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Summary

The linear regression model by Aalen for failure time analysis allows the
inclusion of time—dependent covariates as well as the variation of covariate
effects over time. For estimation Aalen considers cumulative hazard func-
tions and derives estimates by applying counting process theory. Since
often hazard functions themselves are of primary interest rather than cu-
mulative hazard functions, in this paper we consider kernel estimation of
the hazard functions, particularly in the presence of time—dependent co-
variates. Different kinds of bandwidths and kernel functions are discussed.
A comparison of the considered methods is illustrated by data from the
Stanford Heart Transplant Study.
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1 Introduction

In survival analysis the nonparametric linear regression model by Aalen
(1989) is an alternative to Cox’s proportional hazards model. The lat-
ter one is a standard tool for regression analysis of survival data, since
it is easy to apply and to interpret. A drawback of the method is the
assumption of proportional hazards, which is not always valid. For the
situation of time—dependent covariates the so—called time—dependent Cox
model is an extension of Cox’s proportional hazards model, see e.g. Alt-
man and De Stavola (1994) and Aydemir, Aydemir and Dirschedl (1996b).
But a weakness both of the proportional hazards model and the extended
model consists in the assumption of constant covariate effects. Unlike,
Aalen’s model allows both time—dependent covariates and the covariate
effects to vary over time by introducing a time—varying hazard function
for each covariate effect. For estimation Aalen considers cumulative haz-
ard functions and derives estimates by applying counting process theory.
Since often primary interest lies on the hazard functions themselves and
not on the cumulative hazard functions, one has to look at the slope of
the estimated cumulative function to get information about the covariate
effects. However, for an easier interpretation of the results a direct es-
timation of the hazard functions would be desirable, such as the kernel
estimate of the Nelson-Aalen—estimator in Ramlau-Hansen (1983) and
Keiding and Andersen (1989). Huffer and McKeague (1991) suggested
kernel estimates for the linear regression model of Aalen to derive weights
for a weighted least squares estimate of cumulative hazard functions. For
better illustration we give some results for survival times (in days) of pa-
tients with carcinoma of the oropharynx, analysed already by Aalen (1989
and 1993). Figure 1.1 (a) shows the estimated cumulative regression func-
tion A*(t) for the covariate condition of the patient at time of diagnosis
(1=no disability, 2=restricted work, 3=requires assistance with self care,
4=confined to bed). The influence of the covariate condition on survival
of patients has to be deduced from the slope of the function A*(¢), which
shows a very slight increase from the beginning to about time ¢ = 200 and
then a clearer increase to about ¢ = 400. That means there is a positive
effect of condition till time ¢ = 400 with maximum between ¢ = 320 and
t = 380. Figure 1.1 (b) shows similar results from the direct approach
with kernel estimation of the slope a*(t). Here we immediately recognize
a slightly positive effect at the beginning with a slight increase at about
t = 80 and then the maximum at ¢ = 320. After ¢ = 400 the influence
seems to disappear, since here the pointwise confidence band includes the
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Figure 1.1: Estimated cumulative regression function (a) and kernel esti-
mate of the slope (b), each with pointwise +2 standard errors.

zero line.

In this paper we consider kernel estimation of the linear regression
model corresponding to the suggestions of Aalen (1993), particularly in the
presence of time—dependent covariates. For kernel smoothing of survival
data there exist some problems. In survival analysis the density of the
data often decreases as observation time increases. The use of a constant
bandwidth as in Aalen (1993) therefore causes unexpected noise of the
kernel estimates when data gets sparse. The kernel estimate in Figure 1.1
(b) shows such an effect from about time ¢ = 600. To solve this problem
we examine variable bandwidths increasing with time. Another problem
of kernel smoothing in event history analysis is the so—called tail problem,
which results from the fact, that the observation interval is bounded at the
tails. Therefore we consider kernel functions dealing with the boundedness
of the left tail.

The paper is organized as follows: In Section 2 we introduce the linear
regression model following Aalen (1989). For an application to time—
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dependent covariates see Aydemir, Aydemir and Dirschedl (1996a). Sec-
tion 3 presents the kernel estimation of the linear regression model. Here
we also discuss different choices of bandwidths and the tail problem. In
Section 4 we discuss and compare the considered methods using data of
the Stanford Heart Transplant Study. Concluding remarks are given in
Section 5.

2 The linear regression model

Interest lies in the occurrence of a certain event, for example the death of
a patient, so we observe n individuals over some period of time. For some
individuals the event is observed within the observation period, while for
the others we only know, that the duration time to the event exceeds a
certain point of time, but the exact value is not known. This feature is
denoted as right censoring. For each individual additionally we observe r
covariates whose values possibly vary over time.

Let A;(t) denote the intensity of the occurrence of the event at time
t for individual i, i.e., \;(¢)dt is the probability that the event occurs in
interval [t, ¢+ dt] given that no event occurred before. The n—dimensional
vector A(t) of intensities A;(t), i = 1,...,n, is modelled in dependence of
the possibly time—varying covariates in the linear form

A(t) = Y ()a(t).

The first component of the (r+1)—dimensional vector a(t) = (ao(t), a1 (t),
...,ap(t))" is defined as the baseline effect, while the regression function
o (t) measures the influence of covariate j = 1,...,r. The n x (r + 1)
design matrix Y'(¢) contains for each individual ¢ an intercept and the
values of the covariates measured at time ¢. If individual 7 is under risk at
time t, i.e., the event has not occurred and the individual is not censored,
then row i of Y (¢) is defined as

Zz(t) = (].,Z{'(t), sy Z:*(t))a

where Zj(t), j =1,...,r, denote the covariate values of individual 7 at
time ¢. Otherwise, if individual ¢ is not under risk at time ¢, row ¢ of
matrix Y (¢) consists only of zeros.

Two additional assumptions regarding the structure of the matrix Y (¢)
are required. First, the sample functions are left continuous, what means
that the value of Y (¢) is known immediately before an event time. Second,
the value of Y'(t) depends only on the past, not on the future.



For non—-parametric statistical analysis, Aalen (1989) considers cumu-
lative regression functions A(t) = (Ao(t), A1 (t), ..., Ar(t))", with

t
Aj(t):/o aj(s)ds, j=0,1,...,r,

instead of the regression functions «a;(t) themselves. Let T} < T> <
denote the ordered observed event times, i.e., the censored observations
are not considered. We assume that there are no tied event times, oth-
erwise we add a random number between 0 and 1 to each event time,
see Aalen (1989), Section 6. The estimator of the cumulative regression
functions is given by

= > X(Tw, (2.1)

Ty <t

where summation takes place over all observed event times T} less or
equal to time ¢. The matrix X (¢) is a generalized inverse of Y (¢), where
usually the least squares inverse X (¢t) = (Y (¢)'Y (t))71Y (¢)" is used. Iy
is a n—dimensional vector of zeros except for a one corresponding to the
individual who experiences an event at time T}.

The estimator A*(t), only defined as long as Y (¢) has full rank, is
asymptotically normal with covariance matrix

() = cov(A*(t) = Y X(TW)IPX(Ty)', (2.2)
Tkst

where I is a (n x n) diagonal matrix with I; as diagonal.

Plotting the estimated cumulative regression function A3(t), j > 1,
against time, the slope of this function describes the influence of covariate
7 over time.

Within the framework of the linear regression model it is also possible
to examine whether a covariate has any influence on the survival of indi-
viduals. The test can be formulated by the following null hypothesis for
covariate j € {1,...,7}

H;: a;(t)=0 forallt. (2.3)

With the diagonal weight matrix

K(t) = {diag [(Y(t)'y(t))_l} }

-1

Aalen (1989) suggests to use the jth element U; of the vector test statistic

U=> K(Tx)X(Ti)Iy (2.4)
Tk

as a test statistic for the null hypothesis H;, which only can be tested over
the time interval where Y (¢) has full rank. Aalen (1989) points out, that
these test statistics are only suitable for alternatives where departure of
the regression function from zero is either only in the positive direction
or only in the negative direction. The test statistic U is asymptotically
multivariate normal distributed with estimated covariance matrix

= cov( ZK T) X (Ti)IP X (Th) K (Ty).

If only the influence of one covariate is to be tested with null hypothesis
Hj, we use the test statistic

which is asymptotically standard normal distributed under the null hy-
pothesis.

For further details on inference and goodness of fit in the linear re-
gression model see Aalen (1989).

3 Kernel smoothing

In this section we derive a kernel estimate for a(t) based on the estimate
A*(t) of the cumulative regression functions. Similar to Ramlau-Hansen
(1983), we define the kernel estimate for the intensity vector a(t) as

b/ ( )dA*( ), (3.1)

where the positive parameter b denotes the bandwidth and K is a kernel
function which satisfies the condition ffooo K(z)dz = 1, for example the
Epanechnikov kernel

K(z) =0.75(1 — %) for |z| < 1. (3.2)

Since the jump times of A*(¢) are the event times 77 < Ts < ..., the
kernel estimate (3.1) may be written as

1 t—1T,
:EZK< b
Ty

’“) dA*(Ty,).



With
dA*(Ty) = A*(Ty) — A" (Ty-1)
= Z X(T)1; - X(T5)I;
T <Tk T;<Tr-1
= X(Ti)I

we get the kernel estimate

0= Tk (5

An estimator for the covariance matrix is given by the diagonal of the
weighted sum of the terms of the covariance matrix (2.2) of A*(¢),

) X (L), (3.3)

cov(a*(t)) = diag{ %ZK2<t _bT’“> X (Ty)IP X (T})' } .
T

This result holds, since the increments of the cumulative regression es-
timator are uncorrelated (a consequence of the martingale property, see
Aalen, 1980 and 1993).

For kernel smoothing in event history analysis there exist two prob-
lems: the choice of the bandwidth b and the tail problem. Both are
explained in detail below.

Choice of bandwidth

In survival analysis the amount of data decreases as observation time
increases. Hence also the number of the data used for each time t to
compute a*(t) decreases as ¢ increases, when we use a constant bandwidth
b. This results in unexpected noise of the estimates a*(t) at the end of
the observation period. Here we propose two methods dealing with this
problem.

The first method, described in Fahrmeir and Tutz (1996), Section
9.4.2, uses the size n; of the set of individuals at risk at time ¢, which
decreases with time. With a constant by to be chosen the bandwidth is

defined as B
on
= — 4
bl (t) ng ) (3 )

and increases as n; decreases with time.

The second method, the kth nearest neighbour method (see Silverman,
1986), controls the degree of smoothing by the distance dy(t) of ¢ to the
k-nearest uncensored observed event time T;. Here the bandwidth, also
increasing with time, is defined as

ba(t) = di(t), (3.5)

where we have to choose the integer k. Here for each ¢ the same number
k of observations is used for smoothing of «(t).

The constant part of the bandwidth, i.e., b itself, by or k (depend-
ing on the used bandwidth), still has to be chosen. There exist data
driven methods with certain optimality criterions (see e.g. Keiding and
Andersen, 1989), but these methods may cause oversmoothing and do not
work well for each data. Therefore in the example below we choose the
constants b, bg and k subjectively.

Tail problem

In kernel smoothing generally symmetric kernels K (x) are used, that inte-
grate to one over their support [—1,1], as the Epanechnikov kernel men-
tioned above. See Figure 3.1 for the shape of the Epanechnikov kernel
(solid line). Due to this symmetric definition all observations s with the
same absolute distance from ¢ get the same weight K ((¢t — s)/b) in build-
ing the integral for the estimate (3.1). For t € [b,T(,) — b], with T(y
the maximum of the observed event times T}, integration in (3.1) takes
place over all s from the interval [t — b,t + b], or, considering the term
x = (t —s)/b, over the whole support [—1, 1] of the kernel K (x). For ¢t < b
(and similarly for ¢ > T{,;) — b) the integral is not over the whole support
[—1,1], but only over the interval [—1,q], with ¢ = ¢/b < 1. For ¢t < b
(and t > T(,) — b) the estimates a*(t) therefore have less weight and are
nearer to zero than for ¢ € [b, T(,,) — b].

To deal with that problem, Keiding and Andersen (1989) define a
smooth family of nonsymmetric kernels K (x) with support [—1,q] and
use these kernels for ¢ < b instead of the symmetric kernel K (z). Following
Gasser and Miiller (1979) K (z) is multiplied by a linear function, i.e.,

Ky(z) = K(2) (g + Byx), (3.6)

requiring that the new kernel K, (z) has integral one and mean zero over

[-1,q]:
/_q1 K, (2)de = 1, /_q1 2K, (z)dz = 0.



2.0
1.9
1.8
1.7
1.6
1.5
14
13
1.2
11
1.0
0.9
0.8
0.7
06
05
0.4
0.3
027 ,
0.1 /
0.0

-04

Figure 3.1: Epanechnikov kernel K (x) (——), unsymmetric kernel K,(z)
(——-) and kernel Ky, (x) (----) for ¢ = 0.3.

With the Epanechnikov kernel K (z) Andersen, Borgan, Gill and Keiding
(1993) derive from these equations the coefficients

(2, ¢ @ _ (=)’
a“«ﬁ+§_37“ =

402 ¢ @\ (2 ¢ 1 sl
w=s (G55 Gro- %) —wo-o)
They point out that K,(—z) is identical to the ” Optimal 1” kernel quoted
by Gasser and Miiller (1979). Figure 3.1 shows the unsymmetric kernel
K,(x) (long dashes) in comparsion to the Epanechnikov kernel K (z) (solid
line) for ¢ = 0.3. The third kernel function Ky, () is defined below.
From the picture we recognize that for small ¢ (i.e., ¢ near zero) the
unsymmetric kernel K,(z) gives too much weight to observations s near
zero (i.e., z = (t—s)/bnear ¢). This often leads to too big estimates of a(¢)
for small ¢, as we show in the example in Section 4. It also is unsatisfactory
that observations s near to t have lower weights than observations which

are more distant to ¢ but which are near to 0.
For that reason for t < b we intuitively define another kernel with
support [—1,¢] and integral one over that interval. However, we do not

with
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prove any optimality for that kernel. With
q
I(q) = / K(x)dz
-1

we define
K(z)

I(q)

and Ky (z) = 0 otherwise. As we see in Figure 3.1 the kernel K, (z)
(short dashes) gives maximum weight to observations near and around ¢
and is symmetric in the interval [—g, g].

The kernels K,(x) and K, (x) are only defined at the left tail (t < b).
At the right tail (¢ > T{,,) — b) we do not consider the tail problem, since
data here generally is too sparse for reasonable estimates.

Kig(z) = for z € [-1,q] (3.7

4 Example: Heart Transplant Data

To discuss and compare the methods we use data of the Stanford Heart
Transplant Study (Kalbfleisch and Prentice, 1980). The data includes the
survival times of 103 potential heart transplant recipients. Within the
observation period 69 of the patients received a new heart and 75 died.
Besides the right censored survival times (in days) the following covariates
were observed:

age of the patient in years

previous surgery 1 =yes, 0 = no

transplant status 1 = transplanted, 0 = not transplanted
waiting time to transplant in days

year of acceptance in the study

All covariates except the transplant were observed at the baseline time
t = 0. The transplant, which can be observed only for some patients
during the observation period, is a time—varying covariate with only one
possible switch of the value, and the waiting time to transplant differs from
patient to patient. For transplanted patients additionally three mismatch
variables and a mismatch score were observed, measuring the degree to
which donor and recipient are mismatched for tissue type. In our analy-
ses we will not take into consideration these mismatch variables, but we
include the three time—constant covariates age, surgery, acceptance and
the time—varying covariate transplant, as a combination of the covariates
transplant status and waiting time to transplant.
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The significance tests for the covariates with null hypotheses (2.3) and
test statistics (2.5) yield following results:

covariate test statistic

age 2.24
surgery -4.26
acceptance -1.78
transplant -0.30

The covariate surgery shows the strongest (and negative) influence on the
intensity. That means, a previous surgery has a positive effect on survival
of patients. Also the covariate age has a remarkable and positive influence,
whereas the effect of acceptance on the intensity is only modest. The
results for the time—varying covariate transplant indicate that a transplant
has no influence on the survival of patients.

Since data get sparse with increasing time, the estimated cumulative
regression functions A*(t) and the kernel estimates a*(t) have no inter-
pretable effects at the end of the observation period. Therefore time axes
of all figures below are shown only up to time ¢ = 350. At this time the
risk set of the Heart Transplant Data contains only 28 patients.

We first discuss the different kernel functions considered in Section 3
to solve the tail problem. Then we compare the different choices for the
bandwidth.

Tail problem

To compare the different kernel functions (3.2), (3.6) and (3.7) Figures 4.1
(for covariate age) and 4.2 (for covariate surgery ) show the cumulative
regression function A*(t) following (2.1) and three kernel estimates a*(t)
following (3.3) using the kernel functions K (), K,(z) and Ky, (z). For
the kernel estimates we (subjectively) chose the constant bandwidth b =
30, that means, for the tail problem only the part of the graphics with
time less than 30 (¢ < 30) is of interest. But for further discussions below
we show the time axes up to time ¢ = 350.

After small ups and downs the estimate A*(t) of the covariate age in
Figure 4.1 (a) shows a clear increase from time ¢t = 60 to ¢ = 110. Then
we see a very slight increase up to ¢ = 200. The ups and downs afterwards
are due to too less data and are therefore not interpretable. The plot of
A*(t) indicates that at the beginning the effect of age (or the slope of
A*(t)) is nearly zero, while from ¢ = 60 to ¢t = 110 the effect increases
and has its heighest value at about ¢t = 80. Afterwards it gets smaller and
tends to zero.
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Figure 4.1: Covariate age: cumulative function A*(¢) (a), and kernel
estimates a*(t) with kernel functions K (z) (b), K,(x) (c), Ky (z) (d).
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We recognize similar results from the kernel estimates o*(t) in Figure
4.1 (b) to (d). At t = 40 the effect is zero, then it increases with maximum
between ¢ = 70 and ¢t = 80, where the slope of A*(¢) has it’s maximum
too. After that the kernel estimates decrease to zero till about ¢t = 180.
The ups and downs afterwards again are due to too less data.

For t < b(= 30) the three kernel estimates differ. The estimate with
kernel function K (x) (Figure 4.1 (b)) is only slightly positive at the be-
ginning. This is in agreement with the results of the estimated cumula-
tive regression function A*(¢). But this may also follow from too small
weights of the kernel function K (z) for values ¢ < b (see discussion of the
tail problem in Section 3). Therefore let us look at the estimate using the
unsymmetric kernel functions K, (z) (Figure 4.1 (c)) dealing with the tail
problem. Here the kernel estimate has its maximum at time ¢ = 1, indi-
cating a strong positive effect of age at the beginning of the observation
period, and then it decreases to zero at t = 40. This result is contradic-
tory to the estimated cumulative regression function A*(t), where there
is no interpretable effect at the beginning. Hence, we think that there is
a strong overestimation with the unsymmetric kernel function K,(z) for
t near one. Figure 4.1 (d) shows the kernel estimate using the intuitively
defined kernel function Ky, (). Here at the beginning the effect a*(t) is
small, but bigger than the (presumably underestimated) effect using the
Epanechnikov kernel K (z) in Figure 4.1 (b).

In Figure 4.2 we see, that the choice of the kernel function has similar
effects on the kernel estimates of the covariate surgery. The estimated
cumulative regression function A*(¢) (Figure 4.2 (a)) decreases from the
beginning to about ¢ = 100, with maximal decrease between ¢t = 70 and
t = 80 and a strong decrease at the beginning. From ¢ = 100 on the func-
tion stays at the reached level with small ups and downs (which result
from the data getting sparse). That means, from beginning till ¢ = 100
there is a negative effect of surgery, with minima at the beginning and
between ¢t = 70 and ¢ = 80, while there is no effect from ¢ = 100 on. For
t > b (= 30) the kernel estimates correspond with the estimate A*(t). For
t < b the kernel estimates could be interpreted as follows: with the kernel
K (z) again there is some underestimation at the beginning (Figure 4.2
(b)), since there should be a (local) minimum; the use of the kernel K, (z)
in Figure 4.2 (c) yields a strong overestimation, since such a big negative
value at ¢ = 1 seems not to be justified; in Figure 4.2 (d) there is presum-
ably also an (only very small) overestimation at ¢ = 1 using the kernel
Kp(g)(z), but this kernel estimate represents the results of the estimated
cumulative regression function best of the three kernel estimates.
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Figure 4.2: Covariate surgery: cumulative function A*(¢) (a), and kernel
estimates a*(t) with kernel functions K (z) (b), K,(x) (c), Ky (z) (d).
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Similar interpretations about choosing the kernel function result for
the kernel estimates of the covariates acceptance and transplant, so we
omit them here.

As a summary we may point out the following: though the kernel func-
tion K,(z) has some theoretical optimality, for smoothing the covariate
effects in this example it causes strong overfitting. In contrast to this,
the use of the Epanechnikov kernel K(z) results in some underestima-
tion, but in our example it represents the data in a better way than the
kernel K,(z). The best results come from the intuitively defined kernel
function Kp(,)(z). Hence, for the remainder of the example we use this
kernel function for all further estimations.

Choice of bandwidth

Now we want to discuss the effect of the different bandwidths on the
kernel estimates, i.e., the constant bandwidth b, the bandwidth b;(¢),
depending on the size of the risk set at time ¢ (see (3.4)), and the kth
nearest neighbour bandwidth by (%) (see (3.5)). The kernel estimates using
bandwidths by (t) and bo(t) are denoted by aj(t) and a3 (t), respectively.
For by (t) we chose the constant by = 22 and for bo(t) the integer k£ = 30,
since these choices gave (subjectively) the best results.

The kernel estimate «f(t) with bandwidth by (¢) of covariate age in
Figure 4.3 (a) has almost the same shape as the estimate with constant
bandwidth b in Figure 4.1 (d). From ¢ = 200 on there are uninterpretable
ups and downs around zero when data gets sparse, too. Unlike, the ker-
nel estimate o3 (t) of age using bandwidth by (t) in Figure 4.3 (b) is very
smooth and tends to zero when data gets sparse. For times ¢ € [100, 200]
the positive but decreasing estimate «(t) also represents the slight in-
crease of the cumulative function A* (Figure 4.1 (a)) in a better way than
with bandwidths b and by (¢) in Figures 4.1 (d) and 4.3 (a).

Similar effects result for the kernel estimates aj (t) and a3 (t) of covari-
ate surgery. Figure 4.4 (b) shows a better smoothing by the bandwidth
b2(t) in contrast to the bandwidths b (Figure 4.2 (d)) and b, (¢) (Figure

4.4 (a)).

Covariates acceptance and transplant

Due to the results above we use the bandwidth by (t) (with k& = 30) and
the kernel function Ky, (z) for estimating the effects of the remaining
covariates acceptance and transplant.
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Figure 4.5: Covariate acceptance: cumulative function A*(¢) (a) and ker-
nel estimate a3(t) (b).

In Figure 4.5 (a) the estimated cumulative regression function of ac-
ceptance decreases from the beginning to about ¢ = 100 and stays at the
same level with small ups and downs (which again result from data get-
ting sparse). Part (b) of the Figure shows an equivalent result from the
kernel estimate az(t) of the slope a(t). The smoothed version indicates
a negative effect till time ¢ = 140, which can not be recognized from the
cumulative function.

The estimates of the non-significant covariate transplant in Figure
4.6 differ fundamentally from the estimates of the other covariates. In
Figures 4.1 to 4.5 the departures of the regression functions from zero are
either only in the positive direction (age) or only in the negative direction
(surgery and acceptance). These results are in accordance to the definition
of the test statistics (2.4) and (2.5) (see also Aalen, 1989, Section 3.2),
that are only suitable for alternatives covering either the positive or the
negative direction. However, the estimate A*(¢) of transplant (Figure 4.6
(a)) varies around zero with no visible trend to the positive or the negative
direction, that means, also the slope of A*(t) varies between positive and
negative values, which is in accordance with keeping the null hypothesis
(2.3) for the covariate transplant. Equivalent results are shown in Figure
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Figure 4.6: Covariate transplant: cumulative function A*(¢) (a) and kernel
estimate a3 (t) (b).

4.6 (b) by the kernel estimate aj(t) that varies between negative and
positive values.

5 Concluding remarks

The results of our example in Section 4 indicate that kernel estimates of
the regression function a(t) correspond to the estimate of the cumulative
regression function A(t), if we interpret the slope of the plot of A*(t).
Kernel estimation is therefore a useful alternative to the estimation of
the cumulative regression functions, since viewing the development of the
regression function a*(t) over time is easier and more direct than using
the indirect way of looking at the slope of the estimate A*(¢). But for ker-
nel smoothing in survival analysis there exist two problems, namely the
choice of the bandwidth and the tail problem. In the example a better
smoothing is given by the kth nearest neighbour bandwidth by (t) = dj (),
where we have to choose the integer k in a way that handles the trade off
between smoothness and fit to the data. An oversmoothed estimate con-
ceals the details, while the opposite yields a jagged and rough curve with
a very difficult interpretation. In the example we chose the smoothing pa-
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rameters subjectively, but, as pointed out above, there exists methods for
an automatic choice. The unsymmetric kernel function K,(z), proposed
by Keiding and Andersen (1989) to solve the tail problem, fulfils some
optimality criterions, in our example, however, it causes strong overesti-
mation for small time ¢. Therefore other methods should be used to deal
with the tails, as we did applying the kernel function Ky, (x). Hall and
Wehrly (1991), for example, propose a method based on reflection of the
data set at the endpoints of the design interval.

The methods presented in this paper are implemented in SAS-IML
macros and are available from the authors.
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