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Smoothers for Discontinuous Signals

by G� Winkler� V� Liebscher � and V� Aurich�

Abstract

First we explain the interplay between robust loss functions� non�
linear �lters and Bayes smoothers for edge�preserving image recon�

struction� Then we prove the surprising fact that maximum posterior

smoothers are nonlinear �lters� A �generalized� Potts prior for segmen�

tation and piecewise smoothing of noisy signals and images is adopted�

For one�dimensional signals� an exact solution for the maximum poste�

rior mode � based on dynamic programming � is derived� After� some

results on the performance of nonlinear �lters on jumps and ramps

we �nally introduce a cascade of nonlinear �lters with varying scale

parameters and discuss the choice of parameters for segmentation and

piecewise smoothing�

Keywords� Image processing� jump preserving smoothing� �lters� Potts
model

� Introduction

Spatio�temporal statistics is penetrating into image analysis more and more�
This leads to both� new methods and a better understanding of algorithms
from apparently di�erent �elds like computer science or engineering� More�
over� there is rapidly increasing interest in models and methods which can
deal with discontinuous phenomena� Focus is on identi�cation of disconti�
nuities in corrupted signal or image data� since relevant basic features like
jumps� spikes and boundaries are to be preserved during noise reduction�
This is of particular importance in applications our group presently is con�
cerned with� like processing responses to outer stimuli in functional magnetic
resonance imaging� detection of microcalci�cation in X�ray mammography
and similar applications in medical imaging and life sciences�
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Recent and very recent methods we have in mind were developed by the
authors and their groups �	
��� 	�� 	
��� 	
�� 	�
��� 	��� 	����� as well as by
others �	��� 	��� 	��� 	
���a�� �b�� �c�� 	���� We started to discuss and compare
such methods in the common framework of Bayesian image analysis 	�� and
robust statistics 	���� 	��� in the paper 	��� We interpreted them in the lan�
guage of �energy functions� and this way worked out common aspects� Their
performance was compared by way of application to suitably constructed
phantoms which show typical features like smooth regions� sudden changes
of intensity� canyons or spikes �for instance from 	���� The reasoning was on
an informal level�

Typical examples of such approaches are �i� Bayesian methods similar to
those in S� and D� Geman������� 	��� which also comprise those suggested
in A� Blake and A� Zisserman ������� 	��� cf� also G� Winkler �������
	��� �ii� �local�M �smoothers with score functions redescending to zero intro�
duced inC�K� Chu� I� Glad� F� Godtliebsen and J�S� Marron �������
	��� �iii� nonlinear �lters or ���lters studied for example in J� Weule �������
	
�� or F� Godtliebsen� E� Spj�tvoll and J�S� Marron ������� 	���
�iv� chains of nonlinear �lters with varying scale�parameters developed and
studied in a series of papers by V� Aurich and his group ����� � ���� 	
�� 	��
	
��� 	
��� �v� adaptive weights smoothing adressed recently by J� Polzehl
and V�G� Spokoiny ������� 	
��� 	

�� 	
�� �vi� local radial�basis�function
networks introduced by K� Hahn and Th� Waschulzik ������� 	�
��

In this paper we restrict ourselves to two apparently antagonistic ap�
proaches� Bayesian segmentation and piecewise smoothing �i� on the one
hand and nonlinear �ltering �iii�� �iv�� on the other hand� It turns out that
there are close relations between these methods� the missing link inbetween
is �local� M �smoothing discussed in 	��� We are interested in such relations
since all these methods have obvious merits and shortcomings which � loosely
spoken � are opposite to each other� The Bayesian method for example rests
on a beautiful and transparent model including a natural quality measure�
on the other hand it leads to nearly intractable optimization problems� for
instance to compute maximum posterior estimates� Suboptimal solutions
are obtained by Markov�Chain�Monte�Carlo algorithms like simulated an�
nealing� but these can be discouragingly slow and� even worse� they are not
exact� Monitoring the output to check mixing and convergence may be cum�
bersome� Thus imperfection of convergence frequently cannot be told from
imperfection of the model or of model parameters �cf� 	����� As opposed to
this �chains of� nonlinear �lters converge very fast and give excellent results
but the theoretical foundations presently are insu�cient� In fact� even i�i�d�
noise is transformed into coloured noise in an obscure way even by a single
�lter step� Thus these �lter chains share theoretical shortcomings with other






iterated nonlinear �lters �a thorough discussion of these aspects for iterated
medians is given in 	��� and 	
���� Hopefully� relations between the methods
can be established by which we might gain more insight into one method
from what we learned about the other�

The plan of this paper is as follows� Having introduced basic notions and
concepts we brie�y sketch relations between some methods on an intuitive
level� Then we prove a somewhat surprising result� under mild conditions
maximum posterior mode estimations amounts to ���ltering in a sense to
be made precise� Then we turn to the Bayesian approach� focus is on the
simple case of a Potts prior distribution suited for segmentation or regression
onto piecewise constant signals� A generalization in the spirit of 	�� allows
for piecewise smoothing� For one�dimensional signals we derive an algorithm
which computes exact �Bayesian� maximum a posterior modes estimation
�MAP � estimates extremely fast and therefore allows to scan the family of
estimates over the whole range of hyperparameters� Then we introduce a
chain of nonlinear �lters with varying scale�parameters� Having derived �rst
properties like the ability to preserve jumps or to sharpen blurred edges we
give heuristic arguments for the optimal choice of scale�parameters�

� Relations between Smoothers

In this section we look at image smoothers from three di�erent points of view�
minimizers of loss functions� �lters i�e� convex combinations of data and
Bayes estimators� Focus is on segmentation and edge�preserving smoothing�

We �rst try to bring out relations between these seemingly di�erent no�
tions� It turns out that �local� minimizers of M �functions and iteratively
reweighted squares algorithms practically are equivalent and thus the former
are closely related to W �estimators� Simultaneously nonlinear or ���lters
are embedded into this framework and hence a link to w�estimation is estab�
lished� A loose connection to MAP �estimation is established as well�

In the second part of this section we study the relation between nonlinear
�lters and maximum posterior modes in more detail� We give a rigorous
proof for the somewhat surprising fact� that under mild conditions MAP �
estimation is a special case of nonlinear �ltering�

Let us �rst �x some notation� Let S denote a �nite set of design points
s in Euclidean space Rd � They need not necessarily be equispaced but in
most examples they are� The design points will frequently be called pixels�
A signal or �image� is a family x � �xs�s�S of intensities or �grey�values�
from a supply G which may be �nite or not� if convenient we shall write x�s�
instead of xs� For simplicity we assume real intensities xs � R�





��� Loss Functions� Sigma�Filters andMAP�Smoothers

Nothing in this subsection is really new� some of the observations are scat�
tered over the literature others seem to be folklore� Nevertheless� we found
it useful to put di�erent aspects together and comment on their relations�
In the course of the following discussion we shall be somewhat sloppy with
derivatives� We shall tacitly assume generalized derivatives �� if for instance
a function � has isolated jumps and is di�erentiable elsewhere� Thereby we
include indicator functions of intervals or trapezoidal functions which fre�
quently arise in imaging�

Suppose that data �yt�t�S is observed� i�e� a realization of random vari�
ables �Yt�t�S �in this paper we do not care about missing data�� The aim is
to infer signals x from data y under certain regularity conditions or prior ex�
pectations� Sometimes these are given in explicit form� for example as prior
distributions� regularization terms or penalties� Sometimes they are hidden
behind the formalism of the algorithm like in the case of �lters�

Robustness aspects enter in a natural way since edges� i�e� abrupt changes
in intensity� are important image features� Smoothing out noise in a smooth
part of the image � say in a moving window � should not be a�ected by the
contamination caused by intensities beyond an edge gradually entering the
window� This requirement is equivalent to edge preservation�

Let us start now from the very beginning� Given real random observations
Y�� � � � � Yn the standard form of a loss�function for a location parameter is

���� �

nX
i��

��Yi � ���

Minimizers of � are calledM�estimators� For local smoothing of an image at
pixel s the observed values yt� t � B�s�� in a window B�s� around s may be
plugged in for the Yi� The idea behind is that locally at least the majority of
the Yt are approximately i�i�d� Hence loss functions of this type are suitable
for �piecewise constant� or locally slowly varying images� Robustness is built
in preservation of discontinuities� It is mirrored by �cup��shaped function �
with �derivatives redescending to zero�� this basically means that j��u�j � c
for some constant c as juj � �� Usually the functions � are symmetric with
minimum at � and nondecreasing on the positive half�line� Spacial in�uence
of data frequently is modelled by soft windows rather than hard ones� They
are given by functions v�u� � h�kuk� where k � k is Euclidean norm and
h is a kernel function similar in shape to ��� They weight the in�uence
of remote pixels down� Throughout this paper we shall generically denote
�cup��functions by Greek letters like � or � and bell�shaped functions by
italic letters like v or w�

�



For the intensity estimate at pixel s one thereby arrives at a loss�function

�s��� �
X
t�S

��yt � ��v�t� s�� ���

Example ��� �a� Hard windows are given by indicator functions like

v�t� s� � ���a�a��kt� sk�

in the isotropic case� Frequently Gau�ian functions

v�u� � g�u	
�	
� g�u� � exp��kuk�	
�

are adopted�
�b� For the intensity weight functions negative Gau�ians

��u� � �g�u	��	�

are most popular� Indicator functions � corresponding to truncated means �
are of interest as well� For computational reasons trapezoidal � are used for
instance in 	��� Functions

��u� � minf�� � u��� �g� �  �� �
�

arise naturally in 	��� We shall argue below that they are intimately connected
with edge detection�

Contour lines of the map

�s� �� ��� �s��� ��

are displayed in Fig� � for the Gau�ian case� Data are simulated from the
phantom in 	���

A view at the contour lines of the function �s� �� �� �s���� displayed in Fig�
� shows that the global minimizers of ��� will respect boundaries between
reasonably large plateaus� A spike in a pixel s� however� in general cannot
prevail since the superposition of many terms ��yt � ��v�t � t� for t near
s and similar values yt will produce a deeper valley along the cut fsg � G
than the single spike term ��ys���v�t� s� with ys 	 yt� As a remedy� local
minimizers of ��� are proposed in 	�� and in fact� these local M�smoothers
show an excellent performance for a large variety of images� More precisely�
the authors for each s choose the next local minimum of �s which is downhill
from ys�

�



Figure �� Data y �dots� and contour lines for the map ��� localM �smoothing
�solid line� and w� or ���lter smoothing �wiggly line��

It was observed in 	
�� and independently by the �rst author that localM �
smoothing is intimately connected to W �estimation presumably introduced
by J�W� Tukey� ���� �cf� 	���� Chapter 
��d�� In the present context
W �estimators are de�ned by the �xed point equation

�� �
X
t�S

w�yt � ���v�t� s�yt

�X
t�S

w�yt � ���v�t� s� � ���

where w is some kernel function� As a convex combination of observations
theW �estimator is of �lter type� it is nonlinear since the estimate itself enters
the �lter weights� One usually resorts to the iterative algorithm

�k�� �
X
t�S

w�yt � �k�v�t� s�yt

�X
t�S

w�yt � �k�v�t� s�

� �k �
X
t�S

w�yt � �k�v�t� s��yt � �k�

�X
t�S

w�yt � �k�v�t� s� � ���

If a function � is �up to a constant� de�ned by ���u� � u � w�u� then ���
reads

�k�� � �k � �k��k�
X
t�S

���yt � �k�v�t� s� ���

�



with adaptive gains �k� This reformulation shows that �if we are lucky with
convergence� the algorithm initialized with ys results precisely in the localM �
estimate introduced above� The only di�erence is that the latter is formulated
as a general minimization problem whereas the former is given by a �xed
point equation ��� together with the special algorithm ���� The simulations in
	
�� indicate that the algorithm ��� initiated with data �ys� in practice gives
the same result as local M �smoothing with other optimization techniques
albeit we are not aware of a rigorous proof�

Next we conclude from ��� that ��� is an iteratively reweighted least
squares algorithm� The generic step transforms an input � into an output

�� �
X
t�S

w�yt � ��v�t� s�yt

�X
t�S

w�yt � ��v�t� s� �

which implies X
t�S

w�yt � ��v�t� s��yt � ��� � �

and hence
�� � argmin

�

X
t�S

w�yt � ��v�t� s��yt � ���� ���

Thus each step is an estimator associated to its own loss function ����
The �rst step �� �� �� in ��� is called a w�estimator �cf� 	���� Chap�


��d�� Initiated with data y it has output

Fy �

�X
t�S

w�yt � ys�v�t� s�yt

�X
t�S

w�yt � ys�v�t� s� � s � S

�
� ���

We recognize this nonlinear �lter as the ���lter� well�known in imaging for
a long time� if v and w are Gau�ian then it is called the nonlinear Gau�ian
�lter �NLGF �� The above derivation clearly shows that the ���lter drives
data ys towards the local M �estimate but in general gets stuck before they
are reached� Hence its output lies between the data and the output of the
local M �smoother� This explains the observation that ���lters have small�
scale �wiggliness� �cf� 	����

Remark ��� �a� The original ���lter by J�S� Lee ������ 	���� used indica�
tor functions w � ������� and hard windows� Hence in window around s� for
suitable � it performs a test of signi�cance to decide whether Yt has mean ys
and takes only the mean of those yt which pass the test�
�b�The case w 
 � gives the Nadaraya�Watson kernel smoother �cf� 	���
which for Gau�ian v simply is a linear Gau�ian �lter�

�



Recall that we established a one�to�one correspondence between local M �
smoothers and iteratively reweighted least squares� which turned out to be a
sequence of ���lters� The correspondence between loss functions ��� and �lter
weights in ��� is given by the identity ���u� � u �w�u�� If for example � � �g
is a Gau�ian function turned upside down then w is a Gau�ian function� if
��u� � u� then w 
 � �the linear Gau�ian �lter�� if ��u� � minf��u��� �g�
�  �� is a truncated square then w�u� � ��������u� with � �

p
�	�� hence

the associated ���lter is a truncated mean� We shall argue below that this
�sharp cup� function � corresponds to �sharp boundaries��

Finally we consider Bayesian a smoothers� Some notation is needed be�
fore� We give the de�nitions for discrete spaces only� for continuous spaces
densities are plugged in� The prior probabilities ��x�  ��

P
x��x� � ��

rate �favourable� regularity properties of the x� For each x � �xt�� data
y � �yt� is observed with probability �density� ��yjx�� Given y the prior is
modi�ed to the posterior �distribution� ��xjy� � ��x���yjx�	��y�� A pop�
ular estimate of the �true image� is the MAP �estimate x� � argmaxx��xjy��
In the Gibbsian formulation this reads

��x� � exp��K�x��� ��yjx� � exp��D�x� y���

��xjy� � exp��K�x��D�x� y���

x� � argmin
x

�K�x� �D�x� y���

The data term is determined by the observation device� hence the prior
energy K�x� is the interesting term�

For s � S consider the conditional prior ��zsjxt � t �� s�� The conditional
prior energy is

� ln��zsjxt � t �� s� � K�zs� xt � t �� s� � const�

A common way to construct prior energy functions is to plug in suitable loss
functions like ��� whilst replacing the variables yt by xt� This results in

K�x� �
X
t�S

��xs � xt�v�t� s��

Each of the above statements about � and v holds mutatis mutandis for
Bayesian models as well� Let now S be endowed with an undirected graph
structure and call s and t neighbours if they are connected by an edge of
the graph� This will be indicated by the symbol s  t� Assume further that
neighbours have distance �� Then with v � �f�g�k � k� we get

K�x� �D�x� y� �
X
s�t

��xs � xt� �D�x� y��

�



We now want to work out the relation between such priors and boundaries�
This is easiest explained in the case of sharp cups �
�� They can be written
in the form

��u� � minf��u��� �g � min f���u����� a�� � �a � a � f�� �gg�
Setting

d�u� �

�
� if u � ����	�
� otherwise

���

this reads
��u� � ��u����� d�u�� � �d�u��

Having introduced binary variables b � �bst � s� t � S� s  t�� bst � f�� �g� we
conclude that the following are equivalent�
�a� x� minimizes

x ���
X
s�t

��xs � xt� �D�x� y� ����

and b�st � � if jx�s � x�t j � ����	� and b�st � � elsewhere�
�b� �x�� b�� minimizes

�x� b� ���
X
s�t

�
���xs � xt�

���� bst� � �bst

�
�D�x� y�� ����

Now we arrived at the classical model from 	��� Simultaneously it is a special
case of 	��� This allows a new interpretation of this prior� the variables
bst are interpreted as active or inactive �micro� edges between neighbouring
pixels s and t according to bst � � or bst � �� Active edges correspond to
discontinuities of intensity and �switch o�� smoothing� Thus fs  t � bst � �g
is a �contour�� The terms �bst penalize each active edge by �  �� Since
their sum is � times contour length� short and thus �smooth� contours are
favourable� If bst � � then the quadratic smoothing term is switched o�
which � in view of the penalty � pays o� if ���xs� xt�

�  �� Small intensity
di�erences are favourable� In summary� the prior favours smooth regions but
allows for abrupt changes in intensity where there is evidence for a boundary
in the data�

Let us stress that the reformulation in terms of edge elements provides a
link between robust priors and edge�preserving smoothing with a conspicuous
interpretation�

There still remains another interesting observation� Using the loss func�
tion of the ���lter in ��� instead of ��� we get

K�x� �
X
s�t

�xt � xs�
�w�xt � xs�� ��
�

�



Specializing to the binary case w � ������� with � � ����	� we �nd that
��� d� � w and hence MAP �smoothing with ��
� is equivalent to the mini�
mization of

�x� b� ���
X
s�t

�
���xs � xt�

���� bst�
�
�D�x� y��

This ���� without the penalty term �bst� Therefore boundaries will be less
smooth in accordance with wiggliness of the ���lter�

We �nally compare local M �smoothers� NLG �lters and a chain of NLG
�lters in Fig� 
�

Figure 
� Noisy phantom smoothed by the localM �smoother� the NLG �lter
chain and a NLG �lter�

��� Maximum Posterior Modes are Filters

In this section we prove that MAP �estimators are �nonlinear� �lter under
mild and natural conditions�

Let us �rst give a precise de�nition of the latter� The space f �xs� � xs �
R g of signals will be denoted by X� Recall that S is �nite� hence we may
consider matrices M � �Mst�s�t�S� If Mst � � and

P
t�S Mst � � then M is

called a �S � S�� stochastic matrix�

De�nition ��� A map F � X � X is called a nonlinear �lter if there is a
map W � X � R

S�S into the set of stochastic matrices such that

Fx � W �x�x�

F is a nonlinear �lter if

�Fx�s �
X
t�S

Wst�x�xt ���

��



for all x � X� s � S� We shall use the term �lter in this section for a nonlinear
�lter� Obviously� ���lters introduced above are �lters�

We are going to characterize �lters by means of convexity� Let convA
denote the convex hull of A�

Lemma ��� A map F � X � X is a nonlinear �lter if and only if

�Fx�s � conv f xt � t � S g ����

for all x � X and s � S

Proof� If F is a �lter then �Fx�s is a convex combination of the values xt�
t � S by ��� and hence in the convex hull of these points� Conversely� if
�Fx�s � conv f xt � t � S g then �Fx�s is a convex combination of f xt �
t � S g� Hence there are nonnegative weights Wst�x��

P
t�S Wst�x� � � with

���� Thus F is a �lter�
Obviously� the function W is far from being unique� One can de�ne an

�almost� unique setting all weights to zero exept those for extremal xt�
We are interested in maps F induced by MAP �estimates� More precisely�

let
Fy � argmin

x
H�x� y� � argmin

x
�K�x� �D�x� y��� ����

In the following� we assume that the prior energy K only penalizes �non�
smoothness� of signals� This results in shift�invariance conditions like

K�x� c� � K�x��

where �x� c�s � xs� c� c � R� Under this assumption� we can �x a function
�K with

K�x� � �K��xs � xt�s�t��

Typically� there are functions � and � such that

K�x� �
X
s�t

��xs � xt�� ����

D�x� y� �
X
s

��xs � ys�� ����

To state the main result� we introduce relations �y� y � X� on X by

x�y z if and only if zs � xs � ys or zs � xs � ys for all s � S�

Hence x �y z means that for each single site s the signal xs is closer to ys
than zs and that it is on the same side of ys� Call K and D monotonous if

x�� z � �K�x� � �K�z� ����

x�y z� x �� z � D�x� y� � D�z� y�� ����

��



Theorem ��	 If K � X ��� R and D � X � X ��� R are monotonous then
each map F � X ��� X ful�lling ���� is a nonlinear �lter�

The formulation explicitly takes into account that minimizers of ���� in
general are not unique�

Remark ��
 Conditions ���� and ���� have simple interpretations� The �rst
condition means that a signal x� all jumps of which are smaller than those
of another signal z and of the same sign� is smoother than the signal z� In
other words� K is a measure of smoothness in a precise sense� The second
condition ���� simply means that the term D��� y� � measuring �delity to
data y � is strictly smaller for x closer to y than z� i�e�� D penalizes bias
from y� One easily concludes that under these conditions constant signals
are �xed points of F � In this special case� this boils down to �����

It does not matter whether K or D is assumed to be strictly monotonous�
We decided on strict monotony of D since it �ts better to the robust priors
applied in section �

Proof� The proof is based on Lemma 
��� For each y � X we de�ne the map
x ��  xy by

 xys �

�	



max f ys � s � S g if xs  max f ys � s � S g
minf ys � s � S g if xs � min f ys � s � S g

xs otherwise
�

cf� Fig� � It is easy to see that

 xy �y x� �xs � xt�s�t �� �xs � xt�s�t�

Moreover� if xs 	� conv f yt � t � S g for some s � S then  xy �� x� As
a consequence of the assumptions we �nd H�x� y�  H� xy� y� for such x�
Now we conclude from  xy � conv f xs � s � S gS that all minimizers x� of
x �� H�x� y� ful�l x�s � conv f yt � t � S g for all s � S� Application of
Lemma 
�� completes the proof�

Corollary ��� Suppose that D and K are given by ���� and ���� and � and
� are monotonous w�r�t� ��� more precisely

�u� � u � � or u�  u � ���
�
��u� � ��u��
��u� � ��u��

Then each MAP�estimate F � X � X is a �lter�

�




�
Figure � Illustration of the map x �  xy� The signal y is represented by
crosses� x by circles and the points of  xy di�erent from x by bullets�

A similar result holds for priors like

K�x� �
X
s�t�u

s��u

���xs � 
xt � xu��

These correspond to locally linear smoothing in contrast to locally constant
smoothing considered above� For the corresponding MAP �estimate F not
only constant signals but also linear signals are �xed points�

� Generalized Potts Priors for Segmentation

and Smoothing

We continue with MAP �estimation in the models ����� The main problems
� not yet overcome � are estimation of hyperparameters and the numerical
solution of the minimization problem� Focus is on optimization� but the
considerations below will also shed some light on the choice of parameters�
Usually such optimization problems are solved by stochastic relaxation tech�
niques like Gibbs� or Metropolis annealing �	��� 	����� In cases like the Potts
model specially taylored relaxation algorithms like the Swendson�Wang al�
gorithm 	
�� may be adopted� But all stochastic relaxation algorithms cause
considerable practical problems� They theoretically �nd minima but do not

�



realize that they are there �cf� 	��� Chapter ��� In particular� there is no stop�
ping criterion� Moreover� we are faced to considerable numerical problems�
Due to rounding errors annealing tends to mutate into a greedy algorithm� a
problem which is not well understood� Finite time annealing � i�e annealing
with a bounded number of steps � usually leads to an optimization problem
much harder to the original one �cf� 	����

Hence each exact algorithm is a useful tool to infer models on the one
hand and to study convergence of relaxation on the other� Only few exact
algorithms for Bayesian image analysis are known� examples are the Ford�
Fulkerson approach to binary data in 	��� or the GNC�algorithm to solve ����
for the Gau�ian case D�x� y� �

P
s�ys � xs�

� �and the special functions ��
in 	��� Both algorithms are restricted to these very special situations and as
far as it is known cannot be generalized�

Below we present an extremely fast exact algorithm for the computation of
MAP �estimates for one�dimensional signals based on dynamic programming�
It works for the Potts model and any kind of noise for which an explicit
estimator of the mean can be computed like the empirical mean if noise is i�i�d�
Gau�ian or the median for i�i�d� double exponential noise� Implementation
for the general model ���� in one dimension is work in progress as well as the
extension to the 
�d case� We also keep track of parameters�

Let us �rst introduce the Potts prior� For � �� or ��u� � �����f�g�u��
the energy ���� boils down to a Potts model

H�x� �
X
s�t

��xs � xt� �D�x� y� � � � jfs  t � xs �� xtgj�D�x� y� �
��

where jAj is the cardinality of the set A� The prior term simply counts
neighbours with di�erent intensities�

��� Exact MAP for the ��d Potts Prior

We now impose some severe restrictions�

��� S is a one�dimensional lattice S � f�� � � � � Ng with a nearest neighbour
structure�

�
� Noise is i�i�d� and hence D�x� y� �
P

s�S ��xs� ys� with some function
��

A signal x is completely determined by a partition Px of S into discrete
intervals I � Px and the constant intensities �P � ��I � I � P� on the

��



intervals and� conversely� each �P� �P� determines a unique x� Hence we may
write H�x� � HP��P� if convenient� Then �
�� boils down to

H�x� � HPx��Px� � ��jPxj � �� �
X
I�Px

X
s�I

��ys � �I��

Given a partition P� the minimization problem reduces to the minimization
of each single term

HI��I� � � �
X
s�I

��ys � �I��

For many functions � the minimizers ��I are known� If� for instance� noise
is Gau�ian and thus ��u� � u� then the means ��I � �

P
s�I ys�	�jIj� will

be plugged in� if it is double�exponential and ��u� � juj then the mean is
replaced by the median of fys � s � Ig and so on� One has

min
x

H�x� � min
P��P

HP��P�� �
��

A minimizer of this function minimizes some HP � This observation reduces
the minimization problem �
�� to the discrete problem

minimize P ��� HP���P�� �

�

Here we incorporate dynamic programming� De�ne

J�n� � min
P�P�N	

HP�x
�
P�

where P�n� denotes the set of all partitions of f �� � � � � n g� Since

Hf I������Ik g��f I������Ik g� � �� �
X
l

HIl��Il�

� Hf I������Ik�� g��fI������Ik�� g� �HIk��Ik�

for all N � n  � the following holds

J�n� � min
��r�n��

�J�r� � min
��R

H�r���n������ �
�

In other words� J is a Bellmann function�
Now we can establish the algorithm for the minimization of �
��� It runs

as follows�

��� For all � � r � s � N determine ��r�s � argmin��RH�r�s���� and
H�r�s���

�
�r�s���

��



�
� Set J��� � ��

�� Determine J�n� for all � � n � N in �
�� keeping track of �at least
one� r�n giving the minimum in �
��

��� Determine recursively from minimizers r� for J�N�� J�r�N�� � � � a par�
tition f I�� � � � � Ik g of f �� � � � � N g� Then x� is determined by x�s � ��Il
for s � Il�

By a suitable arrangement� the complexity is O�N�� for ���� O��� for �
��
O�N�� for �� and O�N� for ���� Thus the whole algorithm works in O�N��
complexity� This is of the same order of the generic complexity of nonlinear
�lters�

Up to now the parameter � was �xed� Like for the �lter chain �
�� there
remains the crucial problem to determine the best parameter� Of course� this
value depends on the model behind the data y and the quality function on
the set of approximations�

We adopt a completely di�erent approach� Depending on the value of �
the algorithm determines piecewise constant approximations to the data� If
� � �� data is recovered� If � ��� the optimal vector x� becomes a constant
signal� In the range between � controls the degree of smoothness�

Therefore we should compute the minimizers of �

� for all values of ��
Reformulation of the above scheme in terms of H�

I ��� � HI��� � � and
H�
P � HP � ��jPj � �� results in

�J�k� n� � min
P�P�n	�jPj�k

H�
P��

�
P��

Again� for N � n � k  � we �nd a recurrence relation

�J�k� n� � min
��r�n��

� �J�k � �� r� � min
��R

H�
�r���n������ �
��

Because of
min
x

H�x� � min
��k�N

���k � �� � �J�k�N��

the global minimum is a continuous piecewise linear function in �� Since
k �� �J�k�N� is increasing one �nds the points of discontinuity of its �rst
derivative in O�N��

In summary� we adopt the following algorithm

��� For all � � r � s � N determine ���r�s� � argmin��RH
�
�r�s���� and

H�
�r�s���

�
�r�s���

�
� Set �J��� n� � H�
���n���

�
���n���

��



�� Determine �J�k� n� for all � � k � n � N from �
��� keeping track of
�at least one� r�k�n giving the minimum in �
���

��� Determined recursively from the minimizers r� for �J�k�N�� �J�k �
�� r�k�N�� � � � a partition

�
Ik� � � � � � I

k
p

�
of S � f �� � � � � N g� xk�� is de�

termined by xk��s � ��
Ik
l

for s � Ikl �

��� Construct the piecewise linear function � �� minxH�x� � minkH�xk����

Complexity changes because of step �� to O�N
�� On the other hand� this
gives us now the solution for any value of ��

Fig� � displays segmentation of a noisy phantom by exact MAP �segment�
ation with the Potts model and di�erent parameters �� Some snapshots are
cut out of the movie with decreasing �� Observe that the number of jumps
� and hence the segmentation stay constant over large ��intervals�

Example ��� We started to apply this program to data from human brain
mapping assessed by functional magnetic resonance imaging �fMRI �� The
observed time series represents a response in one voxel of the visual cortex
to an outer boxcar�shaped visual stimulus 	��� The task is to decide whether
there is a response in the voxel or not� The above algorithm transforms data
into a �segmentation�� in particular it gives a series of jumps� These may be
used as a decision criterion� Such an approach should work with minimal
prior statistical hypothesis� The only relevant features of a signal considered
are the jumps� This is work in progress�

Such a time series and its segmentation by this method is displayed in
Fig� ���� For simplicity� noise was assumed to be Gau�ian� For N � ��
the C�implementation on a � MHz Pentium PC ran in much less than a
second� For visualization we used the language IDL�

��� Generalizations

If � in the de�nition of � is �nite then the problem is more involved� For
Gau�ian noise� i�e� ��u� � u�� basically the same procedure as above applies�
we simply replace HI by

H	
I �xI� � � �

X
s�t�I

���xs � xt�
� �
X
s�I

�xs � ys�
��

Now the minimizers of HI are not constant any more� Thus there is the ad�
ditional problem to minimize H	

I � Let h�� �i denote Euclidean inner product�
It is easy to see that

H	
I �xI� � � � hxI � ���� � I�xIi � 
hxI � yIi� hyI� yIi �
��

��



Figure �� Segmentation of a noisy phantom by exact MAP �segmentation
with the Potts model �to be viewed from top left to bottom right� for pa�
rameters � � 	�������� � � 	����� ������ � � 	����� ������ � � 	���
� �����
� � 	������ ������� � � 	�������� ���������

where � is the jIj � jIj matrix

� �
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Figure �� Steps in ��scanning� Left column� boxcar signal� �rst step
of reconstruction �� � ������� and data� second step of reconstruction
�� � 	������� ��������� Right column� third step of reconstruction �� �
	������� �������� 
�th step of reconstruction �� � 	�������� ��������� an out�
put of a radial�basis�function network� 	�
�� Solid line� �response� signal�
dotted line� segmentation�

For the quadratic minimization problem H	
I �xI� �� min di�erentiation of

�
�� with respect to xI shows that the unique solution is given by

x�I � ���� � Id���yI �

��



To compute �����Id��� it may help that the eigenvalues and eigenvectors of
the � are well�known� see e�g� 	���� In contrast to the above scheme H	

I �x
�
I�

now depends nonlinearly on ��� we have

H	
I �x

�
I� � � � hyI� �Id� ���� � Id����yIi

� � �

jIjX
k��

���k
���k � �

hyI�PrkyIi

where �k is the kth eigenvalue of � and Prk is its kth eigen�projection� Due
to this nonlinearity in �� it is somewhat harder to implement the scanning of
minimizers as a function of both �� and �� Nevertheless� for constant � the
algorithm has the same computational complexity �quadratic respectively
cubic� as computed above�

We conclusion that this dynamic programming approach is �exible and
applies to a wide variety of functions � and �� mainly with modi�cations in
the computation of x�I � We conjecture that suitable algorithms should exist
for all smooth convex � and all ��u� � min f �� � g with smooth convex ��

� Sigma�Filters and Chains of Sigma�Filters

We now introduce a chain of ���lters with varying scale parameters �cf� 	
��
	�� 	
��� 	
���� It is given by

F
n��n � � � � � F
����� �
��

where each F
k��k is a nonlinear Gau�ian �lter with weights w
k and v�k � It
is an edge preserving segmentation and smoothing algorithm which even is
able to sharpen blurred edges without any displacement� It �rst approximates
data by �nearly� piecewise constant functions thus providing a segmentation
into smooth parts� This is then used as the basis of smoothing in a subsequent
processing step� The chain is based on NLG�Filters and thus each �lter step
reqires only two parameters� Furthermore� only few steps are necessary in
practice and there are no practical problems with convergence� In this section
we focus on the choice of chain parameters�

In passing we we comment on some aspects of ���lters we did not meet
in the literature�

��� Some Basic Properties of Sigma�Filters

An important property of ���lters is edge preservation� Closely connected is
the way it transforms blurred jumps� i�e� ramps and slopes� We give some


�



elementary arguments that ���lters even are able to steepen slopes� We
restrict ourselves to one dimensional signals� It is convenient to switch from
the discrete to the continuous �lter� It is given by

�Fy��s� �
Z
w�y�t�� y�s��v�t� s�y�t� dt

�Z
w�y�t�� y�s��v�t� s� dt �

�
��
where it is assumed that v and w are symmetric around � and integration
extends from �� to �� For sake of completeness we assume v� w � ��
v � L�� w � L�loc and y � L��

The jump�preserving property is best illustrated by application to a pure
jump

z � C��������	 � �����	�	
� �
��

of height C� Let

a�s� �

Z �s

��
v�t� dt �

Z �

��
v�t� s� dt

b�s� �

Z �

�s
v�t� dt �

Z �

�

v�t� s� dt�

One readily computes

�Fz��s� � C




�w���a�s� � w�C�b�s�

�w���a�s� � w�C�b�s�
� s � ��

Since a�s�� b�s� � R
v�t� dt	
 as s � � the left�hand limit of the output at

the jump is

�Fz����� � C



� w�C�� w���

w��� � w�C�
�

and by symmetry the right�hand limit is

�Fz����� �
C



� w���� w�C�

w��� � w�C�
�

After �ltering the jump has height

! � �Fz������ �Fz�����
and the proportion of jump heights is

!

C
�
w���� w�C�

w��� � w�C�
�

From this identity one concludes that the output of the �lter has a jump
where the input has a jump� moreover� the proportion of jump heights can
be derived from the shape of w�


�



Example ��� Obviously� one has Fz � z for the pure jump whenever
w�C� � �� More generally� by such a �lter a jump at � of height C is
preserved for all signals which increase on the support of v�

All this holds in particular for truncated means w � ���
�
�� � � C� For
such w the �lter transforms a signal y like a linear �lter if �  sups�t jy�s��
y�t�j� For the nonlinear Gau�ian �lter and input z the outputs are displayed
for 
 � � and � � k � ���� � � k � �� in Fig� �� It also shows a plot of ! as
a function of ��

Figure �� Jump height for input signal �
�� �ltered by NLGF as a function
of � and �lter outputs for 
 � � and � � k � ���� � � k � ���

Another remarkable property of ���lters is their ability to �atten and �
even more important � to steepen slopes� Plainly� this ability strongly depends
on the parameters� If � is larger than the diameter of the range of intensities
then the ���lter tends to perform like a linear �lter and blur edges� If �
on the other hand � � is small and 
 is su�ciently large then ramp edges
can be sharpened� Let us make these heuristic considerations more precise�
For di�erentiable signals let us consider derivatives as measures of steepness�
Then steepening or �attening an increasing slope means that the derivative
is in� or decreased� respectively� The following general result provides an
explicit formula� Let the �strictly positive� denominator in �
�� be denoted
by D�s��

Proposition ��� Let y be a continuously di	erentiable
 bounded and odd
function on the real line with bounded derivative y�� Let further v and w
be continuously di	erentiable
 strictly positive and even
 assume that v is
integrable and there are �  � and an integrable function u such that jv��t�
s�j � u�t� for all s � ���� ��� Then

D�s�
�
�Fy�� � y����

�
�

Z �
y��t�� y����

�
v�t�
�
w�y�t� � w��y�t��y�t�

�
dt







The calculations �carried out in the appendix of 	
��� are straightforward but
somewhat tricky� For convenience of the reader we give a simpler proof in
the appendix�

If we assume y� to be maximal at � then y��t� � y���� � �� moreover�
w�y� � � and yw��y� � �� The latter holds if y is odd and increasing and w
is bell�shaped� After a minute of re�ection one concludes that according to
the shape of v and w there is steepening or �attening at �� This behaviour
of the ���lter was already claimed in 	
�� and discussed there in an informal
way�

Example ��� This becomes more conspicuous in the case of Gau�ian kernels

w
�u� � g�u	��� v� �t� � g�t	
��� g�t� � exp��t�	
��

In this case the identity boils down to

D�s�
�
�Fy������y����

�
� ��

Z �
y�����y��t�

�
v� �t�w
�y�t��

�
�y�t�	�����

�
dt�

It is immediately clear that for � � kyk� there is �attening� But for suitable
signals� small � and large enough 
 the slope is steepened� This is illustrated
in Fig� �� The input signal is y � 
G� � where G denotes the cumulative
distribution function of the standard normal distribution� it is �ltered by
NLGF with parameters � � ��� and 
 � � One should keep in mind that
G can be thought of as a jump function of type �
�� blurred by a linear
Gau�ian �lter with 
 � �� The residual �Fy������ y���� for �xed � � ��� as

1 2 3 4-1-2-3-4

1

-1

Figure �� Sharpening of a blurred edge by NLGF with � � ��� and 
 � �

a function of 
 is plotted in Fig� � �

Remark ��� The NLG �lter is closely related to anisotropic di�usion �u	�t �
div�h�u� � grad�u� cf� 	
��� We shall not pursue this aspect here�
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Figure �� The function 
 �� F ����� �y����� � y���� for y � 
G � � with the
standard normal c�d�f� G�

��� Best Parameters for the NLG Filter Chain

The above observed parameter�dependent abilities of ���lters to smooth and
sharpen may be combined in a chain of such �lters with di�erent parameters
in each step� Formally� such a chain is given by �
��� The chain �
�� gives a
segmentation of the signal� After segmentation� the �lter weights of the last
step may be used in subsequent �ltering of raw data to perform smoothing
on the segments� Below we only discuss segmentation� For carefully chosen
parameters performance is illustrated in Fig� �� A two�dimensional example
is displayed in Fig� ��� where a very dirty radio is cleaned by the chain�

It is di�cult to analyze the exact performance of a nonlinear Gau�ian
�lter chain because each �lter stage mixes the input in a complicated way�
Even if the input �Ys� is white noise which means that the Xs are i�i�d�
random variables with zero mean� the output variables �F
����X�s of the �rst
�lter step are correlated in a tortuous way� Hence it is very di�cult to obtain
rigorous results for the distribution of the outputs this and the following �lter
steps�

Nevertheless� on a heuristic level plausible arguments can be given for
the parameter choice� at least for many practical application the derived
strategy proved to be successful and� in fact could not be outperformed in
any experiment� We basically follow the arguments of V� Aurich and E�

M�uhlhaus� cf� 	
��� Outputs of nonlinear �lters will frequently be compared
to those of of linear ones� hence we introduce the linear Gau�ian �lter

�G�y�s �
X
t�S

v� �t� s�yt

�X
t�S

v� �t� s� �
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Figure �� Performance of the NLG �lter chain� From �rst to last row� Data
and windows �indicated by boxes� of �rst step� output of �rst � second� third
step� output of modi�ed fourth� �fth step� residuals� original signal�

Figure ��� A dirty radio cleaned by the NLG �lter chain

The following arguments are based on some simplifying heuristics� Through�
out the rest of this section� Y � �Yt� will denote i�i�d� random variables with
normal distribution N ��� ����

�A�� If � � � then �F
��Y �s and �G�Y �s have similar distributions�


�



�A
� If Z is the output of a linear Gau�ian �lter G� fed with Y and if
� � 
�varZs�

��� then �F
��Z�s and �G�Z�s have similar distributions�

The Zs are again Gau�ian but dependent� The nearer s and t are to
each other the more the joint distribution of Zs and Zt is concentrated
near the diagonal� Therefore � can be chosen smaller than in �A���

�A� The chain G�j � � � � � G�� of linear Gau�ian �lters can be replaced by the

single Gau�ian �lter G� with 
 � �
Pj

i�� 

�
i �

����

In the continuous case the exact equality G�j � � � � � G�� � G� holds and
such an assumption is not critical�

�A�� The variance of �G�Y �s is about �
�	�
����
�d�

In fact� neglecting the discretization error one computes

varG�Ys �
�

N�

X
t

g�� �jjtjj��� �
�

N�

X
t

g��
p
��jjtjj���

� ��
Z
g��

p
��jjtjj� dt

�Z
g��jjtjj� dt

���

� �� � �����
�d	��
�����
��d � ��	�
����
�d�

To ensure that F
�� smoothes white noise in a similar way as the linear
Gau�ian �lter G� does� the parameter � has to be su�ciently large compared
to noise� On the other hand� blur of a jump is negligible if � is smaller
than the height of the jump� Therefore we assume exponentially decreasing
parameters with

�j�� � �j	� � ��	�
j

for some �  �� Given the noise variance ��� we watch out for parameters
��� 
�� � � � � 
n as small as possible on the one hand but on the other hand
ful�lling the following property�

�P� The distributions of F
j ��j � � � ��F
����Y and of G�j � � � ��G��Y are close
to each other�

We proceed by induction�
Set �� � �� According to �A�� F
����Y and G��Y have similar distributions�
The parameter 
� has to be chosen such that �A
� applies to the second �lter
step F
���� � Therefore and by �A��

�� � 
�var�G��Y �s�
��� � 
�	�


p
�
��

d��


�



Because �� � ��	� � �	� this implies


� � �
��������
�	���d �� �
���������

To keep blur of jumps small we set 
� � �� Then F
�����F
����Y and G���G��Y
have similar distributions�

For j � 
 we argue as follows� Suppose that ��� 
�� � � � � 
j�� are given such
that F
j����j�� � � � � �F
����Y and G�j�� � � � � � G��Y have similar distributions�

Because of �A� F
j����j�� � � � � � F
����Y and G�iY with �i � �
Pi

k�� 

�
k �

���

have similar distributions�
Hence

var�F
i��i � � � � � F
����Y �s � var�G�iY �s � ��

�

p
��i�d

by �A��� Using �A
�� �A�� �A�� one obtains

var�F
j����j�� � � � � � F
����Y �s � var�G�j�� � � � � � G��Y �s

� var�G�j��Y �s � ��

�

p
��j���d

�

By the same reasoning as above� we �nd

�j � ��	�
j�� � 


�

�

p
��j���d��

or

��

j��X
k��


 �k � �
�	���d�

Again� we should choose 
j�� minimal� This yields


j�� � �

p
�������
�j��	���d

p
�� � ��

Thus

j

j��

�

�
�
�j��	���d if j  
p

�� � � if j � 

�

For practical experiments we chose � � 
 and used the following
Strategy� If �� is the estimated noise variance then choose

�� � �� �j �
�



�j�� for j  ��


� �
�



p
�

d

r
��

�
� 
j �

d
p
�
j�� for j  ��


�



Notice that �
d
p

� � ����� � d

p
�� hence we use for j � 
 and j  
 the same

recursion for ��
Special cases�

d � � � 
j � �
j��

d � 
 � 
j � 

j��

d �  � 
j �
�
p
�
j�� � �� � � 
j��

In practice 
� is chosen between ��� and ��
Numerous experiments in dimensions �� 
 and  have been performed�

The above strategy worked very well if noise was more or less white and
bell�shaped distributed� The choice of the parameters �� and 
� is usu�
ally not critical� small changes have only little in�uence on the �lter re�
sult� Implementations which are reasonably fast can be downloaded from
http���www�cs�uni�duesseldorf�de�aurich�nlg�

Although the above strategy works quite well it is not satisfying from a
theoretical point of view because the decay of the �j is �xed in advance� A
more �exible choice can possibly diminish the blurring signal jumps without
spoiling the noise reduction� For this purpose 	M"uhlhaus� ��� introduces the
notion of total blur of a �lter chain and de�nes a �lter chain as optimal if its
total blur is minimal� The application of this notion in practice su�ers from
the fact that the minimization problem is not solved explicitly�

��� Non�Horizontal Gau�ian Filters

Nonlinear Gau�ian �lter chains tend to break up ramp�like input signals
into steps since they give a kind of segmentation� The reason is that the
weight term locally penalizes deviations from constants� it is based on �rst
discrete derivatives� Second discrete derivatives would be a straightforward
generalization� Since the input data are noisy we avoid them here and instead
plug in the output of a linear Gau�ian �lter� Thus a non�horizontal nonlinear
Gau�ian �lter is de�ned by

�H�
��y�s �
�

Ns

X
t

g� �jjt� sjj�g
�yt � �G�y�t�yt�

Ns �
X
t

g� �jjt� sjj�g
�Xt � �G�X�t��

Chains of such �lters can eliminate noise without destroying ramps or jumps�
We mention this without any further discussion� Performance is illustrated
in Fig� �� where the noisy image is �ltered by a non�horizontal Gau�ian �lter
chain with � steps�
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Figure ��� Image data with ramps and edges corrupted by Gau�ian noise
and processed by the non�horizontal nonlinear Gau�ian �lter chain


�



These images can be downloaded from
http���www�cs�uni�duesseldorf�de�aurich�testimages� The reader is
invited to compare with the performance of other �lters�

� Appendix

In this appendix we reprove a formula from 	
��� p� ��
���� It is used to
explain sharpening of blurred edges in Section ����

Proposition 	�� Let y be a continuously di	erentiable
 bounded and odd
function on the real line with bounded derivative y�� Let further v and w
be continuously di	erentiable
 strictly positive and even
 assume that v is
integrable and there are �  � and an integrable function u such that jv��t�
s�j � u�t� for all s � ���� ��� Then

�Fy�� � y���� �

Z �
y��t�� y����

�
v�t�
�
w�y�t� � w��y�t��y�t�

�
dtZ

w�y�t��v�t�dt
�

�

Proof� We have to di�erentiate the function

s ��� �Fy��s� �

Z
�w�y�t�� y�s��v�t� s�y�t� dtZ
w�y�t�� y�s��v�t� s� dt

��
D�y��s�

N�y��s�
�

Denominator and numerator D�y� and N�y� are continuously di�erentiable
functions� N�y� is strictly positive and D�y���� � � which implies

�Fy����� � D��y����N�y���� �D�y����N ��y����
N��y����

�
D��y����
N�y����

�

Interchange of di�erentiation w�r�t� s and integration w�r�t� t yields

D��y��s� �
Z

d

ds
�w�y�t�� y�s��v�t� s�y�t��dt

�

Z
� d

dt
�w�y�t�� y�s��v�t� s�y�t��dt

�

Z
v�t� s�

n
w
�
y�t�� y�s�

�
y��t� � w�

�
y�t�� y�s�

�
y�t�
�
y��t�� y��s�

�o
dt�

The �rst term vanishes and a rearrangement of terms gives the desired iden�
tity�

The last remark concerns box�shaped kernels�

�



Remark 	�� Let y be as above� y� strictly positive but for v and w we
choose box�functions� De�ne v � ��a�b	 and w � �����	 and assume that
N�y���� �

R
w�y�t��v�t�dt  �� Then we get for s close to �

�Fy��s� �
Z y���y�s	��		s�b

y���y�s	��	
s�a

y�t� dt

�
N�y��s�

and by Leibniz� rule

�Fy����� �N�y���� � y�b��fy�b	��g �
�y����

y��y������
�f��y�b	g

�y�a��fy�a	��g � �y����
y��y������

�f��y�a	g�

If y�b� � � or y�a� � � the function �Fy� is not di�erentiable at s � ��
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