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Impact of Departure from Normality on the

E�ciency of Estimating Regression Coe�cients

when Some Observations are Missing

H� Toutenburg� V�K� Srivastava��

September ��� ����

Abstract

This article considers a linear regression model in which some obser�

vations on an explanatory variable are missing� and presents three least

squares estimators for the regression coe�cients vector� One estimator

uses complete observations alone while the other two estimators utilize

repaired data with nonstochastic and stochastic imputed values for the

missing observations� Asymptotic properties of these estimators based

on small disturbance asymptotic theory are derived and the impact of

departure from normality of disturbances is examined�

� Introduction

During the process of data collection� we often encounter situations where some
observations cannot be recorded for one reason or the other� Such instances
occur quite frequently in mail surveys� opinion surveys� crop surveys� socio�
economic enquiries and planned experimentation in biological� industrial and
medical sciences� Consequently� the traditional statistical analysis cannot be
conducted due to some missing observations� Now there are two alternatives�
One is to con�ne attention to complete observations alone and to discard the
remaining incomplete observations� The other alternative is to repair the data
following some imputation procedure for �lling the missing values and then
to conduct the analysis� Both the strategies have their own limitations and
quali�cations�

When few values of some explanatory variables in a linear regression model
are missing� there are various ways to �nd imputed values� see� e�g�� Little
��		
�� Little and Rubin ��	��� and Rao and Toutenburg ��		�� for an inter�
esting exposition of the subject matter� A popular procedure among them is
to employ the method of �rst order regression which consists of running the
regression of an explanatory variable �for which some values are missing� on the
remaining explanatory variables in the model utilizing the data set of complete
observations and then using the thus obtained estimated equation for �nding the
predicted values for the missing observations� In this manner� the repaired data
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set is obtained and is used for conducting the regression analysis� see Touten�
burg� Heumann� Fieger and Park ��		�� for the e�ciency properties of this
procedure in relation to the procedure that ignores the incomplete observations
all together�

The �rst order regression method� it may be observed� provides imputed
values which are nonstochastic by nature� Introducing a simple modi�cation in
this method� Toutenburg� Srivastava and Fieger ��		�� have given a procedure
which yields stochastic imputed values for missing observations� They have
also analyzed the asymptotic properties of the two estimators� arising from
the traditional and modi�ed �rst order regression methods� for the regression
coe�cients� They have employed the large sample asymptotic theory for which
a requirement is that the number of observations is su�ciently large� This
speci�cation may not be tenable in many practical situations where it may
be hard to have a large data set� We therefore employ the small disturbance
asymptotic theory which places no constraint on the number of observations�
All that it assumes is that the disturbances are small� or equivalently � is
small and tends to zero meaning thereby that the underlying model tends to
be more and more correct� Thus the inferences derived from small disturbance
asymptotic theory tend to have larger validity in the neighbourhood of correct
model� Obviously� if model is not correctly speci�ed� there is little point in
making e�orts to draw more e�cient inferences�

The plan of this article is as follows� In Section 
� we postulate a linear
regression model in which some values of only one explanatory variable are
missing� This is done to keep the exposition simple and comprehensible� The
traditional �rst order regression method providing nonstochastic imputed val�
ues for missing observations is then described� Stemming from it� we describe
an imputation procedure which yields stochastic imputed values for the missing
observations� When these imputed values are used to repair the incomplete data
set and the least squares method is employed to estimate the vector of regres�
sion coe�cients� the resulting estimators are presented in Section � and their
asymptotic properties are analyzed employing the small disturbance asymptotic
theory� Finally� some concluding remarks are placed in Section ��

� Model Speci�cation and Imputation Proce�

dures

Let us postulate a linear regression relationship connecting a study variable Y
and k explanatory variables X�� X�� � � � Xk� and assume that some observations
on only the last variable Xk are missing in order to keep our exposition simple
and comprehensible� Thus we can write the model as follows�

yc � Zc� � �xc � ��c �
���

y� � Z�� � �x� � ��� �
�
�

where yc and y� denote column vectors of mc and m� observations on the study
variable� Zc and Z� are matrices of mc and m� observations on the �rst �k� ��
explanatory variables on which all the observations are available� xc and x�
are column vectors of mc available observations and m� missing observations
on the last explanatory variable� �c and �� are column vectors of mc and m�






disturbances and � is a column vector of �k � �� unknown coe�cients while �
and � are unknown scalar quantities�

It is assumed that the matrix �Zc xc� has full column rank� Further� we
assume that the elements of disturbance vectors �c and �� are independently
and identically distributed� following not necessarily a normal distribution� with
mean zero� variance unity and third moment ���

In order to �nd imputed values for the missing observations on the last ex�
planatory variable by the method of �rst order regression� we run the regression
of Xk on X�� X�� � � � � Xk�� employing mc complete observations and then use
the estimated equation to obtain the predicted values of Xk for the m� missing
observations� This yields the following vector of imputed values for x��

xR � Z��Z
�

cZc�
��Z �

cxc �
���

which is obviously a nonstochastic quantity�
Now if we include the study variable Y also as an additional explanatory

variable and accordingly run the regression of Xk on X�� X�� � � � Xk�� and Y

utilizing the mc complete observations� the predictions for the m� values in x�
from the estimated equation are given by

�x� � �Z� y��

�
Z �

cZc Z �

cxc
x�cZc x�cxc

��
Z �

cyc
x�cyc

�
or

�x� � Z��Z
�

cZc�
��Z �

cxc �
x�cMyc

y�cMyc

�
y� � Z��Z

�

cZc�
��Z �

cyc
�

�
���

where M � I � Zc�Z
�

cZc�
��Z �

c� see Toutenburg et al� ��		���
It is thus seen from �
��� that the imputed values for x� are stochastic in

nature while the traditional imputed values speci�ed by �
��� are nonstochastic�
Further� the stochastic imputed values appear to be some kind of modi�ed forms
of the nonstochastic imputed values�

� Estimation of Regression Coe�cients

If we write

Xc �
�
Zc xc

�
� �

�
�

�

�
X� �

�
Z� x�

�
we can express the model as

yc � Xc� � ��c �����

y� � X�� � ���� ���
�

If we ignore the incomplete observations and restrict our attention to com�
plete cases only� the least squares estimator of � is given by

bc � �X �

cXc�
��X �

cyc �����

�



which is unbiased with variance covariance matrix as

V�bc� � ���X �

cXc�
��� �����

If we substitute xR and �x� for the missing observations x� in �
�
� and then
apply least squares to the thus repaired models using both the equations� we
obtain the following two estimators of ��

bR � �X �

cXc �X �

RXR�
���X �

cyc �X �

Ry�� �����

�� � �X �

cXc � �X �

�

�X��
���X �

cyc �
�X �

�
y�� �����

where XR and �X� are same as X� except that x� in X� is replaced by xR and
�x� respectively�

The exact properties of bR in relation to bc have been studied by Toutenburg
et al� ��		�� while large sample asymptotic properties of bc� bR and �� have been
analyzed by Toutenburg et al� ��		���

Now let us consider the asymptotic properties of the estimators bR and ��
when disturbances are small�

From the results reported in Toutenburg et al� ��		��� the bias vector and
mean squared error matrix of bR to order O���� are given by

B�bR� � E�bR � �� ����

� ��RX
�

R�x� � xR�

M�bR� � E�bR � ���bR � ��� �����

� ���RX
�

R�x� � xR��x� � xR�
�XR�R � ���R

where

�R � �X �

cXc �X �

RXR�
��� ���	�

These expressions clearly indicate that bR is not only biased estimator of �
but it is inconsistent also according to small disturbance asymptotic theory�

Let us now introduce the following notation�

� � �X �

cXc �X �

�
X��

�� ������

d � X �

�
X��X

�

cXc�
��e�

�
mc � k � �

x�cMxc

�
X �

�
�x� � xR� ������

A � Z��Z
�

cZc�
��Z �

c �
�

x�cMxc
�x� � xR�x

�

cM ����
�

N � M �
�

x�cMxc
Mxcx

�

cM ������

�



f � �I �A�A�

�



x�cMxc
Mxc � �Xc � 
A�X���e

�
������

� �I �A�X���X
�

c �X �

�
A��A�X��e

� �I �A�X��X
�

�
A��Xc �A�X���e

�
�

x�cMxc
�I �N��
I �X��X

�

�
��x� � xR�

�
�

x�cMxc
�I �A�X���X

�

c � 
X �

�
A��Mxc

g �
�

x�cMxc
Mxc � �Xc �A�X���e ������

F � �e��e�X �

�
A�I � fA�X���X

�

c �X �

�
A��A�Ag� ������

�
�

x�cMxc

h
X �

�
AfI � �M � 
N�g� fe��X �

�
�x� � xR�gX

�

�
A�I �N�

�X �

�
AfI �Mxce

���X �

c � 
X �

�
A�g

�X �

�
AfI �A�X��ee

���X �

c �X �

�
A�g

� fX �

�
�X� �XR� � �X� �XR�

�X�g��X
�

c �X �

�
A��I �N�

i
�




�x�cMxc��
X �

�
�x� � xr�x

�

cM�I �N�

G � A��I �X��X
�

�
�A�A�X��X

�

c �����

where � denotes the Hadamard product operator of matrices and e is a k � �
vector with �rst �k � �� elements zero and last element one�

Theorem �� The asymptotic approximations for the bias vector and mean
squared error matrix of the estimator �� to order O���� are given by

B��� � E��� � �� ������

�
��

�
�d� ��

	 ��
��



��f �lc��e��F lc�

M� ��� � E� �� � ��� �� � ��� ����	�

� ���X �

cXc�
�� � ��

	��
�



��W �W ���

where

W �

�
el�c�I �G� �X �

�
A�I � lcg

���
�

x�cMxc
X �

�
�x� � xR�l

�

c�I �N�

�
�Xc �A�X��

���
��

with lc denoting a mc � � vector having all elements unity�
It is observed from ������ and ����	� that the estimator �� is biased but

consistent for � according to small disturbance asymptotic theory� It is� however�
di�cult to place any de�nite comment on the bias as well as the e�ciency with
respect to the estimator bc due to intricate nature of expressions�

If we consider only the leading term in the expression ������� the bias remains
same whether the distribution is normal or not� When we include the term of

�



order O����� the impact of departure from normality appears� and an important
role is played by the skewness of the distribution of disturbances�

In a similar manner� if we restrict our attention to the leading term in the
expression ����	�� we observe that both the estimators bc and �� are equally
e�cient and thus it is futile to �nd imputed values for missing observations
and to use them for repairing the model� This� however� does not necessarily
remain true when we consider the entire expression upto order O����� And then
a dominant role is played by the asymmetry of the distribution of disturbances
in ascertaining the e�ciency property of �� in relation to bc� In fact� the sign of
�� determines the gain or loss in e�ciency while its magnitude scales the gain
or loss of e�ciency�

It may not be out of place to mention that the e�ect of fourth �kurtosis� and
other higher order moments of the distribution of disturbances will precipitate
if we work out higher order asymptotic approximations for the bias vector and
mean squared error matrix�

� Some Remarks

We have considered a linear regression model when some observations on one
of the explanatory variables are missing� and have presented three estimators
for the regression coe�cients vector� The �rst estimator arises from an appli�
cation of the least squares procedure using the complete observations alone and
discarding the incomplete observations all together� The other two estimators
are also least squares estimators but they use the repaired data set in which
the missing observations are replaced by imputed values� The second estimator
is thus based on nonstochastic imputed values given by the �rst order regres�
sion procedure� while the third estimator is based on stochastic imputed values
provided by the modi�ed �rst order regression procedure�

It is found that �rst estimator is unbiased while the remaining two estimators
are biased� Further� according to small disturbance asymptotic theory� the �rst
and third estimators are consistent and share the same asymptotic properties
while the second estimator is not consistent�

Departure from normality of disturbances has no in�uence on the distribu�
tional properties of the �rst and second estimators� Such is� however� not the
case with the third estimator� Its performance properties under normality could
be markedly di�erent from those when the distribution of disturbances departs
from normality� In this context� the e�ect of skewness is seen to be more pro�
nounced in comparison to that of kurtosis and other features of the distributions
as re�ected by fourth and higher order moments�

Incidently� the asymptotic approximations for the bias vector and mean
squared error matrix of the third estimator turn out to be su�ciently involved
and could not help us in deducing any clear inference in order to appreciate any
loss or gain in e�ciency� It will be interesting to conduct a numerical exploration
using techniques like simulation and bootstrap� Such an exercise may display
some meaningful conclusions� Some work in this direction is under a way� and
we hope to get back with some interesting �ndings in the time to come�

�



Appendix

In order to derive the results stated in Theorem� we �rst observe from �
����
�
�
� and �
��� that

�x� � xR �
�x�cMxc � �x�cM�c

��x�cMxc � 
��x�cM�c � ����cM�c
�

� ���x� � xR� � �f�� � Z��Z
�

cZc�
��Z �

c�cg�

� xR �

�
� � �

x�cM�c

�x�cMxc

��
� � 
�

x�cM�c

� x�cMxc
� ��

��cM�c

�� x�cMxc

�
��

�

�
h
�x� � xR� �

�

�
f�� � Z��Z

�

cZc�
��Z �

c�cg
i

Expanding in increasing powers of �� we get

�x� � x� �
�

�
��� � A�c� �A���

�
��

��

��
x�cM�c

x�cMxc

�
��� �A�c� �

�
��cN�c

x�cMxc

�
�x� � xr�

�

�
��

��

��
��c�M � 
N��c

x�cMxc

�
��� �A�c� � 


�
��cN�c x

�

cM�c

�x�cMxc��

�
�x� � xR�

�
�Op��

��

whence we can express

�X� � X� � �U �
��

��

�
�

�
x�cM�c

x�cMxc

�
U �

�
��cN�c

x�cMxc

�
�X� �XR�

�
�A�
�

�
��

��

�
�

�
��c�M � 
N��c

x�cMxc

�
U � 


�
��cN�c x

�

cM�c

�x�cMxc��

�
�X� �XR�

�
�Op��

���

Using it� we observe that

�X �

cXc � �X �

�

�X��
�� �A���

�

�
��� � ��X �

�
U � U �X�� � ��

�
U �U �

x�cM�c

� x�cMxc
�X �

�
U � U �X��

�
��cN�c

�� x�cMxc
�X �

�
�X� �XR� � �X� �XR�

�X��

�
�Op��

��

�
��

� �� ���X �

�
U � U �X���

� ��
�
��X �

�
U � U �X����X

�

�
U � U �X�����U �U�

�
x�cM�c

� x�cMxc
��X �

�
U � U �X���

�
��cN�c

�� x�cMxc
��X �

�
�X� �XR� � �X� �XR�

�X���
�

�Op��
��





�X �

�
�� � X �

�
�� � �U ��� �A���

�
��

�� x�cMxc

�
��x�cM�c�U

��� � ���cN�c��X� �XR�
���

�
�Op��

��

� X �

�
�� �

�

�
���
�
�� � ��

�
A�c�e �A���

�
��

�� x�cMxc
��x�cM�c���

�

�
�� � ��

�
A�c� � ���cN�c��x� � xR�

���� e

�Op��
��

�X �

�
�X� � �X��� �A���

� ��X �

�
U� � ��

�
x�cM�c

� x�cMxc
X �

�
U� �

��cN�c

�� x�cMxc
X �

�
�X� �XR�� � U �U�

�

� ��



 x�cM�c

� x�cMxc
U �U� �

��c�M � 
N��c
�� x�cMxc

X �

�
U�

�
��cN�c

�� x�cMxc
fU ��X� �XR�� � �X� �XR�

�U�g

�

 x�cM�c �

�

cN�c

�� �x�cMxc��
X �

�
�X� �XR��

�

�Op��
��

� ��X �

�
��� �A�c� �

��

�

�
x�cM�c

x�cMxc
X �

�
��� �A�c�

�
��cN�c

x�cMxc
X �

�
�x� � xR�� ��� �A�c�

���� �A�c�e

�

�
��

�� x�cMxc

�

f�x�cM�c���� �A�c�

���� �A�c�

� ���cN�c���� �A�c�
��x� � xR�ge

� ��c�M � 
N��c X
�

�
��� �A�c��


 x�cM�c �
�

cN�c

x�cMxc
X �

�
�x� � xR�

�
�Op��

��

with e denoting a column vector with �rst �k � �� elements as zero and last
element as one�

Utilizing these results� we can express

� �� � �� � �	� � ��	� � ��	� �Op��
�� �A��

�



where

	� � ��X �

c �X �

�
A��c �A���

	� �
�

�
��� �A�c�

�A�c �e�
x�cM�c

� x�cMxc
�X �

�
��� �A�c� �A�	�

�
��cN�c

� x�cMxc
�X �

�
�x� � xR����X �

�
U � U �X��	�

	� �
�

�� x�cMxc
f�x�cM�c���� �A�c�

���� � 
A�c� �A����

� ���cN�c��x� � xR���� � 
A�c�g�e

�
��c�M � 
N��c
�� x�cMxc

�X �

�
��� �A�c�

�

 x�cM�c �

�

cN�c

�� �x�cMxc��
�X �

�
�x� � xR�

� ���cN�c��x� � xR�
���� � 
A�c�g�e

�
��� �A�c�

�A�c

�
��X �

�
U � U �X���e

�
x�cM�c

� x�cMxc
��X �

�
U � U �X����X

�

c�c �X �

�
��� � 
A�c��

�
��cN�c

� x�cMxc
��X �

�
U � U �X���X

�

�
�x� � xR�

� ��X �

�
U � U �X����X

�

�
U � U �X����X

�

c �X �

�
A��c

�
��cN�c

�� x�cMxc
��X �

�
�X� �XR� � �X� �XR�

�X����X
�

c �X �

�
A��c

��U �U��X �

c �X �

�
A��c�

Let us �rst note the following results which are repeatedly employed in �nd�
ing the expectations�

AXc � �AZc Axc�
� �Z� x�� � X�

�A����

X��X
�

cXc�
��X� �A��
�

� �Z� x��

�
Z �

cZc Z �

cxc
x�cZc x�cxc

�
���

Z �

�

x��

�

�
�

x�cMxc
�Z��Z

�

cZc�
��Z �

cxcx
�

cZc�Z
�

cZc�
��Z �

�
� Z��Z

�

cZc�
��Z �

cxcx
�

�

� x�x
�

cZc�Z
�

cZc�
��Z �

�
� x�x

�

�
� � Z��Z

�

cZc�
��Z �

�

�
�

x�cMxc
�x� � xR��x� � xR�

� � Z��Z
�

cZc�
��Z �

�

� AA�

X �

�
A�Xc �A�X�� �A����

� X �

�
AXc �X �

�
AA�X�

� X �

�
X� �X �

�
X��X

�

cXc�
��X �

�
X�

� ��X �

cXc��
�� ����

	



�X �

c �X �

�
A��Xc �A�X�� �A����

� X �

cXc �X �

�
AXc �X �

cA
�X� �X �

�
AA�X�

� X �

cXc � 
X �

�
X� �X �

�
S��X

�

cXc�
��X �

�
X� �A����

� ��X �

cXc��
���

If D denotes a square matrix and d is any row vector� then we have

E���cD�c �
�

c� � ��l
�

c�I �D� �A����

E�d�c �c�
�

c� � ���I � lcd� �A���

where ��� is the Hadamard product operator� I is an identity matrix of order
mc �mc and lc is a mc � � vector with all elements unity�

Now it is easy to see that

E���
�
A�c � ��cA

�A�c� � � trA�A �A����

� � tr�X �

cXc�
��X �

�
X�

E��x�cM�c��X
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In a similar manner� the following results can be obtained
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Combining these results� we �nd

E�	�� � �f �lc��e��F lc �A����

where f and F are speci�ed by ������ and ������ respectively�

Now the bias vector of �� to order O���� is given by
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� �E�	�� � �� E�	�� � �� E�	��
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Substituting �A�
�� and �A����� we obtain the result ������ stated in Theo�
rem�

For the mean squared error matrix to order O����� we observe that
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Similarly� using �A���� and �A���� we have
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Utilizing these results� we obtain from �A��� and �A�	� that
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where the matrix G and the vector g are speci�ed by ����� and ������ respec�
tively�

Substituting �A��� and �A���� in �A����� we obtain the expression ����	�

for the mean squared error matrix of �� to the desired order of approximation�
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