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Abstract

The paper presents a smooth regression model for ordinal data with lon-
gitudinal dependence structure. A marginal model with cumulative logit link
(McCullagh 1980) is applied to cope for the ordinal scale and the main and
covariate effects in the model are allowed to vary with time. Local fitting is
pursued and asymptotic properties of the estimates are discussed. A data ex-
ample demonstrates the exploratory flavor of the smooth model. In a second
step, the longitudinal dependence of the observations is considered. Cumula-
tive log odds ratios are fitted locally which provides insight how the depen-

dence of the ordinal observations changes with time.

KEYWORDS: Kernel smoothing, local estimating equations, longitudinal data, marginal

model, ordinal data, varying coefficient models.



1 Introduction

Let ;- be the r-th measurement taken together with covariates z; on the i-th
individual at timepoint ¢;., where ¢ = 1,...,n and » = 1,...,n;. A convenient

model for the mean response at time point ¢;. is the marginal model

E(yir|tiﬂwir) = h{z(tzrawzr)ﬂ} (1)

where the covariates are linked to the mean response via the link function A(:).
The design matrix z(t;, ;) in (1) is allowed to depend on both, the time ¢ and the
covariates x. This accommodates time variation as well as interactive time covariate

effects. For instance in the linear interaction model

E(yir|tir; xir) - h(ﬁo + tirﬁt + xirﬁaz + tirxirﬁtz)a

as special case of (1), time enters as linear shift and the effect of the covariates
changes linearly with time. A priori it is however unknown how time enters the
model, i.e. how main and covariate effects vary with time. Moreover, a solely para-
metric model can hide complex interaction structures which are not represented by
simple parametric functions. Therefore it seems desirable to extend (1) in that time

enters the model nonparametrically. This is fulfilled by modeling

E(yir|tira xir) = h{ﬁo(tir) + xirﬁm(tir)} (2)

where [y(t) is a smooth function in time, i.e. the smooth main effect, and [,(t) is
the covariate effect which is allowed to vary smoothly with time. Models of type (2)
have been introduced by Hastie & Tibshirani (1993) as varying coefficient models.
The focus of this paper is to discuss model (2) for longitudinal data with ordinal

response variable.



We assume in the following that the response y;, takes values 1,...,¢ + 1 which
allow for an ordered interpretation. A widespread model for ordinal data is the
cumulative model as introduced by McCullagh (1980). As varying coefficient model

this is written as

P(yir S k|1‘ir;tir) = F{ﬁok(tir) + xirﬁm(tir)} (3)

for k =1,...,q and F(-) as known continuous distribution function. Frequently
F(-) is chosen as logistic distribution function. The ¢ main effects [y (¢) are smooth
functions fulfilling the restrictions fox(-) < Bokr1(-). As previously [(,(t) gives the
covariate effect which is allowed to vary smoothly with time. It should be noted
that (3) has a rather general form since no parametric specification is made for the

influence of time.

We apply the varying coefficient model (3) to analyze data collected at patients
suffering from prostate cancer. The patients were treated with radiation, which was
given in three different dose levels. The patients were observed over a five years
follow up, where drop out effects were tested but did not occur significant. As
response variable we consider the severeness of side effects of the therapy, like pain
or bleeding, which is measured on an ordinal scale. One of the objective of study
was to investigate how the dose of radiation affects the severeness of side effects and
moreover, if and how this effect varies over the time of follow up. We analyze this
point by fitting model (3) to the data and considering the shape of the covariate

effect ,(¢).

Estimation of model (3) is done by local estimating equations, see e.g. Carroll,

Ruppert & Welsh (1988). In the setting considered here local estimation can be
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seen as a weighted generalized estimating equation (GEE) with working indepen-
dence used in the fitting. In a solely parametric framework working independence is
known to provide consistent but not necessarily efficient estimates. For smooth es-
timation however efficiency arguments are less focussed than bias-variance trade-off
properties. One reason for this is that the asymptotic order of the bias of smooth
estimates typically dominates the parametric bias order. The bias-variance trade-off
in turn guarantees consistent estimates. For longitudinal data it also has to take the
time dependence of the observations into account. We therefore apply a “leaving

out one individual” cross validation as suggested by (Rice & Silverman 1991).

At a second step of the analysis we consider the longitudinal dependence structure
of the observations in more detail. We suggest a smooth modeling by allowing
the dependence between two observations y; and y;s; to vary smoothly with the
time lag |t;, — t;s|. Moreover, the longitudinal dependence is allowed to depend on
additional covariates, where their effect may also vary with the time lag |t;, — ;5]
The longitudinal dependence here is modeled by cumulative log odds ratios which
preserves the ordinal structure. Local fitting finally allows for further insight in the

time variation.

An overview about parametric models for longitudinal data is found in Diggle,
Liang & Zeger (1994). Parametric marginal models of type (1) for binary and cat-
egorical response are treated for instance in Liang & Zeger (1986), Prentice (1988),
Liang, Zeger & Qaqish (1992) or Fitzmaurice, Molenberghs & Lipsitz (1995). Gen-
eralized estimating equations (GEE) are thereby of common use and extensions for
ordinal response variables have been suggested by Heagerty & Zeger (1996) and

Fahrmeir & Pritscher (1996). Smooth estimation for continuous longitudinal re-
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sponse with time as single covariate is treated e.g. in Hart & Wehrly (1986) or Rice
& Silverman (1991). Moyeed & Diggle (1994) and Zeger & Diggle (1994) apply semi-
parametric modeling to longitudinal data with continuous response and additional
covariates. Models for correlated categorical data with smooth components are pro-
posed in Wild & Yee (1996), Gieger (1997) or Fahrmeir, Gieger & Heumann (1999).
The first paper focus on smooth additive components while Gieger and Fahrmeir
et al. also consider varying coefficients. All three papers apply spline fitting in a
GEE framework while we here concentrate on local estimation. The latter allows for
asymptotic consideration of the estimates including bandwidth selection. Moreover
it provides a simple fitting routine if the timepoints of measurements ¢;. are not

grouped and if the cluster size n; differs among the individuals.

2 Marginal Varying Coefficient Model

2.1 Local Estimation

We rewrite model (3) in matrix form. Let @i, = (Gir1,--.,Jirg)’ be the indicator
vector with elements y;,, = 1 if y;, = k and @, = 0 otherwise. This yields the
vector of cell probabilities p; = E(4ir|Tir, tir). The cumulative model (3) is now

written as



with

10 ---0 Lir ﬁOl (tzr)
Zir = and ﬂ(tzr) =
R Bog (t)

The link function /() is invertible where the k-th component of h~!() equals F~{ P, (k)}

for k =1...q with P, (k) abbreviating P(y;. < k|xi, ti).

We estimate the varying coefficients 3(:) in (4) by local estimation. Let wj.o
denote the kernel weight K{(t; — ty)/A} with K(-) as unimodal kernel density
function and A as smoothing parameter. At a target point ¢, we obtain the estimate

B(to) by solving the local estimating equation

i iwir,oZﬁ%{Zg—W Var(gi) [gir — Mz’r{B(tO)}] : (5)

The solution of (5) does not necessarily provide a valid estimate since it is not
guaranteed that fox(to) < Boks1(te). Fahrmeir & Tutz (1994) suggest the simple
reparameterization 6y; := (o1, Oor := log(Box — Por—1) for k = 2,...,¢q to overcome
this point. For simplicity of notation however we neglect this reparameterization in

the sequel.

For notational simplicity we abbreviate the component Z.0h{Z;.5(t)}/On* Var (g;,) ™"
in (5) by W.I'{3(t)} in the following. Asymptotic properties of the estimate B(to) can
be derived by expanding (5) about the true value 3(¢y). As shown in the appendix

in first order approximation this leads to

Blto) — = {Zzwwow Var yzr)Wir}1
<SS — st} 0] )

i
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where Wy, = W;,.{f(tr)}. The component b(¢) contains the dominating part of the
bias which can be approximated by Y7 37 w;, o WE{B(to) H pir (B(tir)) — 12ir (B(t0)) }-
It appears that the bias is not affected by the correlation structure which corresponds
to results given e.g. in Hart (1991). In the appendix it is shown that under general

regularity conditions one obtains

E{B(to) — Blte)} = O(N) (7)
Var{B(to)} = {ZZWWJW Var( yzr)Wir}

X {Z Z Z wir owis oW Cov (i, gij;)Wis}
n n; -1
X {Z > WiroWip Var (i) Wiy } : (8)

The inner part of the variance (8) reflects the correlation between observations

taken at one individual. The variance has order O(n ') so that 3(t,) is consistent

for smoothing parameter A — 0 and sample size n — oo (see appendix).

Equation (5) can be seen as a weighted generalized estimating equation (GEE)
with independence assumed as working correlation. In a solely parametric setting
this is known to provide consistent but not necessarily efficient estimates (see e.g.
Liang & Zeger 1986). In the smoothing context however efficiency is less focused.
Instead bias-variance trade-off properties are of primary interest. This is because
the bias of smooth estimates usually has order O()\?) which dominates the standard
parametric bias order O(n~1). It is therefore necessary to select the bandwidth A
such that the mean squared error of the estimates is minimized. For dependent data
this approach is particularly relevant since the weights wj, o in (5) have to take both
into account, the smoothness of (¢) and the correlation among the observations.

A simple routine for selecting a suitable bandwith for dependent data is a "leaving
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out one individual ” cross validation as suggested by Rice & Silverman (1991). Let
therefore d(y;, puiy) denote the Kullback-Leibler distance defined by d(yir, pir) =
ZH Uirk l0g P(yir = k). The bandwidth A is then selected by maximizing the cross

validation function

wl(d) = X3 divr, i (57 ()] ©)

with 37(t;) solving (5) by neglecting all observations from the i-th individual. It
is shown in the appendix that this approach tends to minimize the integrated mean
squared error of the estimates and hence automatically takes the correlation among

the observations into account.

The cumulative model (4) allows for a further interpretation. The ordinal re-
sponse ;. can be seen as coarser version of a latent score variable u;,., say, see e.g.
Fahrmeir & Tutz (1994). By setting w;, = —x; 0, (tir) + € with g, latent and
distributed according to distribution F(-) in (3), we can interpret the main effects
Bok (tir) as thresholds. This means we get y;, = k if Bor_1(tiy) < wir < Bor(tsr) for
k=1,...q and Boo(t;) = —oo. If Byk(t) are parallel curves, i.e. By (t) = Bo(t) + O
for 0, € R and fy(t) some smooth function, we can determine the score by u; =

—Bo(t) — x4 Be(tir) + 4. This in turn implies the categorization
Yir =k & Op_1 < ugy < O (10)

with 6 = —oo. The categorization mechanism is now independent of both, co-
variates x and time ¢. Taking F'(-) as logistic distribution function, property (10)
is equivalently expressed by the proportional log odds assumption logit{ P(y; <

k)} — logit{ P(y;» < 1)} = const, where const is a constant depend on k and [ only.



Exploratory analysis of the shape of [y (-) therefore allows to investigate whether

proportional log odds can be assumed, i.e. whether a categorization like (10) holds.

2.2 Example

We analyse data collected at the University of Chicago Hospitals. Patients with
prostate cancer were treated with radiation, where one of three dose levels (D) of
radiation was given to each patient. Further covariates are the stage of the tumor
at the beginning of the therapy (S, with three levels) and the hospital in which the
patient was treated and followed up (H, two hospitals). In each of the two hospitals
a physician assessed the side effects of the radiation therapy on the ordinal scale
“no problems” (y=1), “minor problems” like pain (y=2) and “severe problems” like
bleeding (y=3). All assessments in the corresponding hospital were made by the
same doctor so that the hospital effect can also be interpreted as a physician effect
which compensates the subjective character of the response variable. The patients
(n = 196) were followed up over 5 years, roughly three to five visits a year. The
timepoints of measurement (¢, measured in months) thereby differ from patient to
patient. If a patient did not visit the doctor at least once every half year, subsequent
information was neglected to avoid intermediate drop out effects. We model dose D

and stage S linearly which leads to the varying coefficient model
P(y < k|D,S,H,t) = F{Bu(t)+DBp(t) + SBs(t) + HPu(t)} (11)
for k = 1,2 where F() is chosen as logistic distribution function.

We assume a missing completely at random drop out process (p-value 0.72 when

testing grouped data against missing at random, see e.g. Diggle 1989) and choose
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A = 10 as bandwidth for a Gaussian kernel by cross validation. Figure 1 shows
the fitted varying coefficients. The confidence bands are calculated from (8) us-
ing local sandwich type estimate, i.e. we apply (8) with plug-in estimates and re-
place the covariance Cov (g, 7;s) by its empirical version (§;. — fiir)(Gis — flis)” with
flir = uir{ﬁ(tir)}. The two main effects are plotted in one plot, upper left plot,
to investigate their parallel shape. It appears that proportional log odds can be
assumed which means that the response y;. can be seen as classified version of a
latent score w;,., classified according to (10). The covariate effects are shown in the
remaining three plots. As reference the zero line is given. Beside the fitted coeffi-

cients (,(t), the bias reduced estimates (,(t) — by(t) are also shown, where by (t) is

a plug in estimate of the corresponding subvector of the bias b(t).

Stage and hospital effect do not show substantial time variation. In contrast, the
dose effect clearly varies over time and after about three years a high dose therapy
leads to an increase of the side effects. This effect becomes also visible from Figure
2 where the proportion of patients with side effects (y = 1 or 2 for minor and severe
side effects) is plotted for different subgroups of the patients. The two right plots
of Figure 2 extract two groups from the left plot but now with .9 confidence bands
being added. The effect of dose varies over time and separates the selected groups

after about 3 years of follow up.
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3 Longitudinal Dependence Structure

3.1 Local Estimation

We next consider the longitudinal dependence of the observations in more detail.
To accompany the ordinal scale of the response we model cumulative log odds ratios
as suggested by Heagerty & Zeger (1996) or Fahrmeir & Pritscher (1996) in a solely

parametric framework. For variables y;, and ;s let

Pir<k7 isglpir k; i l

P~ log Wir <k yis < OPWYir > K, yis > 1) (12)
P(yir S kayis > Z)P(yzr > kayis S l)

define the cumulative log odds ratios, where k,l = 1,...,q. We assume that the

log odds ratios depend on some (time constant) covariates z;, say, and we allow the
resulting effect to vary smoothly with the time lag At = |t;. —t;s|. For instance in the

above example we model 9%, to depend on the hospital where the resulting hospital

effect may vary smoothly in At. We generally set 9%, = of'(At) + z;0(At) =:

s

(1, ;)™ (At) with oF!(-) = (af'(-)T, oM (-)T)T. Here af'(At) serves as smooth main

effect on the longitudinal dependence and o*(At) is the covariate effect which may

change for different timelags.

kk

The diagonal elements ;% of (12), i.e. for £ = [, correspond to the covariance

Cov{o(yir < k),0(yis < k)} where 6(y; < k) equals 1 for y;, < k and 0 otherwise.
Due to the longitudinal structure it appears natural to assume that the diagonal log

odds ratios ¢k

o will decrease monotonely for increasing time lag At. This assumption

however seems not justified for off diagonal element ¥, with k # . Smooth fitting

of a*'(At) will therefore provide exploratory insight in the longitudinal dependence

structure.
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We write the vector of log odds ratios as ¥;,, = (J}! L OM 92l 99

s ) " s s s

) where
the lexicographical order used to get 1;,, is also used for the vectors defined below.
Let j;,5 be the vector of cell probabilities with components ¥, = P(y;, = k,y;s = 1)
and let P;s denote the joint probability vector with elements Pj.s(k,l) = P(y; <
k,yis < 1). We obtain p;s from Pj.5 by ps = BP;s with B as matching contrast
matrix. Moreover P,.4(k,[) is obtained from the marginal distributions P, (k) and

P;,(I) and the log odds ratio 9%, by the link

P(Yi <k Y, <) = g{¥; P.(k), Ps(1)}, for k,1=1,...q.

The function g() is available analytically and given for instance in Palmgren (1989)
or Diggle, Liang & Zeger (1994, p.150). With g(9;s, Py, , P;s) we define the vector
valued link function with components g{9%; P,.(k), P;;(1)}. Finally, v;., denotes the

vector of the centered products (Firx — firk)(Uisi — Hisy)-

At a given time lag Aty we estimate a(Aty) = (o' (Aty)?, ..., a%(Aty)")" by
local estimation. Let therefore wjys ayy = K{(|tir —tis| — Aty)/v} denote some kernel
weights with v as second smoothing parameter. The estimate &(Aty) is obtained by

solving the weighted estimating equation

ng Ny

Z Z Z Wirs,Atg zrs{'UZTs - (Uirs)} (13)

% r S>r
where VI, = Zzﬁﬁ(ﬁm; Py, Pi,) /00T BT Var(v;,s) . The design matrix Z; is con-
structed from I ® (1, z;) with ® denoting the Kronecker product. The variance of
v;rs 1S obtained from the first four moments of y;, and y;,, as described in Heagerty &
Zeger (1996). It should be noted that (13) again assumes working independence and
in practice, the marginal probabilities P;, in (13) have to be replaced by plug in esti-

mates. Neglecting the additional variability resulting from this plug in substitution
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we approximate the variance of J(Aty) by the sandwich formula

n n; n; -1
Var{@(AtO {Z Z Z Wirs ,Ato ervar(virs)‘/irs}

T S>r

n; N; MN; NG
{Z Z Z Z Z Wirs,AtoWilk,Atg V;TSCOV('Uirsa 'Uilk)‘/;'lk}

i T os>r | k>l

n; n; -1
{Z Z Z Wirs,Atg zrsvar(virs)v;rs} . (14)

i T s>r

3.2 Example

We continue with the prostate cancer example from above. The log odds ratios 9%,

are modelled as

O = afY(At) + Hobl(At)

s

with H as hospital indicator. In Figure 3 we show the four log odds ratios based
on a smooth fit using a Gaussian kernel with bandwidth v fixed at value 6. For
estimation we considered observations from the first four years of follow up only.
The confidence bands are calculated from local sandwich type estimates based on
(14) but substituting Cov(v.s, vir) by its empirical version. For k = [ = 1, i.e.
upper left plot, a decreasing longitudinal dependence is observed. This corresponds
to the preliminary consideration in that the correlation between the observations
d(yir < k) and §(y;s < k) should be decreasing for increasing time lag. Moreover
the longitudinal dependence does not differ in the two hospitals. The off-diagonal
plots show a rather time stable dependence, in particular for Hospital 2. Hospital
1 has less patients (n = 75) and more extreme probabilities which explains the

larger variability of the estimates. Finally we consider the lower right plot where
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k =1 = 2. The longitudinal dependence again shows a decreasing shape, but now
the two hospital distinguish. For Hospital 1 the longitudinal dependence is stronger
than for Hospital 2. This means that in Hospital 1 patients with severe side effects
are more likely to be classified again as severe side effect patients at a subsequent
timepoint than in Hospital 2. An explanation for this might lie in the subjective
character of the measurement. As mentioned, in each hospital the same doctor
assessed the patients over the follow up so that the hospital effect corresponds to a
physician effect. In Hospital 1 the doctor seems to take previous assessments of the
patient, in particular recorded severe side effects, more into account when assessing
a patient than the doctor in Hospital 2 does. The effect fades away after about 1

1/2 years time lag.

4 Conclusions

We applied local estimation to fit a marginal model including its longitudinal de-
pendence structure. The fitting procedure is numerically simple, e.g. for fitting the
marginal model of Section 2 standard software which accomodates fitting weighted
observations can be used. The smooth fits provide exploratory insight in the longi-
tudinal mean and dependence structure. This in turn can also help building appro-

priate parametric models.

Acknowledgements

The author likes to thank Dr. Srinivasan Vijayakumar for letting him use the data

14



and Florin Vaida for the cooperation and the fruitful discussions.

A Technical Details

Asymptotical Behavior

We base our asymptotic consideration on an increasing sample size n, i.e. we as-
sume that the number of independent individuals tends to infinity. In particular
this implies that the correlation structure among the observations taken at one
individual does not affect the asymptotic behavior. Moreover, we assume that
the number of observations n; for the ¢-th individual and time-points t;. are in-
dependent, where n; follows some discrete distribution with finite moments and
ti, ¥ = 1,...n;, are independently distributed according to density f(¢). The
support of f() is supposed to be bounded and connected. This transfers stan-
dard assumptions for independent data to the repeated measurement case. Let
silB)} = ZEOh{Z,B(t)}/on" Var(§i) [Fir — pir{8(t)}] be the contribution to
the local estimating equation (5). Expanding 0 =), >", wir’osir{ﬁ(to)} about ((ty)
yields in first order approximation

~

B(to) — B(to) = (Z ET: woF> R lz ET: sir{B(tir) } + E(to)]

) )

where F}, = —FE[0s;,{3(ti»)}/05]. The component b(t,) decomposes to

bito) = 3232 [{War(B(t0) = War(B(t:) }{ir = 1 (B(2:)}
+ Wi (B(t0)) { ir (B(tir)) — 1 (B(t0)) }].
The first component has zero expectation so that the second gives the dominating
part of the smoothing bias. Denoting the second component by b(ty) yields the
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further approximation

bto) = () [ K (S50) W (B(00) {u(5(0)) — m(3(ta)) 1 (1)

ot F(to) + o2

_ nE(ni))\?’/Z2K(z)deT(ﬂ(t0)){ f(to)}

where WT(B(to)) = [ ZT (2)0h{Z(x)B(to)}/On(x)T Var(g) L f(x|ts)dx is the asymp-
totic formulation for 3=; 37, wi oW (3(to)). Assuming all components involved to be
sufficiently smooth, the embraced term in the formula is of finite order, hence b(¢)
has order O(nA?). In the same fashion we find that I 3> w;, WL Var(g;, )W;, =
E(n;)O(nA) which in turn proves (7). Finally the inner part of the variance in (8)

has order E(n;)?O(n)\?) which yields the proposed order of the variance.

Cross Validation
Let s; = s4(08(t;)) and F(Z_.Ti) = 2z 2o WirjsFjs With wyy jo = K ((tir —155) /). From
(6) we get
B (t) — Btiy) = F(;ri)_l {Z Zj:wir,jssjs + bi(tir)}
i#i s
with obvious definition for b%(¢;.). In first order approximation the expected cross

validation function equals

B{ %3 dye 501}
= B[S X a0} + S 1) = )
B 1) — Bl0)Y B (B0 — Bt}
= const — %E > Y i Wingssjs + b (tar)}

i T j#i s

xFG FuFoh | 2#: S wingssjs + 07 (1) }]
VE=

16



1 < —i~1 —i7ly —1
= ConSt_izi:zr:tr{F(") E’"F(zr) b (tz’r)b (tz’r)T}

n; n; n; _ _
S {0 wigswinguFlay FuFlh Cov(sjs, seu) }-
- " (ir) (ir)
1 T ] Z S U

with tr denotes the trace of a matrix. The first term is determined by the squared

-~

bias while the second contains the variance of the estimates ;"

r = 1,...,7’Li.

Hence, maximizing (9) corresponds to minimizing the mean squared error (in mean).
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Figure 1: Varying coefficients for radiation data, dashed curves show bias reduced

estimates.
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Patients with side effect: Hospital 1 Hospital 2
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Figure 2: Proportion of Patients with side effects (stage S=intermediate) and three
dose levels for both hospitals (left plot). The two right plots show the proportions

separatly for the two hospitals and low and high dose levels with .9 confidence bands.
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Figure 3: Log odds ratios 9*'(At) for both hospitals
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