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Abstract

The paper presents a smooth regression model for ordinal data with lon�

gitudinal dependence structure� A marginal model with cumulative logit link

�McCullagh ����	 is applied to cope for the ordinal scale and the main and

covariate e
ects in the model are allowed to vary with time� Local �tting is

pursued and asymptotic properties of the estimates are discussed� A data ex�

ample demonstrates the exploratory �avor of the smooth model� In a second

step the longitudinal dependence of the observations is considered� Cumula�

tive log odds ratios are �tted locally which provides insight how the depen�

dence of the ordinal observations changes with time�

Keywords� Kernel smoothing� local estimating equations� longitudinal data� marginal

model� ordinal data� varying coe�cient models�
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� Introduction

Let yir be the r�th measurement taken together with covariates xir on the i�th

individual at timepoint tir� where i � �� � � � � n and r � �� � � � � ni� A convenient

model for the mean response at time point tir is the marginal model

E�yirjtir� xir	 � hfz�tir� xir	�g ��	

where the covariates are linked to the mean response via the link function h��	�

The design matrix z�tir� xir	 in ��	 is allowed to depend on both� the time t and the

covariates x� This accommodates time variation as well as interactive time covariate

e
ects� For instance in the linear interaction model

E�yirjtir� xir	 � h��� � tir�t � xir�x � tirxir�tx	�

as special case of ��	� time enters as linear shift and the e
ect of the covariates

changes linearly with time� A priori it is however unknown how time enters the

model� i�e� how main and covariate e
ects vary with time� Moreover� a solely para�

metric model can hide complex interaction structures which are not represented by

simple parametric functions� Therefore it seems desirable to extend ��	 in that time

enters the model nonparametrically� This is ful�lled by modeling

E�yirjtir� xir	 � hf���tir	 � xir�x�tir	g �	

where ���t	 is a smooth function in time� i�e� the smooth main e
ect� and �x�t	 is

the covariate e
ect which is allowed to vary smoothly with time� Models of type �	

have been introduced by Hastie � Tibshirani �����	 as varying coe�cient models�

The focus of this paper is to discuss model �	 for longitudinal data with ordinal

response variable�





We assume in the following that the response yir takes values �� � � � � q � � which

allow for an ordered interpretation� A widespread model for ordinal data is the

cumulative model as introduced by McCullagh �����	� As varying coe�cient model

this is written as

P �yir � kjxir� tir	 � Ff��k�tir	 � xir�x�tir	g ��	

for k � �� � � � � q and F ��	 as known continuous distribution function� Frequently

F ��	 is chosen as logistic distribution function� The q main e
ects ��k�t	 are smooth

functions ful�lling the restrictions ��k��	 � ��k����	� As previously �x�t	 gives the

covariate e
ect which is allowed to vary smoothly with time� It should be noted

that ��	 has a rather general form since no parametric speci�cation is made for the

in�uence of time�

We apply the varying coe�cient model ��	 to analyze data collected at patients

su
ering from prostate cancer� The patients were treated with radiation� which was

given in three di
erent dose levels� The patients were observed over a �ve years

follow up� where drop out e
ects were tested but did not occur signi�cant� As

response variable we consider the severeness of side e
ects of the therapy� like pain

or bleeding� which is measured on an ordinal scale� One of the objective of study

was to investigate how the dose of radiation a
ects the severeness of side e
ects and

moreover� if and how this e
ect varies over the time of follow up� We analyze this

point by �tting model ��	 to the data and considering the shape of the covariate

e
ect �x�t	�

Estimation of model ��	 is done by local estimating equations� see e�g� Carroll�

Ruppert � Welsh �����	� In the setting considered here local estimation can be
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seen as a weighted generalized estimating equation �GEE	 with working indepen�

dence used in the �tting� In a solely parametric framework working independence is

known to provide consistent but not necessarily e�cient estimates� For smooth es�

timation however e�ciency arguments are less focussed than bias�variance trade�o


properties� One reason for this is that the asymptotic order of the bias of smooth

estimates typically dominates the parametric bias order� The bias�variance trade�o


in turn guarantees consistent estimates� For longitudinal data it also has to take the

time dependence of the observations into account� We therefore apply a �leaving

out one individual� cross validation as suggested by �Rice � Silverman ����	�

At a second step of the analysis we consider the longitudinal dependence structure

of the observations in more detail� We suggest a smooth modeling by allowing

the dependence between two observations yir and yis to vary smoothly with the

time lag jtir � tisj� Moreover� the longitudinal dependence is allowed to depend on

additional covariates� where their e
ect may also vary with the time lag jtir � tisj�

The longitudinal dependence here is modeled by cumulative log odds ratios which

preserves the ordinal structure� Local �tting �nally allows for further insight in the

time variation�

An overview about parametric models for longitudinal data is found in Diggle�

Liang � Zeger �����	� Parametric marginal models of type ��	 for binary and cat�

egorical response are treated for instance in Liang � Zeger �����	� Prentice �����	�

Liang� Zeger � Qaqish ����	 or Fitzmaurice� Molenberghs � Lipsitz �����	� Gen�

eralized estimating equations �GEE	 are thereby of common use and extensions for

ordinal response variables have been suggested by Heagerty � Zeger �����	 and

Fahrmeir � Pritscher �����	� Smooth estimation for continuous longitudinal re�
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sponse with time as single covariate is treated e�g� in Hart � Wehrly �����	 or Rice

� Silverman �����	� Moyeed � Diggle �����	 and Zeger � Diggle �����	 apply semi�

parametric modeling to longitudinal data with continuous response and additional

covariates� Models for correlated categorical data with smooth components are pro�

posed in Wild � Yee �����	� Gieger �����	 or Fahrmeir� Gieger � Heumann �����	�

The �rst paper focus on smooth additive components while Gieger and Fahrmeir

et al� also consider varying coe�cients� All three papers apply spline �tting in a

GEE framework while we here concentrate on local estimation� The latter allows for

asymptotic consideration of the estimates including bandwidth selection� Moreover

it provides a simple �tting routine if the timepoints of measurements tir are not

grouped and if the cluster size ni di
ers among the individuals�

� Marginal Varying Coe�cient Model

��� Local Estimation

We rewrite model ��	 in matrix form� Let eyir � ��yir��� � � � � �yir�q	
T be the indicator

vector with elements �yir�k � � if yir � k and �yir�k � � otherwise� This yields the

vector of cell probabilities �ir � E��yirjxir� tir	� The cumulative model ��	 is now

written as

�irf��tir	g � E��yirjxir� tir	 � hfZir��tir	g � h��	 ��	
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with

Zir �

�BBBBBBBBBBB�

� � � � � � xir

� � � � � � xir

���
���

� � �
���

���

� � � � � � xir

�CCCCCCCCCCCA
and ��tir	 �

�BBBBBBBBBBB�

����tir	

���

��q�tir	

�x�tir	

�CCCCCCCCCCCA
�

The link function h�	 is invertible where the k�th component of h���	 equals F��fPir�k	g

for k � � � � � q with Pir�k	 abbreviating P �yir � kjxir� tir	�

We estimate the varying coe�cients ���	 in ��	 by local estimation� Let �ir��

denote the kernel weight Kf�tir � t�	�	g with K��	 as unimodal kernel density

function and 	 as smoothing parameter� At a target point t� we obtain the estimate

���t�	 by solving the local estimating equation

� �
nX
i

niX
r

�ir��Z
T
ir


hfZir
���t�	g


�

T

Var�eyir	�� heyir � �irf���t�	g
i
� ��	

The solution of ��	 does not necessarily provide a valid estimate since it is not

guaranteed that ���k�t�	 � ���k���t�	� Fahrmeir � Tutz �����	 suggest the simple

reparameterization ��� �� ���� ��k �� log���k � ��k��	 for k � � � � � � q to overcome

this point� For simplicity of notation however we neglect this reparameterization in

the sequel�

For notational simplicity we abbreviate the component ZT
ir
hfZir��t	g�
�TVar�eyir	��

in ��	 by W T
irf��t	g in the following� Asymptotic properties of the estimate ���t�	 can

be derived by expanding ��	 about the true value ��t�	� As shown in the appendix

in �rst order approximation this leads to

���t�	� ��t�	 �

�
nX
i

niX
r

�ir��W
T
irVar�eyir	Wir

���

�

��
nX
i

niX
r

�ir��W
T
irfeyir � �ir���tir		g

�
� b�t	

�
��	
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where Wir � Wirf��tir	g� The component b�t	 contains the dominating part of the

bias which can be approximated by
Pn

i

Pni
r �ir��W

T
irf��t�	gf�ir���tir		��ir���t�		g�

It appears that the bias is not a
ected by the correlation structure which corresponds

to results given e�g� in Hart �����	� In the appendix it is shown that under general

regularity conditions one obtains

Ef���t�	� ��t�	g � O�	�	 ��	

Varf���t�	g �

�
nX
i

niX
r

�ir��W
T
irVar�eyir	Wir

���

�

�
nX
i

niX
r

niX
s

�ir���is��W
T
irCov�eyir� eyTis	Wis

�

�

�
nX
i

niX
r

�ir��W
T
irVar�eyir	Wir

���

� ��	

The inner part of the variance ��	 re�ects the correlation between observations

taken at one individual� The variance has order O�n��	 so that ���t�	 is consistent

for smoothing parameter 	� � and sample size n�� �see appendix	�

Equation ��	 can be seen as a weighted generalized estimating equation �GEE	

with independence assumed as working correlation� In a solely parametric setting

this is known to provide consistent but not necessarily e�cient estimates �see e�g�

Liang � Zeger ����	� In the smoothing context however e�ciency is less focused�

Instead bias�variance trade�o
 properties are of primary interest� This is because

the bias of smooth estimates usually has order O�	�	 which dominates the standard

parametric bias order O�n��	� It is therefore necessary to select the bandwidth 	

such that the mean squared error of the estimates is minimized� For dependent data

this approach is particularly relevant since the weights �ir�� in ��	 have to take both

into account� the smoothness of ��t	 and the correlation among the observations�

A simple routine for selecting a suitable bandwith for dependent data is a �leaving
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out one individual � cross validation as suggested by Rice � Silverman �����	� Let

therefore d�yir� �ir	 denote the Kullback�Leibler distance de�ned by d�yir� �ir	 �Pq��
k

eyir�k logP �yir � k	� The bandwidth 	 is then selected by maximizing the cross

validation function

cvl�		 �
X
i

niX
r

d�yir� �irf�
�i�tir	g� ��	

with b��i�tir	 solving ��	 by neglecting all observations from the i�th individual� It

is shown in the appendix that this approach tends to minimize the integrated mean

squared error of the estimates and hence automatically takes the correlation among

the observations into account�

The cumulative model ��	 allows for a further interpretation� The ordinal re�

sponse yir can be seen as coarser version of a latent score variable uir� say� see e�g�

Fahrmeir � Tutz �����	� By setting uir � �xir�x�tir	 � �ir with �ir latent and

distributed according to distribution F ��	 in ��	� we can interpret the main e
ects

��k�tir	 as thresholds� This means we get yir � k if ��k���tir	  uir � ��k�tir	 for

k � �� � � � q and ����tir	 � ��� If ��k�t	 are parallel curves� i�e� ��k�t	 � ���t	 � �k

for �k 	 
 and ���t	 some smooth function� we can determine the score by uir �

����t	� xir�x�tir	 � �ir� This in turn implies the categorization

yir � k� �k��  uir � �k ���	

with �� � ��� The categorization mechanism is now independent of both� co�

variates x and time t� Taking F ��	 as logistic distribution function� property ���	

is equivalently expressed by the proportional log odds assumption logitfP �yir �

k	g � logitfP �yir � l	g � const� where const is a constant depend on k and l only�
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Exploratory analysis of the shape of ��k��	 therefore allows to investigate whether

proportional log odds can be assumed� i�e� whether a categorization like ���	 holds�

��� Example

We analyse data collected at the University of Chicago Hospitals� Patients with

prostate cancer were treated with radiation� where one of three dose levels �D	 of

radiation was given to each patient� Further covariates are the stage of the tumor

at the beginning of the therapy �S� with three levels	 and the hospital in which the

patient was treated and followed up �H� two hospitals	� In each of the two hospitals

a physician assessed the side e
ects of the radiation therapy on the ordinal scale

�no problems� �y��	� �minor problems� like pain �y�	 and �severe problems� like

bleeding �y��	� All assessments in the corresponding hospital were made by the

same doctor so that the hospital e
ect can also be interpreted as a physician e
ect

which compensates the subjective character of the response variable� The patients

�n � ���	 were followed up over � years� roughly three to �ve visits a year� The

timepoints of measurement �t� measured in months	 thereby di
er from patient to

patient� If a patient did not visit the doctor at least once every half year� subsequent

information was neglected to avoid intermediate drop out e
ects� We model dose D

and stage S linearly which leads to the varying coe�cient model

P �y � kjD�S�H� t	 � Ff��k�t	 � D�D�t	 � S�S�t	 � H�H�t	g ���	

for k � ��  where F �	 is chosen as logistic distribution function�

We assume a missing completely at random drop out process �p�value ��� when

testing grouped data against missing at random� see e�g� Diggle ����	 and choose
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	 � �� as bandwidth for a Gaussian kernel by cross validation� Figure � shows

the �tted varying coe�cients� The con�dence bands are calculated from ��	 us�

ing local sandwich type estimate� i�e� we apply ��	 with plug�in estimates and re�

place the covariance Cov��yir� �yis	 by its empirical version ��yir� ��ir	��yis� ��is	
T with

��ir � �irf���tir	g� The two main e
ects are plotted in one plot� upper left plot�

to investigate their parallel shape� It appears that proportional log odds can be

assumed which means that the response yir can be seen as classi�ed version of a

latent score uir� classi�ed according to ���	� The covariate e
ects are shown in the

remaining three plots� As reference the zero line is given� Beside the �tted coe��

cients ��x�t	� the bias reduced estimates ��x�t	� �bx�t	 are also shown� where �bx�t	 is

a plug in estimate of the corresponding subvector of the bias b�t	�

Stage and hospital e
ect do not show substantial time variation� In contrast� the

dose e
ect clearly varies over time and after about three years a high dose therapy

leads to an increase of the side e
ects� This e
ect becomes also visible from Figure

 where the proportion of patients with side e
ects �y � � or  for minor and severe

side e
ects	 is plotted for di
erent subgroups of the patients� The two right plots

of Figure  extract two groups from the left plot but now with �� con�dence bands

being added� The e
ect of dose varies over time and separates the selected groups

after about � years of follow up�
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� Longitudinal Dependence Structure

��� Local Estimation

We next consider the longitudinal dependence of the observations in more detail�

To accompany the ordinal scale of the response we model cumulative log odds ratios

as suggested by Heagerty � Zeger �����	 or Fahrmeir � Pritscher �����	 in a solely

parametric framework� For variables yir and yis let

�klirs � log

�
P �yir � k� yis � l	P �yir � k� yis � l	

P �yir � k� yis � l	P �yir � k� yis � l	

�
��	

de�ne the cumulative log odds ratios� where k� l � �� � � � � q� We assume that the

log odds ratios depend on some �time constant	 covariates xi� say� and we allow the

resulting e
ect to vary smoothly with the time lag �t � jtir�tisj� For instance in the

above example we model �klirs to depend on the hospital where the resulting hospital

e
ect may vary smoothly in �t� We generally set �klirs � �kl
� ��t	 � xi�

kl
x ��t	 ��

��� xi	�
kl��t	 with �kl��	 � ��kl

� ��	T � �kl
x ��	T 	T � Here �kl

� ��t	 serves as smooth main

e
ect on the longitudinal dependence and �kl
x ��t	 is the covariate e
ect which may

change for di
erent timelags�

The diagonal elements �kkirs of ��	� i�e� for k � l� correspond to the covariance

Covf��yir � k	� ��yis � k	g where ��yir � k	 equals � for yir � k and � otherwise�

Due to the longitudinal structure it appears natural to assume that the diagonal log

odds ratios �kkirs will decrease monotonely for increasing time lag �t� This assumption

however seems not justi�ed for o
 diagonal element �klirs with k �� l� Smooth �tting

of �kl��t	 will therefore provide exploratory insight in the longitudinal dependence

structure�
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We write the vector of log odds ratios as �irs � ����irs � � � � � ��qirs � ���irs � �qqirs	 where

the lexicographical order used to get �irs is also used for the vectors de�ned below�

Let �irs be the vector of cell probabilities with components �klirs � P �yir � k� yis � l	

and let Pirs denote the joint probability vector with elements Pirs�k� l	 � P �yir �

k� yis � l	� We obtain �irs from Pirs by �irs � BPirs with B as matching contrast

matrix� Moreover Pirs�k� l	 is obtained from the marginal distributions Pir�k	 and

Pis�l	 and the log odds ratio �klirs by the link

P �Yir � k� Yis � l	 � gf�klirs Pir�k	� Pis�l	g� for k� l � �� � � � q�

The function g�	 is available analytically and given for instance in Palmgren �����	

or Diggle� Liang � Zeger ������ p����	� With �g��irs� Pir� � Pis	 we de�ne the vector

valued link function with components gf�klirs Pir�k	� Pis�l	g� Finally� virs denotes the

vector of the centered products ��yir�k � �ir�k	��yis�l � �is�l	�

At a given time lag �t� we estimate ���t�	 � ������t�	
T � � � � � �qq��t�	

T 	T by

local estimation� Let therefore �irs��t� � Kf�jtir� tisj��t�	��g denote some kernel

weights with � as second smoothing parameter� The estimate ����t�	 is obtained by

solving the weighted estimating equation

� �
nX
i

niX
r

niX
s�r

�irs��t�V
T
irsfvirs � E�virs	g ���	

where V T
irs � �Zi
eg��irs Pir� Pis	�
�

T
irsB

TVar�virs	
��� The design matrix �Zi is con�

structed from I  ��� xi	 with  denoting the Kronecker product� The variance of

virs is obtained from the �rst four moments of yir and yis� as described in Heagerty �

Zeger �����	� It should be noted that ���	 again assumes working independence and

in practice� the marginal probabilities Pir in ���	 have to be replaced by plug in esti�

mates� Neglecting the additional variability resulting from this plug in substitution
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we approximate the variance of ����t�	 by the sandwich formula

Varf����t�	g �

�
nX
i

niX
r

niX
s�r

�irs��t�V
T
irsVar�virs	Virs

���

�

	
�
nX
i

niX
r

niX
s�r

niX
l

niX
k�l

�irs��t��ilk��t�V
T
irsCov�virs� vilk	Vilk

��
�

�
nX
i

niX
r

niX
s�r

�irs��t�V
T
irsVar�virs	Virs

���

� ���	

��� Example

We continue with the prostate cancer example from above� The log odds ratios �klirs

are modelled as

�klirs � �kl
� ��t	 � H�kl

H��t	

with H as hospital indicator� In Figure � we show the four log odds ratios based

on a smooth �t using a Gaussian kernel with bandwidth � �xed at value �� For

estimation we considered observations from the �rst four years of follow up only�

The con�dence bands are calculated from local sandwich type estimates based on

���	 but substituting Cov�virs� vilk	 by its empirical version� For k � l � �� i�e�

upper left plot� a decreasing longitudinal dependence is observed� This corresponds

to the preliminary consideration in that the correlation between the observations

��yir � k	 and ��yis � k	 should be decreasing for increasing time lag� Moreover

the longitudinal dependence does not di
er in the two hospitals� The o
�diagonal

plots show a rather time stable dependence� in particular for Hospital � Hospital

� has less patients �n � ��	 and more extreme probabilities which explains the

larger variability of the estimates� Finally we consider the lower right plot where
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k � l � � The longitudinal dependence again shows a decreasing shape� but now

the two hospital distinguish� For Hospital � the longitudinal dependence is stronger

than for Hospital � This means that in Hospital � patients with severe side e
ects

are more likely to be classi�ed again as severe side e
ect patients at a subsequent

timepoint than in Hospital � An explanation for this might lie in the subjective

character of the measurement� As mentioned� in each hospital the same doctor

assessed the patients over the follow up so that the hospital e
ect corresponds to a

physician e
ect� In Hospital � the doctor seems to take previous assessments of the

patient� in particular recorded severe side e
ects� more into account when assessing

a patient than the doctor in Hospital  does� The e
ect fades away after about �

�! years time lag�

� Conclusions

We applied local estimation to �t a marginal model including its longitudinal de�

pendence structure� The �tting procedure is numerically simple� e�g� for �tting the

marginal model of Section  standard software which accomodates �tting weighted

observations can be used� The smooth �ts provide exploratory insight in the longi�

tudinal mean and dependence structure� This in turn can also help building appro�

priate parametric models�
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A Technical Details

Asymptotical Behavior

We base our asymptotic consideration on an increasing sample size n� i�e� we as�

sume that the number of independent individuals tends to in�nity� In particular

this implies that the correlation structure among the observations taken at one

individual does not a
ect the asymptotic behavior� Moreover� we assume that

the number of observations ni for the i�th individual and time�points tir are in�

dependent� where ni follows some discrete distribution with �nite moments and

tir� r � �� � � � ni� are independently distributed according to density f�t	� The

support of f�	 is supposed to be bounded and connected� This transfers stan�

dard assumptions for independent data to the repeated measurement case� Let

sirf��t	g � ZT
ir
hfZir��t	g�
�T Var��yir	

����yir � �irf��t	g� be the contribution to

the local estimating equation ��	� Expanding � �
P

i

P
r �ir��sirf���t�	g about ��t�	

yields in �rst order approximation

���t�	� ��t�	 �

�X
i

X
r

�ir��Fir

��� �X
i

X
r

sirf��tir	g� �b�t�	

�

where Fir � �E�
sirf��tir	g�
��� The component �b�t�	 decomposes to

�b�t�	 �
X
i

X
r

hn
Wir���t�		�Wir���tir		

on
�yir � �ir���tir		

o
�Wir���t�		

n
�ir���tir		� �ir���t�		

oi
�

The �rst component has zero expectation so that the second gives the dominating

part of the smoothing bias� Denoting the second component by b�t�	 yields the
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further approximation

b�t�	 � nE�ni	
Z
K
�
t� t�
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where W T ���t�		 �
R
ZT �x	
hfZ�x	��t�	g�
��x	TVar��y	��f�xjt�	dx is the asymp�

totic formulation for
P

i

P
r �ir��W

T
ir ���t�		� Assuming all components involved to be

su�ciently smooth� the embraced term in the formula is of �nite order� hence b�t	

has order O�n	�	� In the same fashion we �nd that
Pn

i

Pni
r �ir��W

T
irVar�eyir	Wir �

E�ni	O�n		 which in turn proves ��	� Finally the inner part of the variance in ��	

has order E�ni	
�O�n	�	 which yields the proposed order of the variance�

Cross Validation

Let sir � sir���tir		 and F�i
�ir� �

P
j �	i

P
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with obvious de�nition for b�i�tir	� In �rst order approximation the expected cross

validation function equals
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with tr denotes the trace of a matrix� The �rst term is determined by the squared

bias while the second contains the variance of the estimates b��i
ir � r � �� � � � � ni�

Hence� maximizing ��	 corresponds to minimizing the mean squared error �in mean	�
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