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Abstract: The analysis of spatial data by means of Markov random fields usually
is based on strict stationarity assumptions. Although these assumptions rarely
hold, they are necessary in order to obtain parameter estimates. For Gaussian
data the necessary assumptions are mean- and covariance stationarity. While sim-
ple techniques are available to deal with violations of mean stationarity, the same
is not true for covariance stationarity. In order to handle mean nonstationarity as
well as covariance nonstationarity, we propose the modelling by spatially varying
coefficients. This aproach not only yields more appropriate models for nonstation-
ary data but also can be used to detect violations of the stationarity assumptions.
The method is illustrated by use of the well known wheat yield data.

Keywords: Markov Random Fields, Local Likelihood, Pseudolikelihood,
Wheat Yield Data

1 Introduction

In several statistical application areas like image analysis and the analysis of
agricultural trials, data are typically collected on a regular lattice of measure-
ment points. The spatial dependence structure of such data can be modelled
in terms of a Markov random field. Though being stochastically more com-
plex, Markov random fields may be seen as a multidimensional extension
of common Markov chains. The Markov random field model for Gaussian
data is reviewed in section 2 and the estimation of the model’s parameters
is treated in section 3.

One of the best analysed lattice data sets are the wheat-yields of Mercer and
Hall (1911). Figure 1 gives an impression of these data, which were obtained
in an uniformity trial, i.e. the same treatment was applied to each of the
20 x 25 plots. In this figure the wheat-yields are visualized by grey values
varying from white, denoting low yields, to black, denoting high yields.

In many seminal contributions to the theory of Gaussian Markov random
fields these data have been used as the exemplary application, for example by
Whittle (1954) and Besag (1974). However, both authors had to realize that
their models did not fit very well if the criterion was the comparison between
theoretical spatial covariances and sample covariances. Since Mercer & Hall
(1911) had stated the adequacy of the Gaussian distribution, Besag (1974)
suspected that the dissatisfying fit is caused by nonstationarity, which has
been detected by Patankar (1954). Kiinsch (1985) and Cressie (1993) took
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Figure 1: Wheat-yields in lbs on 20 x 25 lattice.

up the hypothesis of nonstationarity and proposed several techniques for
detrending the data before fitting Markov random fields. A brief description
will be given in section 4.

The objective of this paper is to propose a model which allows for nonstation-
arity and shows if and where violations are to be suspected. This approach,
which is based on varying coefficients as introduced by Hastie and Tibshirani
(1993), is developed in section 5 and 6. In section 7 the varying coefficient
model is applied to the wheat-yield data. Finally, in section 8 the fit is
compared to the results obtained from the stationary model.

2 Conditional Gaussian models

Let L = {(¢,7) }i=1,....1,j=1,... .7 denote a regular lattice and X = {X;;}¢ e, be
a corresponding set of random variables. Let the dependence structure of the
elements of X be defined by means of their full conditional distributions. A
simple model, which specifies the conditional distribution of each X;;, given



all observations x,, except at site (¢, ), is given by

Xij|{xrs}(r,s);é(i,j) ~ N <772]7 7—2> ) (1)
Mg = p A+ (e + Tigry — 20) B+ (Tijor + @ijp — 2p) Ba
= Po+ (Tic1y + Tigr;) P+ (Tij-1 + i) Po (2)

Furthermore the restriction |3] + |B2] < 1/2 is imposed on the coefficients
in order to obtain a proper joint model. Equation (1) and (2) represent
a conditional Gaussian Markov random field with respect to the first or-
der neighbourhood system, where each internal site (7, j) has the neighbours
{(i—=1,7),(i4+1,7),(2,7—1),(¢z,7+1)}. In the same way higher order models
may be specified, where the neighbourhood includes more neighbours and
consequently a higher number of coefficients is required. Models of this con-
ditional Gaussian type, which will be referred to as CG-models, yield a joint
Gaussian distribution. Switching to vector notation, the joint distribution
can be given in the form

x = (X1, , Xrg) ~ N (p,(I-B)"'T), (3)

where x and the mean vector g := ul are of length I -.J and the matrices
have dimension I -.J x I -.J. T is the diagonal matrix diag(7?) and I de-
notes the identity matrix. The matrix B is determined by the parameters
Bi,..., 0, in a simple way. Let B.;; be the column of B which corresponds
to x;;, then in the first order setting B.;; is such that x'B.;; is equal to
(Tim1j4 @ig1,)01+ (Tij—1+ @i 541) P2 (see Besag, 1974, or Cressie, 1993, Sec-
tion 6.4).

It should be noted that in (3) the residuals are not independent. This may
easily be seen by considering the residual vector € := (I — B)(x — p). One
obtains the covariance matrix F(e€’) = T(I — B’), which obviously is nondi-
agonal since B is nondiagonal while T is diagonal.

3 Parameter estimation

Maximume-likelihood estimation of the coefficients of CG-models is not straight-
forward because calculation of the likelihood leads to computational prob-
lems. The problems arise at different stages depending on the formulation
that is used. If the likelihood is computed directly from the joint density, the
problems are due to the normalizing term, which contains the determinant
of the covariance matrix. As seen in section 2, this matrix is nondiagonal
and its dimension is determined by the number of measurement points I - J,
which is 500 for the wheat-yield data and can amount to several thousands
in image analysis problems. Since the computational effort is of the order
(I-J)°, problems of this dimension soon become intractable. If on the other
hand the likelihood is derived from the full conditionals, every variable Xj;
occurs several times, once as response variable and four times as part of the
condition. The corresponding likelihood contributions are not independent
and hence the calculation of the joint likelihood is rather troublesome.



Therefore Besag (1974) proposed a method called coding. The basic idea is
to divide up the lattice into disjoint sublattices such that there are no neigh-
bours within the same sublattice. The next step is to select one sublattice and
take only likelihood contributions corresponding to response variables from
this sublattice. Then likelihood contributions are independent and from the
factorization one may derive an estimator with well known theoretical prop-
erties. The number of coding sets and the fraction of data contained in each
one depend on the order of the neighbourhood considered. With a first order
neighbourhood one obtains at least two coding sets. Unfortunately, there are
as many coding estimators as there are coding sets, but so far no method
is known how to reasonably combine these estimators. Therefore one has to
decide for one of them in order to obtain the desired theoretical properties.
More efficient but less appealing is the pseudolikelihood method (Besag
1975), where all likelihood contributions are factorized as if they were in-
dependent. For the coefficient vector 8’ := (o, 51, ... , 3,) of the CG-model

the pseudolikelihood leads to the simple least squares estimator

B = (22 Tx. )
Here Z := (1,2,... ,2,) is a design matrix with z, corresponding to 3 for
s=1,...,q. Let z; be indexed in the same way as x, then for example z; =
(o 2ty ) = (v 21 j+2ig1,, - . . ) since the two neighbours ;- ; and
x;41,; are connected to x;; through ;. The coding estimator for the coding
set C' C L can be given in the same simple way by just replacing x,z, ... , 2,
by the subvectors which contain only those components x;;, z1,i,... .24

where (7,7) € C holds.
For the wheat-yield data the fit of a first order model yields the pseudolike-
lihood estimates

Bo = 0.05, By = 0.142, By = 0.343, (5)

indicating that the dependence within rows (west-east) is weaker than within
columns (north-south). The coding estimates are quite similar.

Besides coding and pseudolikelihood, alternative methods have been pro-
posed for the analysis of CG-models. In use are also Markov chain Monte
Carlo methods (Younes, 1988, and Geyer, 1991) or numerical approximations
to the likelihood (see for example Besag and Moran, 1975). Since all these
methods require a high amount of computation, they are not appropriate for
repeated fitting and will not be considered here further.

4 Stationarity as a problem in real data sets

Parameter estimation for CG-models requires the field to be stationary. Usu-
ally second order stationarity is assumed, i.e. the mean and the covariance
function are not allowed to depend on the position on the lattice. One pos-
tulates

E(Xij) = p for all (i,7) € L, (6)
COU(Xijv i—|—u,j—|—v) = 7(uvv) for all (Zv.])v (Z + U,j + U) €L (7)



Thus, the covariance of two variables is assumed to depend only on their
distance vector. For the models considered in Section 2, these assumptions
are already fulfilled since the 3s and 7% are the same for the full conditionals
at any site.

In real data sets stationarity most often is a doubtful assumption. Although
for the Mercer & Hall wheat-yield data the first order dependence structure
seems not unreasonable, Cressie (1993) concludes that the constant term Sy
in (2) actually should be a varying coefficient 8o(z,7), allowing for a non-
stationary field. This is illustrated by Figure 2. The top panel shows the
mean within each row and the bottom panel shows the mean within each
column. Rows as well as columns are identified by an index. The index for
rows ranging from 1 to 20 indicates steps from south to north and the index
for columns ranging from 1 to 25 indicates steps from west to east (see also
Figure 1). In particular the columns show rather strongly varying means
with a decreasing tendency towards the eastern plots. In order to correct the
mean instationarity across columns, Kiinsch (1985) subtracted the means of
the columns and fitted a first order CG-model to the corrected data. Cressie
(1993, Section 4.5) proposed a similar technique, called median polishing,
where both, the rows and the columns, are corrected for their medians. This
is achieved by alternately applying a correction procedure to the rows and the
columns until a stop criterion is fulfilled. As Cressie remarks the large scale
variation (spatial trend) must be taken into account before the parameters
of the small scale variation (spatial dependence) can be interpreted.
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Figure 2: Means within rows (above) and within columns (below).



However, for the wheat-yield data additional problems occur since the co-
variance stationarity assumption also seems to be violated. This may be
seen from Figure 3, where the serial correlations within rows and columns
are given. The smoothed curves show that there is variation in both dimen-
sions which cannot be neglected. Kiinsch’s (1985) correction yields slightly
lower serial correlation for rows, but due to his correction method the cor-
relation structure within columns remains unchanged. Moreover, Kiinsch’s
investigations have shown that the covariance structure, which he expressed
in terms of spectra, differs substantially between the left (west) and the right
(east) half of the field. These differences become already obvious by visual
inspection of the data in Figure 1. From this figure one gets the impression
that neighbours in the columns are stronger connected in the west half of the
field than in the east half, while neighbours in the rows seem to be strongest
connected in the east half, especially in the south.

5 Varying coeflicient models

Since methods like subtracting row means only allow to remove mean non-
stationarity, different methods have to be developed to account for covari-
ance nonstationarity. Hastie & Tibshirani (1993) considered a rather general
model, which includes several smoothing approaches like generalized additive
models and semiparametric models as special cases. In a simple regression
context the model for Gaussian data is given by

Y = Bo(U) + X1 51(U) + ...+ X, 8,(U) + ¢, (8)

where € ~ N(0,0?). The essential point is that the parameters and therefore
the strength of the effects of the covariates is modified by the external vari-
able U, the so called effect modifier. The varying coefficients 3,(U) in (8)
are assumed to be smooth functions which have to be estimated nonpara-
metrically. It is immediately seen that 84(U) = fs,5 = 0,1,... ¢, yields a
parametric model, whereas ¢ = 0 yields a simple smooth model.

An obvious way to handle nonstationarity in CG-models is by considering a
varying coefficient approach of the form

Xijl{zr stz ~ N (i 721, 7)) (9)
Nij = Polt,7) + (wicj + Tig1;) Ba(2,7) + (zijo1 + xijy1) Ba(i,7),  (10)

where parameters may vary smoothly across the field. In this context smooth-
ness means that for sites that are close to each other the parameter values
have to be more similar than they have for sites that are far apart. Since the
parameters are allowed to depend on the location, stationarity is no longer
assumed.

The crucial point is how to estimate the parameters in (10). Hastie & Tib-
shirani (1993) suggest a penalized least squares approach. This approach
rises problems of invariance. If the covariates are transformed, the penaliz-
ing term changes its meaning (see also the discussion of the paper of Hastie &
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Figure 3: Serial correlations within rows (above) and within columns (below).

Tibshirani). As an alternative estimation concept in the following a version
of local likelihood estimation is considered.

6 Local estimation techniques

Local likelihood approaches have been introduced in the context of regression
smoothing by Tibshirani & Hastie (1987) and further developed by several
authors (e.g. Fan & Gijbels, 1996). The extension to varying coefficients
has been considered e.g. by Tutz & Kauermann (1997) as follows. A set of
values of the effect modifier is chosen as target points and at each target
point an estimate for the varying coefficient is calculated by maximization
of the local likelihood. The local likelihood is constructed by attributing an
individual weight to the likelihood contribution of each observation. This
weight depends on the distance between the target point and the value of
the effect modifier at the observation point. With increasing distance to the
target point observations receive lower weights. The estimates at all target
points yield more or less smooth curves or surfaces, respectively, over the
space of the effect modifier.

In the present context the calculation of the localized likelihood bears the
same computational problems as the calculation of the total likelihood. There-
fore we will consider localization of the pseudolikelihood estimator (PL). The
underlying principle is the same as for local likelihood estimation approaches.



The observations around the target point (¢, 7) are weighted down by use of
the weight function

(i) o)) = et (AELRED), (1)

where d is a distance function, K is an unimodal, symmetric kernel function
and X is a smoothing parameter, denoted as bandwidth, which determines
the amount of smoothing. The normalizing constant ¢ is chosen by ¢ =
K(0)™', yielding the weight “1“ at the target point and lower weights in
the neighbourhood. The kernel function chosen here is the tricube-function
of Cleveland (1979), where d(.,.) denotes the Euclidean distance of the two
arguments. Thus the weights have the form

iy = { (17 (E5E2)) it <., 00 <

0, otherwise.

(12)
Based on the weights (12) the local pseudolikelihood estimator is given by
AN . A _ A
Bi,7) = (Z/szz) I(Z/Wijx)v (13)

i

where Wz/\] = diag(w/\((ivj)v (17 1))7 w/\((iv.j)v (17 2))7 s 7w/\((i7.j)7 ([7 ‘])))
Since the local coding estimator is constructed in a similar way, we give
formulae only for the local pseudolikelihood estimator.

6.1 Choice of the smoothing parameter

The choice of the bandwidth is crucial because it determines the smoothness
of the curve and therefore the trade-off between the bias and the variance of
the estimates. Increasing A decreases the variance, but tends to increase the
bias because the estimate at target point (¢, 7) might involve more terms with
p-values different from £(1, j). If A tends to oo, all observations are receiving
equal weights and in the limit the fixed parameter model is assumed to
hold. On the other hand decreasing A leads to an increasing variance and a
decreasing bias. If A tends to zero, the number of observations involved in
an estimate at any point becomes small and the estimated curves are quite
jagged.

For purely exploratory purposes one may simply try several smoothing pa-
rameters and pick one by eye-sight. In the same spirit one may consider a
family of smoothed curves by allowing bandwidth from a grid (see Marron
& Chung, 1997). However, often it is preferable to have at least a reasonable
proposal from a data driven procedure, which automatically chooses an ade-
quate smoothing parameter. An often used criterion is cross validation. With
the focus on quadratic loss one chooses the parameter A which minimizes

OV = =3 (e — A7, (14)



where i7"

is the smoothed estimate of the expected response E(ys). The
superscript —s denotes that the estimate is computed without observation
Ys. In the case of correlated residuals the simple cross validation criterion
CV(A) is no longer appropriate. It is known that in spline smoothing of
independent data the estimate of the vector (/fLI_S’A, oo, f1**) may be com-
puted in the same way as the estimate of the "full data” vector (fi7,. .. ,fi}).
One simply has to substitute the uninformative observation fi;*" for the
original observation y,. For data with correlated residuals, however, fi;**
is no longer uninformative. Van der Linde (1984) derives the uninformative
substitute to be given by f;%" + &;**, where ¢7%* is the estimated residual.

In the corresponding cross-validation criterion

n

1 ~A—s A5
CVi) = 3 3200 = (17 + 7)) (15)
only the difference between the observation and the estimate % 4 ¢, is
~—5,A

evaluated, where the estimate €;°" contains the information which is due to
the residuals’ correlation structure. In the present case the latter criterion

has the form
1 A (5,7)N 1 am(2,5),)
CVaen(N) = 57 (X = (5" 4+ )2 (16)
0]

(43)A 58 the predictor resulting from pseudo likelihood estimation

(ivj)v

where 7,

without observation (i, 7). The estimated residual ¢ s given by

A= (6,5),2 _ ~— (i),
& = S (i) T e — - (17)

Here x_(; ;) = (11, %12,...) is the vector of observations without x;;, and
ﬁ:gzj;A is the corresponding vector of predictors without ﬁ(_i(;)’])’A,
cated by the subscript. Again the superscript of f'[:EZ ;A gives details of the

7]
27]

as indi-

estimation procedure, in particular, that the observation at site (¢,7) was
omitted when estimating this vector locally with bandwidth A. ;; _¢; ;) is the
vector (Uij7rs)(r75)¢(i7]‘), extracted from the covariance matrix and X_¢; ;) —(
denotes the covariance matrices submatrix (UTS’tu)(ns)’(t’u)#

i)
i,5)

When using cross validation for bandwidth selection in the case of Markov
random fields one has to account for the correlation in the residuals. There-
fore we choose the A-value, which minimizes (16). The specific algorithm
consists of two nested loops.

e The outer loop is over a set of values \* from the space of the smoothing
parameter .

— In the inner loop each point (,7) of the lattice L is chosen as
target point.



1. At the current target point (¢, ) we estimate the coefficients
locally using the current bandwidth A*. The contribution to

the pseudolikelihood-estimator, where x;; is the response, is
A_(ivj)v/\*
omitted. The estimate is denoted as 3(z, )

(3.3),A"

2. With this estimate, we calculate 7;; , which is the pre-

dictor for ;.

3. With the same estimate, we calculate the vector of predic-

tors ﬁ:gij;” and the vector of residuals E:Ezj;v =Xy~

ﬁ_(w,)’A . These residuals together with the coefficients 8(z, 5)

(i) B
allow us to predict the residual at the target point E\Z»_j(z’])’A us-

ing (17).
4. Finally we compare the sum of the predicted value 7/7\;
and the predicted residual E\Z;(Z’])’A*

x;; and calculate the remaining error.

(3.3),A"

with the observed value

— After the inner loop has finished, we compute C'V.,(A*), the mean
of the squared remaining errors.

o After the outer loop has finished, C'Vj,, is interpolated between the
M*-values and presented as function of A.

For the wheat-yield data the results from cross validation for the local pseu-
dolikelihood estimator are given in Figure 4. The curve shows an unique
minimum around A = 20.

Alternative concepts for bandwidth selection include plug-in estimates, which
have been investigated e.g. by Hardle, Hall & Marron (1988) and Ruppert,
Steather & Wand (1995). A modification for correlated observations has been
given by Opsomer (1995). There has been some discussion on the optimality
of criteria of bandwidth selection mostly in terms of asymptotic optimality,
in the course of which e.g. Loader (1995) gives several arguments for using
cross validation.

6.2 Bias correction

It has already been mentioned how local estimators lead to biased estimates.
Under weak regularity assumptions Kauermann & Tutz (1995) developed an
approximation for the bias of local likelihood estimates and proposed to use
the approximation for an additive bias correction. The efficiency of this bias
correction has been shown in Kauermann, Miiller & Carroll (1997).

Let B(u*) be the coefficient vector at the target point u* and {8} the set
of coefficient vectors at the target points wuy,... ,uy, then an approximation

10
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Figure 4: Mean squared error cross validation for dependent observations.

for the bias of the local likelihood estimator in model (8) is given by:
E(B (v") = B(u7) ~ by(B(u"),{B})

= (Zm(u*,un);(l,x;)'(l,x;))

St ) (15— ((1X)8 () — (1,X)8(0))

The bias by (8(u),{B}) can be estimated by plugging in the estimates instead
of the true coefficients. Then by <B(u), {B}) may be subtracted from the

estimated curves of the single coefficients directly in order to obtain a bias
corrected estimate.

7 Wheat-yield data revisited

In Section 4 it has already been remarked that for the Mercer & Hall wheat-
yield data stationarity seems not to be fulfilled. Therefore a model with
varying coefficients has been fitted by means of local pseudolikelihood. The
bandwidth A = 20 was chosen according to the cross validation results (see
section 6.1) and in addition bias correction has been applied.

From Figure 5 it is seen that the estimate B\l(z,]), which describes the de-
pendence in row-direction, is strongly increasing when proceeding from the
north-west corner (top left) to the south-east corner (bottom right). The

11



variation from north to south may already be seen from Figure 3, where the
top panel shows that the serial correlation is higher within rows with low
index, i.e. rows in the south. However, the methodology underlying Figure 3
restricts consideration to the north-south or east-west direction. The diag-
onal effect seen in Figure 5 may not be seen from investigating correlations
within columns or rows. R

From Figure 6 it becomes obvious that the estimate 85(¢, j), which represents
the dependence in column-direction, is decreasing essentially from west to
east with particularly high values in the south-west corner. This effect could
not be seen from the serial correlation plots in Figure 3. It is primarily
caused by the strong shifts between neighbouring column means in the west,
which is shown in the bottom panel of Figure 2. The main common feature
of Figure 5 and 6 is the variation from west to east. This corresponds to the
findings of Kiinsch (1985) that the covariance structure in the east and the
west half differ substantially (cf. section 4).

The estimate B\o(l,]) is presented in Figure 7. It is decreasing from north
to south. The variation is hard to interpret, because the intercept term is
influenced by the neighbourhood coefficients 31(¢, j) and 5(1, j) and therefore
can not be considered as a separate feature.

8 Comparison of nonstationary model versus
stationary model

The varying coefficient approach has already led to further insight into the
spatial structure of the wheat-yield data. But in order to confirm the ex-
tracted features as well as for inferential purposes like prediction, one may
want to decide between models and select the most appropriate. Here, one
has to decide between a parametric model and a semiparametric model. This
is currently a field of intensive research and we focus on one approach which
is based on confidence intervals around the nonparametric fit. The paramet-
ric model is considered inappropriate if the estimates of coefficients are not
covered by these intervals (see e.g. Bowman and Young, 1996). In order to
estimate these intervals, bootstrap techniques may be applied. Here, it is
advisable to generate the bootstrap sample by Markov-chain-Monte-Carlo-
methodology. Let the parametric model (1) and (2) and the pseudolikelihood
estimate (5) be the starting constituents. After generating the first realiza-
tion, the field is updated componentwise, using the current values in the
neighbourhood. Actually, instead of updating component by component,
the complete coding sets were updated simultaneously. After every 10th
update the current field was used to generate a new bootstrap estimate. Es-
timation was done by local pseudolikelihood with bandwidth A = 20 and
an additional bias correction procedure, as applied to the wheat-yield data
before. Since the bootstrap realizations are not independent, the simulation
procedure could rather be seen as a MCMC-algorithm, which is standard for
simulating Markov random fields.

12
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Since there is no way to present a set of two-dimensional surfaces in one
figure, only part of the results are presented here. Figure 8 shows values
of #; and py for several sections along rows and columns. The horizontal
solid line shows the estimate of the stationary Gaussian model, while the
solid curve gives the nonparametric estimates (compare Figure 6 and Figure
7). The dotted curves give pointwise 90% confidence intervals based on the
bootstrap estimates.

It becomes obvious that the coverage of the nonparametric estimates by the
confidence intervals is not satisfactory, indicating that the stationary model
is unable to account for the underlying spatial variation. This is new strong
support of the suspicion that the wheat-yield data are not stationary.

9 Concluding remarks

Varying coefficients are an useful tool to discover nonstationarities in spa-
tial data. Compared with other approaches to nonstationary spatial data
which require detrending prior to fitting a Markov random field, as sug-
gested by Kiinsch (1985) and Cressie (1993), we see two main advantages.
First, Markov random fields with spatially varying coefficients can take into
account not only mean nonstationarity but also covariance nonstationarity.
Second, the model is fitted without the arbitrariness which is inherent to de-
trending. The estimation procedure is easily implemented by incorporating
weights into the fitting procedure. In the present paper it is mostly con-
sidered as an exploratory tool. Future research should include more formal
tools to decide upon the appropriateness of the semiparametric model and
the investigation of the extent to which parameters may vary and still yield
a proper joint model. Moreover, more flexibility is desirable, especially con-
cerning the specification of the weights. An adaptive bandwidth specification
and a separate bandwidth for each direction should improve the fit further.
The area of spatial statistics has found considerable interest recently. When
finishing the present paper, a special issue of The Statistician (1998, Part
3), which is devoted to spatial data and local statistics, came to our knowl-
edge. In this issue Unwin & Unwin give a survey of recent developments and
Brunsdon et al. considered geographically weighted regression. In contrast
to Brunsdon et al. we consider a different class of models, namely the more
structured case of conditional Gaussian models, and therefore the estima-
tion procedures are quite different. Consequently, we use different ways of
cross validation and differing bootstrap procedures. Nevertheless, the basic
approach to develop instruments for the exploration of spatial structures by
local modelling is the same as in Brunsdon et al. (1998).
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