 and 	���
 Figures ��


	for covariate age
 and ��� 	for covariate surgery 
 show the cumulative

regression function A�	t
 following 	��

 and three kernel estimates ��	t


following 	���
 using the kernel functions K	x
� Kq	x
 and KI�q�	x
� For

the kernel estimates we 	subjectively
 chose the constant bandwidth b �

��� that means� for the tail problem only the part of the graphics with

time less than �� 	t � ��
 is of interest� But for further discussions below

we show the time axes up to time t � ����

After small ups and downs the estimate A�	t
 of the covariate age in

Figure ��
 	a
 shows a clear increase from time t � �� to t � 

�� Then

we see a very slight increase up to t � ���� The ups and downs afterwards

are due to too less data and are therefore not interpretable� The plot of

A�	t
 indicates that at the beginning the e�ect of age 	or the slope of

A�	t

 is nearly zero� while from t � �� to t � 

� the e�ect increases

and has its heighest value at about t � ��� Afterwards it gets smaller and

tends to zero�


�

	a

	b


	c

	d


Figure ��
� Covariate age� cumulative function A�	t
 	a
� and kernel

estimates ��	t
 with kernel functions K	x
 	b
� Kq	x
 	c
� KI�q�	x
 	d
�




�

We recognize similar results from the kernel estimates ��	t
 in Figure

��
 	b
 to 	d
� At t � �� the e�ect is zero� then it increases with maximum

between t � �� and t � ��� where the slope of A�	t
 has it�s maximum

too� After that the kernel estimates decrease to zero till about t � 
���

The ups and downs afterwards again are due to too less data�

For t � b 	� ��
 the three kernel estimates di�er� The estimate with

kernel function K	x
 	Figure ��
 	b

 is only slightly positive at the be�

ginning� This is in agreement with the results of the estimated cumula�

tive regression function A�	t
� But this may also follow from too small

weights of the kernel function K	x
 for values t � b 	see discussion of the

tail problem in Section �
� Therefore let us look at the estimate using the

unsymmetric kernel functions Kq	x
 	Figure ��
 	c

 dealing with the tail

problem� Here the kernel estimate has its maximum at time t � 
� indi�

cating a strong positive e�ect of age at the beginning of the observation

period� and then it decreases to zero at t � ��� This result is contradic�

tory to the estimated cumulative regression function A�	t
� where there

is no interpretable e�ect at the beginning� Hence� we think that there is

a strong overestimation with the unsymmetric kernel function Kq	x
 for

t near one� Figure ��
 	d
 shows the kernel estimate using the intuitively

de�ned kernel function KI�q�	x
� Here at the beginning the e�ect ��	t
 is

small� but bigger than the 	presumably underestimated
 e�ect using the

Epanechnikov kernel K	x
 in Figure ��
 	b
�

In Figure ��� we see� that the choice of the kernel function has similar

e�ects on the kernel estimates of the covariate surgery� The estimated

cumulative regression function A�	t
 	Figure ��� 	a

 decreases from the

beginning to about t � 
��� with maximal decrease between t � �� and

t � �� and a strong decrease at the beginning� From t � 
�� on the func�

tion stays at the reached level with small ups and downs 	which result

from the data getting sparse
� That means� from beginning till t � 
��

there is a negative e�ect of surgery� with minima at the beginning and

between t � �� and t � ��� while there is no e�ect from t � 
�� on� For

t � b 	� ��
 the kernel estimates correspond with the estimate A�	t
� For

t � b the kernel estimates could be interpreted as follows� with the kernel

K	x
 again there is some underestimation at the beginning 	Figure ���

	b

� since there should be a 	local
 minimum� the use of the kernel Kq	x


in Figure ��� 	c
 yields a strong overestimation� since such a big negative

value at t � 
 seems not to be justi�ed� in Figure ��� 	d
 there is presum�

ably also an 	only very small
 overestimation at t � 
 using the kernel

KI�q�	x
� but this kernel estimate represents the results of the estimated

cumulative regression function best of the three kernel estimates�


�

	a

	b


	c

	d


Figure ���� Covariate surgery� cumulative function A�	t
 	a
� and kernel

estimates ��	t
 with kernel functions K	x
 	b
� Kq	x
 	c
� KI�q�	x
 	d
�




�

Similar interpretations about choosing the kernel function result for

the kernel estimates of the covariates acceptance and transplant� so we

omit them here�

As a summary we may point out the following� though the kernel func�

tion Kq	x
 has some theoretical optimality� for smoothing the covariate

e�ects in this example it causes strong over�tting� In contrast to this�

the use of the Epanechnikov kernel K	x
 results in some underestima�

tion� but in our example it represents the data in a better way than the

kernel Kq	x
� The best results come from the intuitively de�ned kernel

function KI�q�	x
� Hence� for the remainder of the example we use this

kernel function for all further estimations�

Choice of bandwidth

Now we want to discuss the e�ect of the di�erent bandwidths on the

kernel estimates� i�e�� the constant bandwidth b� the bandwidth b�	t
�

depending on the size of the risk set at time t 	see 	���

� and the kth

nearest neighbour bandwidth b�	t
 	see 	���

� The kernel estimates using

bandwidths b�	t
 and b�	t
 are denoted by ���	t
 and ���	t
� respectively�

For b�	t
 we chose the constant b� � �� and for b�	t
 the integer k � ���

since these choices gave 	subjectively
 the best results�

The kernel estimate ���	t
 with bandwidth b�	t
 of covariate age in

Figure ��� 	a
 has almost the same shape as the estimate with constant

bandwidth b in Figure ��
 	d
� From t � ��� on there are uninterpretable

ups and downs around zero when data gets sparse� too� Unlike� the ker�

nel estimate ���	t
 of age using bandwidth b�	t
 in Figure ��� 	b
 is very

smooth and tends to zero when data gets sparse� For times t � �
��� ����

the positive but decreasing estimate ���	t
 also represents the slight in�

crease of the cumulative function A� 	Figure ��
 	a

 in a better way than

with bandwidths b and b�	t
 in Figures ��
 	d
 and ��� 	a
�

Similar e�ects result for the kernel estimates ���	t
 and �
�
�	t
 of covari�

ate surgery� Figure ��� 	b
 shows a better smoothing by the bandwidth

b�	t
 in contrast to the bandwidths b 	Figure ��� 	d

 and b�	t
 	Figure

��� 	a

�

Covariates acceptance and transplant

Due to the results above we use the bandwidth b�	t
 	with k � ��
 and

the kernel function KI�q�	x
 for estimating the e�ects of the remaining

covariates acceptance and transplant�


�

	a

	b


Figure ���� Covariate age� kernel estimates ���	t
 	a
 and ���	t
 	b
�

	a

	b


Figure ���� Covariate surgery� kernel estimates ���	t
 	a
 and ���	t
 	b
�




�

	a

	b


Figure ���� Covariate acceptance� cumulative function A�	t
 	a
 and ker�

nel estimate ���	t
 	b
�

In Figure ��� 	a
 the estimated cumulative regression function of ac�

ceptance decreases from the beginning to about t � 
�� and stays at the

same level with small ups and downs 	which again result from data get�

ting sparse
� Part 	b
 of the Figure shows an equivalent result from the

kernel estimate ���	t
 of the slope �	t
� The smoothed version indicates

a negative e�ect till time t � 
��� which can not be recognized from the

cumulative function�

The estimates of the non�signi�cant covariate transplant in Figure

��� di�er fundamentally from the estimates of the other covariates� In

Figures ��
 to ��� the departures of the regression functions from zero are

either only in the positive direction 	age
 or only in the negative direction

	surgery and acceptance
� These results are in accordance to the de�nition

of the test statistics 	���
 and 	���
 	see also Aalen� 
���� Section ���
�

that are only suitable for alternatives covering either the positive or the

negative direction� However� the estimate A�	t
 of transplant 	Figure ���

	a

 varies around zero with no visible trend to the positive or the negative

direction� that means� also the slope of A�	t
 varies between positive and

negative values� which is in accordance with keeping the null hypothesis

	���
 for the covariate transplant� Equivalent results are shown in Figure


�

	a

	b


Figure ���� Covariate transplant� cumulative function A�	t
 	a
 and kernel

estimate ���	t
 	b
�

��� 	b
 by the kernel estimate ���	t
 that varies between negative and

positive values�

� Concluding remarks

The results of our example in Section � indicate that kernel estimates of

the regression function �	t
 correspond to the estimate of the cumulative

regression function A	t
� if we interpret the slope of the plot of A�	t
�

Kernel estimation is therefore a useful alternative to the estimation of

the cumulative regression functions� since viewing the development of the

regression function ��	t
 over time is easier and more direct than using

the indirect way of looking at the slope of the estimate A�	t
� But for ker�

nel smoothing in survival analysis there exist two problems� namely the

choice of the bandwidth and the tail problem� In the example a better

smoothing is given by the kth nearest neighbour bandwidth b�	t
 � dk	t
�

where we have to choose the integer k in a way that handles the trade o�

between smoothness and �t to the data� An oversmoothed estimate con�

ceals the details� while the opposite yields a jagged and rough curve with

a very di�cult interpretation� In the example we chose the smoothing pa�




�

rameters subjectively� but� as pointed out above� there exists methods for

an automatic choice� The unsymmetric kernel function Kq	x
� proposed

by Keiding and Andersen 	
���
 to solve the tail problem� ful�ls some

optimality criterions� in our example� however� it causes strong overesti�

mation for small time t� Therefore other methods should be used to deal

with the tails� as we did applying the kernel function KI�q�	x
� Hall and

Wehrly 	
��

� for example� propose a method based on re�ection of the

data set at the endpoints of the design interval�

The methods presented in this paper are implemented in SAS�IML

macros and are available from the authors�
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