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Abstract In likelihood-based approaches to robustify state space mod-
els, Gaussian error distributions are replaced by non-normal alternatives with
heavier tails. Robustified observation models are appropriate for time se-
ries with additive outliers, while state or transition equations with heavy-
tailed error distributions lead to filters and smoothers that can cope with
structural changes in trend or slope caused by innovations outliers. As a
consequence, however, conditional filtering and smoothing densities become
analytically intractable. Various attempts have been made to deal with this
problem, reaching from approximate conditional mean type estimation to
fully Bayesian analysis using MCMC simulation. In this article we consider
penalized likelihood smoothers, this means estimators which maximize penal-
ized likelihoods or, equivalently, posterior densities. Filtering and smoothing
for additive and innovations outlier models can be carried out by computa-
tionally efficient Fisher scoring steps or iterative Kalman-type filters. Spe-
cial emphasis is on the Student family, for which EM-type algorithms to
estimate unknown hyperparameters are developed. Operational behaviour is

illustrated by simulation experiments and by real data applications.

KEYwORDS: Additive outliers, EM algorithm, innovations outliers, it-

erative Kalman Filtering, non-Gaussian state space models.

1 INTRODUCTION

Robustification of state space models and of filtering and smoothing algo-
rithms has been considered by various authors. In this paper we follow the
approach of Martin (1979), West (1981, 1984), Meinhold and Singpurwalla
(1989) among others, where errors are assumed to be non-Gaussian with
longer than normal tails. As is well-known, exact closed-form solutions to the
filtering and smoothing problem are generally no longer available. Approx-
imate filtering and smoothing algorithms have therefore been given already
in early work on robustified state space modelling, for example approximate
conditional mean (ACM) type smoothers (see Martin, 1979, or Martin and
Raftery, 1987). Kitagawa (1987) uses numerical integration for computing



posterior means, but the method becomes infeasible for higher state dimen-
sion. More recently, fully Bayesian MCMC simulation methods for models
with finite Gaussian mixtures have been developed to tackle this problem, see
for instance Carter and Kohn (1996a, 1996b). Shephard and Pitt (1997), and
Durbin and Koopman (1997) discuss models with Student errors for additive
outliers.

In this paper we consider posterior mode filters and smoothers as an
alternative or supplementary tool that avoids numerical or Monte Carlo inte-
gration. Computational solutions can be based on well understood, efficient
algorithms for nonlinear maximization problems. This approach leads to
Gauss-Newton or Fisher scoring smoothing algorithms which maximize pos-
terior densities or, equivalently, a certain penalized likelihood criterion, by
modifying and extending arguments in Fahrmeir and Kaufmann (1991). Al-
ternatively, these algorithms can we written as iteratively weighted Kalman
filters and smoothers applied to working observations in a similar way as for
dynamic generalized linear models (compare Fahrmeir and Tutz, 1994, ch.8;
Fahrmeir and Wagenpfeil, 1997). For models with heavy-tailed observation
error distribution we obtain filters and smoothers that are robust against ad-
ditive outliers. Innovations outliers, leading for instance to distinct changes
in level or slope of a time series, can be modelled by heavy-tailed error distri-
butions in the transition equation. Resulting smoothers are ’edge preserving’,
that is they react quite flexibly to change points or edges, but still provide
smooth fits in other regions.

Our approach is useful for a large class of heavy-tailed error distributions
but special emphasis is on the Student family. This concerns, in particular,
estimation of unknown hyperparameters such as scale factors or degrees of
freedom. We suggest an EM-type algorithm that is tailored to the Student
family and can be combined with smoothing algorithms for joint estimation
of state and hyperparameters. We illustrate performance by some simulation

experiments and by application to real data in Section 5.



2 ROBUST STATE SPACE MODELS

For simplicity we will consider only the standard linear state space model
for univariate observations. However, extensions to more complex models for
instance nonlinear models and multivariate observations are obvious. The

model consists of a linear observation equation
Y :Zéﬁt—FGt (t: ]_,2,) (21)

for the observations y;,ys, ... given the states (i, (32, ..., which is supple-

mented by a linear transition equation

ﬂt = Ftﬁtfl + V¢ (t = 1, 2, . ) (22)
Bo = ao+ vo.
The design vectors zi, 2o, ... and the transition matrices I}, F5, ... as well as

the vector gy are nonrandom.

The errors €, v;, t > 1, and vy are assumed to have zero mean densities
f, g and gg, which are twice piecewise differentiable. Furthermore errors are
mutually independent. If these densities are normal, we have the common
linear Gaussian state space model. We say that (2.1) and (2.2) form a robust
state space model if at least one of the densities f or ¢ is heavy-tailed. Models
for additive outliers (AO), where the observation densities f are heavy-tailed
while g and gy are Gaussian, form an important subclass. However, we can
also deal with innovations outliers (I10) by choice of heavy-tailed densities ¢
for the errors v; in the transition equation (2.2). Such IO robust state models
are quite useful for fitting time series with change points, for instance sudden
shifts of level or slope. Resulting filters or smoothers are ‘edge preserving’:
they provide smooth fits for regions with only small local variation but do
not blur edges or change points.

Well-known univariate examples with heavy-tailed densities are the
Cauchy distribution, the logistic distribution, discrete mixtures of normals,
the Student family, or the Huber family. Multivariate distributions can be

handled as either generated by independent univariate variables or e.g. as a



multivariate ¢-distribution discussed by Meinhold and Singpurwalla (1989)
and Lange, Little and Taylor (1989). However, as pointed out by Meinhold
and Singpurwalla (1989, Appendix 1) there may be serious problems concern-
ing estimation of the dispersion parameter. Our focus will be on the Student
family, in particular concerning estimation of hyperparameters. Large parts
of the development are valid more generally, however.

For derivations and formulations of filters and smoothers it is
convenient to introduce (negative) log-densities, first derivatives (influ-

ence or score function) and second derivatives (random information):

p(z) = —logf(z), ¥(z) = 9p(2)/0z,
U(z) = 0%p(2)/0207 = dy(z)/07,

r(z) = —logyg(z), c(z) = 0r(z)/0z,
C(z) = 0%*(2)]0207 = dc(2)]07,

and ry, ¢y, Cy defined analogously. To ensure positive definiteness, it may
be necessary to consider expected information E(¥(z)), E(C(z)) instead of
U(z),C(z).We will use ¥ and C' as generic symbols for observed and expected
second derivatives. For the t-distribution with scale factor o and v degrees

of freedom, the density is up to a normalizing constant
flz)=0+ ,22/1/02)7(%1)/2 , v,o>0 . (2.3)

Score function and random information are given by

P(z) = #4—2;020—2,2
v+1
U(z) = WU_Q(V—ZQ/O'Q)
v+ /0%)

and the expected information is (see Lange, Little and Taylor, 1989):

v+1

EV(z) = 37

Throughout the paper we assume that design vectors z; and transition ma-

trices are known. However, unknown hyperparameters of the densities f

4



and g, for instance the scale factor o and the degrees of freedom v of the
t-distribution, have to be estimated in most practical applications along with
the sequence of unknown states. A number of data driven methods for choos-
ing hyperparameters are conceivable, for instance simple heuristic methods
as in ACM-type smoothing (Martin and Yohai, 1985) or cross-validation.
We develop an EM-type algorithm that combines suggestions of Lange, Lit-
tle and Taylor (1989) for static robust regression and of Fahrmeir (1992) for

dynamic generalized linear models.

3 PENALIZED LIKELIHOOD ESTIMATION

For the following let y = (y1,...,yr), 3= (8),0,...,3}) denote the whole
vector of observations or parameters up to time 7. Smoothing is based on
the posterior density p(f5|y). Fully Bayesian methods based on MCMC sim-
ulation have been developed recently to tackle this problem, see for instance
Shephard and Pitt (1997) and Carter and Kohn (1996a, 1996b). As pointed
out in the introduction, posterior mode smoothers are still a useful alterna-
tive. They are obtained by maximizing p(3|y) or, equivalently, p(y|3)p(3).
Taking logarithms and using the model assumptions of Section 2, we obtain

the penalized log-likelihood criterion

pl(B3) = logp(y|B3)+logp(B) (3.1)
T T
= Z log f(y: — 2,6¢) 4+ 1og go(Bo — aq) + Z log g(B — FyBi-1)
t=1 t=1

With p = —logg, r = —log f and ry = —log fy defined in Section 2 maxi-

mization of (3.1) is equivalent to minimizing

T

> oy — 21B) +ro(Bo — ao) + Y (B — Fifi1), (3.2)

t=1 t=1

The first term in (3.2) is a robust measure for the distance between data and
fit and is familiar from M-estimation in static robust regression. The second

term acts as a robust smoothness prior penalizing roughness of the sequence

2

of states. For p(x) = r(x) = z° we get a penalized least squares criterion,



leading to non-robust classical linear Kalman filtering and smoothing, see for
instance Fahrmeir and Tutz (1994, Section 8.1).

The following should be noted: We have arrived at the penalized log-
likelihood criterion in a Bayesian framework by maximizing the posterior
density p(f|y). However, we might forget about this Bayesian approach and
start directly from (3.1) regarding {f;} as a fixed but unknown sequence
which has to be estimated subject to smoothness restrictions. Furthermore,
we may allow that p is not a proper (negative) log-density but any of the
p-functions as they are popular in robust statistics, leading to posterior M-
estimation.

In maximizing (3.1) or minimizing (3.2) the score function

u(p) = Opl(B)/0p

and the observed or the expected information matrix

U(B) = =0%pl(8)/0B05' or U(B)=EU(p)

are of interest. The score function can be partitioned as v =
(ub, ..., ub, ... ub) with ug = Opl(B)/0B; , t = 0,...,T. To avoid special
formulas for ¢ = 0 and t = T', we define 2y = 0 and Fr.; = 0. Straightforward

differentiation shows that
Uy = Z;lljt — ¢+ F15’+1Ct+1 (t = 0, Ce ,T) (33)

where W, and ¢, are the first derivatives of p and r evaluated at y; — z;3; and

By — Fy ;1. The information matrix is block-tridiagonal,

Upw Uy O e 0
Uy Un :
U=| o . - 0 (3-4)
Ur_ir
o --- 0 Ulel,T Upr

with
Utt = Zt\llt,% + Ct + F£+10t+1Ft+1

(t=1,...,T) (3.5)
U1y = F/C,



where ¥, and C; are (expected) second derivatives of p and r evaluated at
Ye — 20 and By — Fy By 1.

Setting r; = 2/W,, R, :== ¥,z and Q;' := C,, the expressions (3.3)
and (3.5) for first and second derivatives are formally identical to formulas
(4.7) and (4.9) for exponential family state space models in Fahrmeir and
Kaufmann (1991). Therefore factorization and inversion of the information
matrix U and the covariance matrix recursion developed in that paper remain

formally identical.

4  FILTERING, SMOOTHING AND ESTIMATION OF

HYPERPARAMETERS

In the following we first summarize the resulting Fisher scoring or Gauss-

Newton filters and smoothers for given or known hyperparameters.

Gauss-Newton smoother

Initialize: Choose a starting sequence 3° = ( 8|T', ﬁ%T', . ,ﬂtO‘T', e ﬁ%T/)/,
for example by an ACM-type smoother.

Iterate the Gauss-Newton steps 3° — (3

1. yo=ug , Xop=0Cy" , withuy and Cy evaluated at 3°.

2. Compute fort =1,...,T

Y1 = FX a1 Fy + c;t
_ -1
Zt‘t = [Et‘tl—l + Zt\IjtZ;f] (41)
Bt = Et—”t—lFtIEatlfl
and u; by (3.3), all expressions evaluated at 5°. Set v, = u; + Bjvy_1.
3. Filter correction: ﬁ%IT = ﬁ%T + Xrryr
4. Smoother corrections: Fort =1T,...,1

Yo = S + Bi(Syr — Et|t_1)B£

7



ﬁtl—1|T = 5?—1\T + Bt(ﬁtl|T - ﬁtO\T) + (EtfllT + BtztlTBé)’}’t—l-

Iterate steps 1.- 4. till convergence to obtain conditional mode smoothers
(ﬁ(l)lT’ e By - ,ﬁ'T‘T)’ together with curvatures (Xor,..., %7, ..., S77)
as approximate error covariance matrices.

An equivalent but computationally alternative form for filtering and
smoothing are iterative Kalman filters and smoothers applied to working
observations. They can be derived along the line of argument in Fahrmeir
and Wagenpfeil (1997), but are not presented here.

Up to now we assumed hyperparameters of the error distributions,
such as scale factors or degrees of freedom, as known. Estimation of
hyperparameters can be based on general concepts such as cross-validation
or maximum likelihood. We developed an EM-type algorithm for (ap-
proximate) ML estimation. It is tailored to the Student family, using the
fact that a t-distributed random variable ¢ can be generated as a mixture
t =z/ \/27/7 with x as zero-mean normal and the mixture variable z as
x2-distributed with v degrees of freedom. Therefore we can treat the states
in an approximative EM algorithm together with the mixture variables
as missing. E(xpectation)-steps are then analogous to robust regression
models (see Lange, Little and Taylor, 1989), but posterior expectations are
substituted by posterior modes. Compared to the EM-type algorithm for
dynamic generalized linear models (see e.g. Fahrmeir and Tutz, 1994), fur-

ther Taylor series expansions are necessary. Details are given in the appendix.

Then, the complete algorithm can be summarized as follows:
1. Set hyperparameters § = 6().
2. Compute penalized likelihood smoother, with 6 = §(© .

3. Compute ) by EM steps, using (6.4), (6.5) for updating of variances

and maximization of (6.6) for degrees of freedom.



4. Set 0© = 9.

Iterate steps 1.- 4. till convergence.

5 SIMULATIONS AND APPLICATIONS

To gain experience with practical performance, the smoothing algorithm was
applied to a number of simulated and real data. Gauss—Newton smoothing
was combined with Fisher scoring by using expected information whenever
the observed information matrix was not positive definite. To combine states
and parameter estimation a complete Gauss-Newton algorithm and a single
EM-type step were alternated until convergence. Subsection 5.1 and 5.2
report on typical simulation results. Real data examples follow in Subsection
5.3.

5.1 SIMULATION 1: ADDITIVE OUTLIERS

One-dimensional states were computed according to ; = sin(2t7w/60 + 0.3),
t=20,...,60 and held fixed throughout 100 simulation runs. Scalar observa-
tions were obtained from y; = 0, +¢€;, t = 1,...,60 with errors ¢; drawn from
a t-distribution with 2 d.f. and scale 0.1. Gauss-Newton smoothing estimates

{Byeo} were computed based on a second-order random walk model for AO,

o 2 -1 Bi—1 (4
= + y o Y = Pt €,
PR PN R

with v, ~ N(0,q) and ¢ as t-distributed with unknown d.f. v and scale

i.e.

oc. Since positive definiteness of C; is required, we set C; = diag(q, 1le 1%).
Approximative confidence bands {60 &= 2 - 0460} Were computed using cor-
responding diagonal elements 03‘60 of curvatures 6.

To illustrate advantages of robust smoothing over linear smoothing un-
der normality assumptions, we pick out run 46, which was the 14th best ac-
cording to the mean squared error criterion. Results are shown in Figure 1.

Gauss-Newton estimates are not affected by the additive outlier at ¢ = 13 and



EM-type for robust smoother | EM for linear smoother
Bias MSE Bias MSE
o2 | -0.00700 0.00005 0.06343 0.02834
v | -1.24588 1.55816 - -

Table 1: Hyperparameter estimation for simulation 1.

confidence bands are considerably smaller. The EM-type algorithm yielded
q = 0.0004, 02 = 0.0053 and v = 0.78. The EM algorithm combined with

the linear smoother computed ¢ = 0.0011 and ¢ = 0.05. Overestimation of

o2 is typical for linear smoothers in the case of AO, compare Table 1.

The boxplots in Figures 2 and 3 show the empirical distributions of
Gauss-Newton resp. linear smoothing estimates 55\20 from simulation runs
¢t =1,...,100. Points indicate outlying estimates beyond the whiskers which
are drawn to the nearest value not beyond one and a half times the inter quar-
tile range. Comparing both figures with respect to bias and, in particular,

variability provides clear evidence for MSE superiority of robust smoothing,

in agreement with Table 1.

5.2 SIMULATION 2: INNOVATIONS OUTLIERS

For analyzing 10, we chose

fixed throughout 100 simulations runs and generated scalar observations y; ~

N(f;,0.05). Gauss-Newton smoothing estimates were computed assuming a

05, t= 0,...,20
05, t=21,...,40

Br=1{ —1.25 t=41,...,50

steady state model for 10:

By = P +v, Yy

10

0 , t=51,...,55
| —1.25, t=56,...,60

= [+ €




with v; as t-distributed with unknown « and ¢, and ¢, ~ N (0, 02).

Figure 4 shows run 7 which was no.50 according to the mean squared
error criterion. In comparison to the linear smoother under normality
assumption the Gauss Newton algorithm is able to track the level shifts
quite well and yields smooth estimates in between with smaller confidence
bands. The EM-type algorithm yielded ¢ = 0.0039,02 = 0.0677 and
rk = 1.28. The EM algorithm combined with the linear smoother computed
q = 0.1042 and 02 = 0.0934 — ¢ is typically greater than the robust estimate
in case of 10. The boxplots in Figures 5 and 6 were constructed in analogy
to Simulation 1 and enlighten the behaviour for all 100 simulation runs.
They show that dynamic models with robust smoothness priors clearly
outperform Gaussian dynamic models in the presence of discontinuities and

are promising candidates for edge preserving smoothing.

5.3 REAL DATA EXAMPLES

Penalized likelihood smoothing was applied to the suspended deposit data of
Tukey (1977), see also Martin and Raftery (1987), which show an IO in the
year 1934 after the foundation of the Federal Deposit Insurance Corporation
in the USA. The data and the results are illustrated in Figure 7. Based on a
steady state model for 10, the EM type algorithm computed the estimates
q = 218, 02 = 1179 and x = 3.67. Gauss Newton smoothing exhibits the
level shift immediately and yields a smooth track before and after the year
1934.

The monthly CP6 sales data (West and Harrison, 1989) shown in Figure
8 contain an AO in December 1955, indicating also a change point, as well
as 10 in January 1957 and 1958. Assuming again a steady state model for
IO penalized likelihood smoothing clearly indicates the level shifts and gives
smooth estimates in between, especially almost ignoring the AO. Hyperpa-

rameter estimates were ¢ = 94, 02 = 586, k = 2.55.
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6 CONCLUSION AND OUTLOOK

Linear state space models with heavy-tailed error distributions provide a
flexible tool for curve estimation in the presence of additive outliers. The
proposed penalized likelihood or posterior mode smoothers avoid numerical
integration or Monte Carlo techniques and provide a useful alternative or
supplement to MCMC simulation. Special emphasis was laid on the Student
distribution. For this case, an EM-type algorithm for data driven estimation
of unknown scale factors and degrees of freedom has been developed. State
space models for innovations outliers lead to robust smoothness priors and
to edge preserving smoothing algorithms that can cope with discontinuities
or change points in the underlying curve. Extensions to spatial models, in
particular for image analysis seem to be promising and will be considered in

future research.

APPENDIX

We assume independent univariate ¢-distributions for the observation errors
e, and the components v;;, 7 = 1,...,p of the errors vy = (vir,...,vp)
of the transition equation. Then eu; ~ N(0,02/u;), vy ~ N(0,qj/wy;)
with mixture variables u; ~ x2/v and wy ~ X,%j/nj, j=1,...,p. If
we assume, for simplification, starting values ay, Qo to be known, then
0 = (02,v,q1, K1, - - -, Gy, Kp) is the vector of unknown hyperparameters. Given
the current iterate (%, the EM algorithm computes the next iterate () by
maximizing the posterior expectation of the complete data log—likelihood
E {log p(y,u, 8, w)|y; 8V}, where y,8,u and w are the vectors of all obser-
vations, state vectors and mixture variables respectively. Due to the model

assumptions this is equivalent to

E {log p(ylu, ) +log p(u) + log p(Blw) + log p(w) |y; 6 } — max. (6.1)

This implies separate maximization problems for the components of 6. Sup-
pressing the index j, we outline the derivation of our EM-type algorithm for

the unknown scale factor ¢ and degrees of freedom k. Omitting constants,

12



we have to consider the maximization problems

T 1 &
S(g)=—-=logg— —> E {?w,|y; 09} — max (6.2)
2 2q = q
with a4 as the j—the component of 3; — F;3;_1, and
T
= E{logp(w,)|y; 6"} — max. (6.3)
t=1

Using iterated conditional expectations, the ¢-the summand in S(g) can

be written as

E {afwt

;00 ) = E{B(afwi|B,y;n) |y; 6 |
— E{afA(O)(Oét) {?ﬁe(o)}

with A®(ay) = {(k©+1) /(K 4+a?/¢®)}, compare Lange, Little and Taylor

(1989, property 3). By a Taylor series expansion around é; = E(ay|y;0®)

we get
. . 1 .
E(?w|3,y;0") ~ ozfA(O)(ozt) - §A(0)(at) var(a,|y; )
with A (G;) = {k® (k@ +1)(k© - 342 /¢ /(k© + a2 /¢™)?}. Setting the

first derivative of S(g) to zero, we get

q( Z de var(at|y, ) (6.4)
Ti=

Approximating posterior expectations and variances by posterior modes and
curvatures, available from our smoothing algorithm for given #(¥) this is an

EM-type step for estimating q. Similarly we get the iteration step
Z&EA (1) + AO(3,) 2 Zyr 2, (6.5)

for 02 with 4; = y; — z}3; and A (5;) and A (4;) defined analogous to the
above.
Similar approximations are made in the E-step for (1), Since the w, are

independently kx? distributed, we have

59 = 5 log(5) T Iog(T(5) + (5~ 1) S F {loguefuso)
_g ;E{wtw; 09} . (6.6)

13



Suppressing t, iterated conditional expectations now yield

560} = E{B(w]8,y:60) |y 0©)
. {(H(O) +1)/(59 + a2/ ry; () } :

E{w

By Taylor series expansion of h(a) = (5 +1)/(k® + a?/¢®) around o we
obtain

(v —3a%/¢")

0OV (A — (0
E{w|y,9 }Nh(a) (k™ +1) 7O (kO + a2/q0)

.90
svar(aly; 0°).  (6.7)
Once more iterating conditional expectations gives

{E(log w3, y; 0) |y; 6 }
{E(logw|8;0) |y; 0 }

kO 41 1
= DG(") — E{log(; () + /g )

E {logw|y; 9(0)} =

E{E(
E{E(

y; 0 } :

where DG(-) is the Digamma function. The last equation is given by Lange,
Little and Taylor (1989). By Taylor series expansion of g(a) = log((x® +
o?/q®)/2) we obtain the final approximation

/{/(0) + 1 R H(O) — @2/q(0)
5 ) 9@ - 7O (kO + a2/¢®)

E {logw|y; 0(0)} ~ DG( var(a|y; 0©)
(6.8)
Conditional variances var(ay; n(®) in (6.7) and (6.8) are again approx-
imated by curvatures and after differentiation of S(k) the next estimate

can be found by a one dimensional search algorithm.
To obtain an estimate for the degrees of freedom v of the observa-

tion error’s distribution we can proceed analogously, especially using that

u conditional on 3 and y is x2.,/(v + 7*/o?)-distributed and therefore
E{uly, 8} = (v + 1)/ (v ++*/0?).
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Figure 1: True parameters {3;} indicated by (- - -) and smoothing estimates
(—) together with naive 2-o-confidence bands (— —) obtained by the robust
smoother (a) and by the linear smoother (c). Observations {y;} indicated
by diamonds and fitted values {g;} (—) resulting from the robust smoother
(b) and from the linear smoother (d).
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Figure 2: Boxplots visualizing the empirical distribution of Gauss-Newton

smoothing estimates for simulation 1. True values {/;} indicated by (—).
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Figure 3: Boxplots visualizing the empirical distribution of linear smoothing

estimates for simulation 1. True values {3} indicated by (—).
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Figure 4: True parameters {3} indicated by (- - -) and smoothing estimates
(—) together with naive 2-o-confidence bands (— —) obtained by the robust
smoother (a) and by the linear smoother (c). Observations {y;} indicated
by diamonds and fitted values {g;} (—) resulting from the robust smoother
(b) and from the linear smoother (d).
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Figure 5: Boxplots visualizing the empirical distribution of Gauss-Newton

smoothing estimates for simulation 2. True values {/;} indicated by (—).
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Figure 6: Boxplots visualizing the empirical distribution of linear smoothing

estimates for simulation 2. True values {3} indicated by (—).
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Figure 7: Transformed suspended deposit data — diamonds indicating
100 log(c+ suspended deposits) for ¢ = 1Mio. Dollar — and robust smoothing

estimates (——) with 2-o-confidence bands (- -).
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Figure 8: CP6 sales indicated by diamonds and robust smoothing estimates

(—) with 2-0-confidence bands (- —).

24



