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Abstract

This article considers a linear regression model in which some obser-
vations on an explanatory variable are missing, and presents three least
squares estimators for the regression coefficients vector. One estimator
uses complete observations alone while the other two estimators utilize
repaired data with nonstochastic and stochastic imputed values for the
missing observations. Asymptotic properties of these estimators based
on small disturbance asymptotic theory are derived and the impact of
departure from normality of disturbances is examined.

1 Introduction

During the process of data collection, we often encounter situations where some
observations cannot be recorded for one reason or the other. Such instances
occur quite frequently in mail surveys, opinion surveys, crop surveys, socio-
economic enquiries and planned experimentation in biological, industrial and
medical sciences. Consequently, the traditional statistical analysis cannot be
conducted due to some missing observations. Now there are two alternatives.
One is to confine attention to complete observations alone and to discard the
remaining incomplete observations. The other alternative is to repair the data
following some imputation procedure for filling the missing values and then
to conduct the analysis. Both the strategies have their own limitations and
qualifications.

When few values of some explanatory variables in a linear regression model
are missing, there are various ways to find imputed values; see, e.g., Little
(1992), Little and Rubin (1987), and Rao and Toutenburg (1995) for an inter-
esting exposition of the subject matter. A popular procedure among them is
to employ the method of first order regression which consists of running the
regression of an explanatory variable (for which some values are missing) on the
remaining explanatory variables in the model utilizing the data set of complete
observations and then using the thus obtained estimated equation for finding the
predicted values for the missing observations. In this manner, the repaired data
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set is obtained and is used for conducting the regression analysis; see Touten-
burg, Heumann, Fieger and Park (1995) for the efficiency properties of this
procedure in relation to the procedure that ignores the incomplete observations
all together.

The first order regression method, it may be observed, provides imputed
values which are nonstochastic by nature. Introducing a simple modification in
this method, Toutenburg, Srivastava and Fieger (1996) have given a procedure
which yields stochastic imputed values for missing observations. They have
also analyzed the asymptotic properties of the two estimators, arising from
the traditional and modified first order regression methods, for the regression
coefficients. They have employed the large sample asymptotic theory for which
a requirement is that the number of observations is sufficiently large. This
specification may not be tenable in many practical situations where it may
be hard to have a large data set. We therefore employ the small disturbance
asymptotic theory which places no constraint on the number of observations.
All that it assumes is that the disturbances are small, or equivalently o is
small and tends to zero meaning thereby that the underlying model tends to
be more and more correct. Thus the inferences derived from small disturbance
asymptotic theory tend to have larger validity in the neighbourhood of correct
model. Obviously, if model is not correctly specified, there is little point in
making efforts to draw more efficient inferences.

The plan of this article is as follows. In Section 2, we postulate a linear
regression model in which some values of only one explanatory variable are
missing. This is done to keep the exposition simple and comprehensible. The
traditional first order regression method providing nonstochastic imputed val-
ues for missing observations is then described. Stemming from it, we describe
an imputation procedure which yields stochastic imputed values for the missing
observations. When these imputed values are used to repair the incomplete data
set and the least squares method is employed to estimate the vector of regres-
sion coefficients, the resulting estimators are presented in Section 3 and their
asymptotic properties are analyzed employing the small disturbance asymptotic
theory. Finally, some concluding remarks are placed in Section 4.

2 Model Specification and Imputation Proce-
dures

Let us postulate a linear regression relationship connecting a study variable Y
and k explanatory variables X, X, ... X, and assume that some observations
on only the last variable X}, are missing in order to keep our exposition simple
and comprehensible. Thus we can write the model as follows:

Ye = Zb+az.+oe (2.1)
Y« = Z.0+ ax, + o€,

where y. and y. denote column vectors of m, and m, observations on the study
variable, Z. and Z, are matrices of m. and m., observations on the first (k —1)
explanatory variables on which all the observations are available, z. and .,
are column vectors of m,. available observations and m, missing observations
on the last explanatory variable, €. and €, are column vectors of m. and m,



disturbances and ¢ is a column vector of (k — 1) unknown coeflicients while a
and o are unknown scalar quantities.

It is assumed that the matrix (Z. z.) has full column rank. Further, we
assume that the elements of disturbance vectors €. and e, are independently
and identically distributed, following not necessarily a normal distribution, with
mean zero, variance unity and third moment ;.

In order to find imputed values for the missing observations on the last ex-
planatory variable by the method of first order regression, we run the regression
of Xj on Xy, Xo, ..., Xj—1 employing m. complete observations and then use
the estimated equation to obtain the predicted values of Xy for the m., missing
observations. This yields the following vector of imputed values for x.:

tr=Z.(Z.Z.) " Z x. (2.3)

which is obviously a nonstochastic quantity.

Now if we include the study variable Y also as an additional explanatory
variable and accordingly run the regression of X on X3, X5, ... X;—1 and Y
utilizing the m,. complete observations, the predictions for the m, values in z,
from the estimated equation are given by

Z'Z. Z'x Z'y
(3 55 ()
( ) rZ. xLx, Thye
or

b= 2.2 2) 2w, + lye — Z.(Z.Z.)" ZLy.] (2.4)

Yy My,

Cc

where M =1 — Z.(Z!Z.)"1Z!; see Toutenburg et al. (1996).

It is thus seen from (2.4) that the imputed values for z, are stochastic in
nature while the traditional imputed values specified by (2.3) are nonstochastic.
Further, the stochastic imputed values appear to be some kind of modified forms
of the nonstochastic imputed values.

3 Estimation of Regression Coefficients

If we write
X = (Ze =z )
0= (o)
X, = (Z* x*)

we can express the model as

Yye = XcB+ o€ (31)
Y = Xuf+ o€y (3.2)

If we ignore the incomplete observations and restrict our attention to com-
plete cases only, the least squares estimator of 3 is given by

be = (X;Xe) ' Xpy. (3.3)



which is unbiased with variance covariance matrix as
V(be) = (X1 X,)7" (3.4)

If we substitute zg and Z, for the missing observations z, in (2.2) and then
apply least squares to the thus repaired models using both the equations, we
obtain the following two estimators of 3:

bp = (X! Xe+ XpXp) ' (Xlye + Xkys) (3.5)

Bo= (XX + XX (Xlye + Xiy.) (3.6)

where Xgr and X* are same as X, except that z, in X, is replaced by zz and
T, respectively.

The exact properties of bg in relation to b, have been studied by Toutenburg
et al. (1995) while large sample asymptotic properties of b., bg and 8 have been
analyzed by Toutenburg et al. (1996).

Now let us consider the asymptotic properties of the estimators bg and ﬁ
when disturbances are small.

From the results reported in Toutenburg et al. (1995), the bias vector and
mean squared error matrix of bg to order O(o?) are given by

B(br) = E(br—0) (3.7)
= aQpXp(w. —zR)
M(br) = E(br —B)(br—8) (3.8)

= 042QRX};5(£IJ* — iIJR)(.Z’* — .Z’R)’XRQR + UZQR
where
Qr = (X!X,+XpXg)™" (3.9)

These expressions clearly indicate that bg is not only biased estimator of 3
but it is inconsistent also according to small disturbance asymptotic theory.
Let us now introduce the following notation:

Q0 = (X'X.+X.X,)? (3.10)
d = X'X,(X'X.) le+ (%) X'(z, —zr)  (3.11)
A = Z.Z2.z2)'Z + M, (x4 —zRr)2.M (3.12)
N = M- RV Mz.x. M (3.13)



2
Mz,
+[Ix A X QX!+ X[A)]A' X.Qe
+ (I * A X, QX A) (X, + A'X,)Qe

fo= (IxAA) Mz, — (X, +24'X,)Qe (3.14)

_ m’cl\l/[a?c (I*N)2I - X, QX.)(ze —xR)
- :v’cl\l4xc [I+A'X QX! +2X,A)|Mz.
g = :v’cl\lfxcMmc — (X, + A'X,)Qe (3.15)
F o= (€Q¢)XA[l# {A'X.Q(X! + X' A) — A'A}] (3.16)
+ m’cl\l/[atc X A{I % (M —2N)} + {'QX (2. — zg)} X.A(I * N)

- XiA{I« Mz e QX.+2X,A)}
+ X A{I x A’ X, Qee' QX + X, A)}
+{XI(X. = Xp) + (X, = Xp)' X J(X] + XLA)(I )]

2
— 7(37, e )ZXi(x* —xp)zLM(I % N)
G = A'(I-X.0X)A- AX.QX (3.17)

where * denotes the Hadamard product operator of matrices and e is a k x 1
vector with first (k — 1) elements zero and last element one.

Theorem 1: The asymptotic approximations for the bias vector and mean
squared error matrix of the estimator 3 to order O(c®) are given by

B(#) = E(B-p) (3.18)
- %Qd + o8 (%) [(f'1.)Qe + QFL]
M) = E@B-pB)B-p) (3.19)

= (XX - o8 (l—l) QW + W0

where

W= |el(I+«G)+ X.A(I*l.g') — Xi(xy —zgr)ll(I x N)] (X, + A X,)

(3.20)

oMz,

C

with /. denoting a m. X 1 vector having all elements unity.

It is observed from (3.18) and (3.19) that the estimator j is biased but
consistent for 8 according to small disturbance asymptotic theory. It is, however,
difficult to place any definite comment on the bias as well as the efficiency with
respect to the estimator b, due to intricate nature of expressions.

If we consider only the leading term in the expression (3.18), the bias remains
same whether the distribution is normal or not. When we include the term of



order O(o?), the impact of departure from normality appears, and an important
role is played by the skewness of the distribution of disturbances.

In a similar manner, if we restrict our attention to the leading term in the
expression (3.19), we observe that both the estimators b, and (8 are equally
efficient and thus it is futile to find imputed values for missing observations
and to use them for repairing the model. This, however, does not necessarily
remain true when we consider the entire expression upto order O(0?). And then
a dominant role is played by the asymmetry of the distribution of disturbances
in ascertaining the efficiency property of 3 in relation to b.. In fact, the sign of
1 determines the gain or loss in efficiency while its magnitude scales the gain
or loss of efficiency.

It may not be out of place to mention that the effect of fourth (kurtosis) and
other higher order moments of the distribution of disturbances will precipitate
if we work out higher order asymptotic approximations for the bias vector and
mean squared error matrix.

4 Some Remarks

We have considered a linear regression model when some observations on one
of the explanatory variables are missing, and have presented three estimators
for the regression coefficients vector. The first estimator arises from an appli-
cation of the least squares procedure using the complete observations alone and
discarding the incomplete observations all together. The other two estimators
are also least squares estimators but they use the repaired data set in which
the missing observations are replaced by imputed values. The second estimator
is thus based on nonstochastic imputed values given by the first order regres-
sion procedure, while the third estimator is based on stochastic imputed values
provided by the modified first order regression procedure.

It is found that first estimator is unbiased while the remaining two estimators
are biased. Further, according to small disturbance asymptotic theory, the first
and third estimators are consistent and share the same asymptotic properties
while the second estimator is not consistent.

Departure from normality of disturbances has no influence on the distribu-
tional properties of the first and second estimators. Such is, however, not the
case with the third estimator. Its performance properties under normality could
be markedly different from those when the distribution of disturbances departs
from normality. In this context, the effect of skewness is seen to be more pro-
nounced in comparison to that of kurtosis and other features of the distributions
as reflected by fourth and higher order moments.

Incidently, the asymptotic approximations for the bias vector and mean
squared error matrix of the third estimator turn out to be sufficiently involved
and could not help us in deducing any clear inference in order to appreciate any
loss or gain in efficiency. It will be interesting to conduct a numerical exploration
using techniques like simulation and bootstrap. Such an exercise may display
some meaningful conclusions. Some work in this direction is under a way, and
we hope to get back with some interesting findings in the time to come.



Appendix

In order to derive the results stated in Theorem, we first observe from (2.1),
(2.2) and (2.4) that

N ar Mz, + oz, Me,.
Ty = xRp-+ X
a2z Mz, + 200z, Me. + o€ Me,

X [a(xs — xr) + 0{ex — Zu(Z,Z.) " ZLe )]

zLMe zLMe €. Me !
= zp+(l+o0——" | (1+20—— 40?5 x
n ( Uaméch 7 ! Mz, 7 ! Mz,

x [(m* —xR)+ 2{6* - Z*(ZéZc)_IZéﬁc}]

Expanding in increasing powers of o, we get

T = we+ z(e* — Ae.)
a

o? z! Me, e Ne,
-5 | () e - a0+ (35 - 20

o €.(M —2N)e, e Ne. x! Me,
T (2 ) (o — Ae) 42 Sl Bl ) ()
- a? [( z Mz, > (€ o) ¥ < (zt.Mz.)? (= =r)
+ Op(o4)

whence we can express

. o? xl Me, €. Ne,
£ o xeoro A () () o] 2o

o €.(M —2N)e, €' Ne. ' Me,.
oo o () v () o - )

+ 0, (ct).

Using it, we observe that
(XX, + X% (A.3)

!
_ {Q—l +o(X\U+U'X,) + 0 {U’U - %(xw +U'X,)
EICNEC ! ! 3
- (KLY = Xi) + (X = Xa)X.) |+ 009
= Q- oQX.U +U'X.)Q
+ o2 [QUXLU + U'X)QUXIU + U'X,)0Q — QU'UQ

-1

xLMe, , ,
—— WX, U+U'X,)Q
az Mz, (XU )
_eeNee  (xXI(X. — Xp) + (X, — Xp)'X )]
Oé2 .T}ICMCUC * * R * R *
+ 0,(c?)



Xle. = Xle 40U, (A4)
2

o
— m [a(x'CMec)Ule* + (CICNEC)(X* — XR)IE*]
+ 0,(c?)
= Xles+ z(e;e* — €, Ae.)e (A.5)
e
2
- o (@ Me)(Ee — € Aed) + (€LNe) (@, - zp)'e.] e
c C
+ 0, (c®)
XX, - X,)8 (4.6)
' Me e Ne
= —oX.UB+o? |2 X1yp+ — 1 XI(X, — Xg)B—U'U
OAy /3+ |:OéCUIcMJJC * /6+042 'rICM'rC *( R)ﬁ /8
2z Me €.(M —2N)e
3 c Crrt c C v/
—UUpB - =——F——"—X,U
7o z Mz, b o? ! Mz, 7 b
e Ne
W{U'(X* — Xg)B + (X« — Xg)'UB}
22! Me, € Ne,
" e XRW]
+ 0, (c*)
o2 [z’ Me,
= —oXi(e* - AEC) + E [m}(i(ﬁ* - AEC)
'N
ﬁ){i(m —xR) — (€« — Ae.) (€4 — Aec)e}
0-3 ! !
+ m 2{($CMCC)(€* — AEC) (6* — ACC)

T (€LNe) (e — Ac) (. — zr)}e
22! Me, e'CNeCX,

— €. (M — 2N)e. X! (ex — Ae) —
L = 2N X (e = Aee) = LX)

. o)
+Op(a?)

with e denoting a column vector with first (kK — 1) elements as zero and last
element as one.
Utilizing these results, we can express

(B=B) =0cb1 + 0% +0°& + Op(0?) (A7)



where

G = QXL+ XA, (A8)
& = L(e— Ac)Ae. Qe+ reMee gy (ex — Aec) (A.9)
a ar Mz, 7 ‘
_eeNee gy (22 — zg) — QXU +U'X,)E
az Mz, 7 : )
& = W{wmec)(e* — Aeo)' (e — 24¢,) (A.10)

+ (€LNeo) (2. — zR)(€x — 2A€.) } e
(M —-2Ne. .,

A T A0 X (6, — A

a? ' Mz, (e 2

2z Me. € .Ne,
a? (¢ Mx.)?

+ (eLNe.)(zx — xR) (€2 — 24€.)}Qe
(ex — Ae.)' Ae,

QX! (zy — zR)

QXU + U'X,)Qe

a
xl Me
e a:'cM;cQ(XiU + U X)X e, — X (e — 24¢.))
€. Ne, , , ,
- ——Q(X X)X (2, —
ax Mz, (XU + U X)X, (v — zr)
+ QXU+ U X)X U+ U X)X, + X Ae,
€. Ne, , ’ ’ ’
— o AUX (XL - X X, — Xp)'X.]Q(X! + X' Ae.
S AN X + (X, = Xp) XKL+ XL A)e

—QU'UQ(X! + X! Ae,.

Let us first note the following results which are repeatedly employed in find-
ing the expectations:

AX., = (AZ. Az.)
_ (z ) = X, (A.11)
XL (XIX.) X, (A.12)
3 7'z, Z'a.\ ‘([ 2
= (2% x*)<m’ch xha, Tyl
1 -1 -1 -1
= mngc[Z*(ZéZC) Z' . x! 2227 2 — 2.2 Z) 7 2w,
— 2,2 22 2) 2 4 x|+ 2.2 Z.) 7 2,
1 !
= . — . — Z.(Z' 27!
meMa:c(‘E ar)(@x —xR) + Z(Z.2:)7 Z,
= AA
XIAX.+ A'X,) (A.13)

= X!/AX.+ X!AA'X,
= X.X,+X.X.(X'X.)"'X!X,
X' x.0 -0t



(X¢

+ X A) (X, + A'X,) (A.14)
= X!X.+ X/ AX.+ X!A'X, + XLAA'X,
= X!X.+2X!X, + X.S.(X!X.)"' X! X, (A.15)

= (QX'X.Q)"!

If D denotes a square matrix and d is any row vector, then we have

E(€.De. €

!
c

)

E(de. €.€.)

= ml.(I*D) (A.16)

where ‘x’ is the Hadamard product operator, I is an identity matrix of order
me X m. and [. is a m, X 1 vector with all elements unity.
Now it is easy to see that

E(e, Ae. — €. A' Ae..)

E[(z.Me.)QX| (€. — Ae.)]

E(e.Ne.)

E(QX.U&)

E(QU'X.&)

whence it follows that

E(&2)

= Lod
!

1
QX! X, (X! X,) e+
[0

—trA’A (A.18)
—tr(X.X,) T XLX,

QX! AMz, (A.19)
—QX,(z« — zR)

tr N (A.20)
(me — k)

é E[¢le QX (e — Ae.)] (A.21)

1 E[e.(X. + A'X,)Qe QX (e, — Ae.)]
a

“Loxrax. + Ax.)0e
[0

- [(XX) - e

1
— QXX (X!IX.) e
[0

é E[(e. — Ae.)' X.6]Qe (A.22)

1
—E[(ex — Ae.)' X QX! + X A)e Qe
a

—l[tr QX[ A(X, + A'X,)]Qe
a

1
—a[tr(XéXc)_lXiX*]Qe

m.—k—-1_,
WX*(JU* - Xgr)] (A.23)

10



In a similar manner, the following results can be obtained

E[(z.Mec)(ex — Aec)' (ex — 24ec)] = 2E[z Me. e, A'Ae.] (A.24)
= 2y 2l M(Ix A A,
E[(eNeo)(@x — r) (e — 24er)] = =27 (2. —ar)' (I N)l.  (A.25)
E[e\(M — 2N)e.QX! (e, — Ae.)] = —vy1 QXLA{I % (M — 2N)}H(A.26)
E[z.Me.e.Ne.] = ~ 2.M(I % N)l, (A.27)
E[(e, — Ae.)' Ae, QX U + U'X,)Qe] (A.28)
1

= = E[(e. — Ae.) Ae.Q{e' Qe X (€. — Ae.) + €' QX (e — Aec)e}]

= (e Qe)QXTA(I * A'A)l, + €' QXL A(I x A’ A)l, Qe]
[0

E[(z.Me.)QUX.U + U'X,)Q{Xe. — X (. —24€.)}] (A.29)
1
= 2 E[(z.Me.)e'Q{Xle. — X|(ex — 24€.) 12X (6. — A€.)]

1
+ o E[(z.Me.)(ex — Aee) X OQ{ Xle. — Xu(ex — 24€.)}]Qe

- é Ele. Mz e'Q(X] + 2X])e. QX Ae]
— Bl Med)el A XX, 4+ 2X e J0e
- l—lﬂXiA[I « Mzee' QX!+ 2X )]l
- %m’cM[I « A/ X QX!+ 2X7)]le Qe
E[(€.Ne)QUXLU + U' X)X (2, — zr)] (A.30)
= TB[ENe)e QX! (@, — 2r) X! (e, — Aco)

+ 1 E[(e.Ne.)(ex — Ae.)' X QX (z. — zR)]Qe
a

— e QX! (20 — 25)YQOXLA(L % NI,
«

— 7—1(37* —zg)' X QX.A(I * N)l. Qe
a

11



E[Q(X'U + U'X)QUX'U + U' X)X + X! A)e] (A.31)
= L BN, + X! A)ee @0X (e, — Ace) XL (e, — Ac)]
+ 5 (¢'00) Bl(e. — Ae) X.0(X, + X[ A)e, OX! (e — Ae)]
¥ % E[e'Q(X! + X! A)e. (ex — Aeo) X, QX (ex — Ae.)]Qe
+ o3 BN (e — Acc) (eo = Aee) XoO(X] + XL A)ec]0e
- %[QXLA{I « A'X, Qee' QX! + X! A},

+ (e'Qe)QXLA{T x A'X.Q(X. + XL A},
+e' QX!+ X[A) (I x A X QX A)l. Qe
+ ' QXLA{T « A X QX! + X[ A)}. Qe]

E[(¢,Ne) QXL (X, — Xp) + (X, - Xp) X} QXL + XL A)e]
= QX (X, — Xg) + (X. — Xg)' X2 QX + X! A)(I % N)I,(A.32)

E[QU'UQ(X, + X A)e] (A.33)
= % El(e. — Ae.) (€. — Ae.)Qee’ QX + X[ A)e,]

5
= SO+ XIAT * A'A)L]Qe.
Combining these results, we find
E(&) = (f'1)Qe + QFI, (A.34)

where f and F are specified by (3.14) and (3.16) respectively.
Now the bias vector of 3 to order O(c?) is given by

B(3) = E(B-8) (A.35)
o E(&) +0” E(&) + 0 E(&)
o> B(&) + 0® E(&).

Substituting (A.23) and (A.34), we obtain the result (3.18) stated in Theo-
rem.
For the mean squared error matrix to order O(o?), we observe that

M(B) = 0* E(e161) + 0° E(&26] + &165). (A.36)
It is easy to see that

E(G&) = QX+ X, A)(X. + A'X,)0 (A.37)
(X'X.).

12



Similarly, using (A.16) and (A.17), we have

E[(e. — Ae.) AeQec.] = —QeE(e.AAe. €.) (A.38)
= —mQel(IxA'A)
E[(z.Me.)QX, (e, — Ae)e] = —QX.AE(z.Me, e.€.) (A.39)
= —fylﬂXiA(I*lc.rch)

E[(e.Nec)e]
E[Xi U& Elc]

Yl (I % N) (A.40)
X, E[e'Q(X] + X[ A)e. (€4 — Ae.)el]

— XA x1.e'"QX]. + X[ A)) (A41)
E[U'X.6i€)] = eE[(ex — Ae)' XuQ(X. + X, A)e. €]

= —mell(Ix AX. QX!+ X_A)). (A.42)

Utilizing these results, we obtain from (A.8) and (A.9) that

E(&¢))
= 2O |ell(I @) + XA xLeg) -

- Mchi(x* —zp)l.(I «N)| x

c

x (X + A'X,)0 (A.43)

where the matrix G and the vector g are specified by (3.17) and (3.15) respec-
tively.

Substituting (A.37) and (A.43) in (A.36), we obtain the expression (3.19)
for the mean squared error matrix of /3’ to the desired order of approximation.
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